Electronic Supplementary Information (ESI)

Understanding the preparative chemistry of atomically dispersed nickel catalysts for achieving high-efficiency H₂O₂ electrosynthesis

June Sung Lim,^a Jinwoo Woo,^b Geunsu Bae,^c Suhwan Yoo,^a Jinjong Kim,^a Jae Hyung Kim,^d Jong Hoon Lee,^e Young Jin Sa,^f Ji-Wook Jang,^g Yun Jeong Hwang,^a Chang Hyuck Choi,^{*ch} and Sang Hoon Joo^{*a}

^aDepartment of Chemistry, Seoul National University, Seoul 08826, Republic of Korea. ^bLotte Chemical Institute of Technology (LCIT), Daejeon 34110, Republic of Korea. ^cDepartment of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.

^dClean Fuel Research Laboratory, Korea Institute of Energy Research (KIER), Daejeon, 34129, Republic of Korea.

^eUNIST Central Research Facilities, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.

^fDepartment of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea. ^gSchool of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.

^hInstitute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea.

Corresponding Author

*E-mail: chchoi@postech.ac.kr (C.H.C.), shjoo1@snu.ac.kr (S.H.J.)

Table of contents

1. Supplementary figures and tables	S3
Fig. S1 Structural characterization of SBA-15.	S 3
Fig. S2 BR-STEM images of Ni–N/C_3_X catalysts.	S4
Fig. S3 N ₂ physisorption analyses of Ni–N/C_3_X catalysts.	S 5
Table S1 Textural properties of SBA-15 and Ni–N/C_3_X catalysts.	S6
Table S2 ICP–OES and EA results of Ni–N/C 3 X catalysts.	S7
Fig. S4 HPR polarization curves of Ni $-N/C$ 3 X catalysts.	S8
Fig. S5 High-magnification BR-STEM image of Ni–N/C_3_Dry catalyst.	S 9
Fig. S6 Nyquist plots of Ni–N/C 3 X catalysts.	S10
Fig. S7 BR-STEM images of Ni–N/C Y H ₂ O Catalysts.	S11
Fig. S8 Nyquist plots of Ni–N/C Y H ₂ O catalysts.	S12
Fig. S9 N ₂ physisorption analyses of Ni–N/C Y H ₂ O catalysts.	S13
Table S3 Textural properties of SBA-15 and Ni–N/C Y H ₂ O catalysts.	S14
Table S4 ICP–OES and EA results of Ni–N/C Y H ₂ O catalysts.	S15
Fig. S10 Ni 2p XPS spectra of Ni–N/C_2_H ₂ O and Ni–N/C_3_H ₂ O catalysts.	S16
Fig. S11 N 1s XPS spectra of Ni–N/C 2 H_2O and Ni–N/C 3 H_2O catalysts.	S17
Fig. S12 EXAFS fitting spectra of Ni–N/C_2_H ₂ O and Ni–N/C_3_H ₂ O catalysts.	S18
Fig. S13 Model structure for EXAFS fitting of Ni–N/C_2_H ₂ O and Ni–N/C 3 H ₂ O catalysts.	S19
Table S5 EXAFS fitting parameters of Ni–N/C_2_H ₂ O catalyst and Ni– N/C 3 H ₂ O catalyst, and Ni foil.	S20
Fig. S14 HPR polarization curves of Ni $-N/C_Y_H_2O$ catalysts.	S21
Table S6 H_2O_2 production performance comparison between Ni–N/C_3_H ₂ O catalyst and previously reported nonprecious metal ADCs and carbon-based catalysts.	S22
Fig. S15 FT-IR spectrum of Ni–N/C 3 H_2O catalyst.	S23
Fig. S16 In-situ ATR-SEIRAS spectra of Ni–N/C_3_H ₂ O catalyst in Ar-saturated 0.1 M KOH.	S24
Fig. S17 CV curve of Ni Ni–N/C_3_H ₂ O catalyst in Ar-saturated 0.1 M KOH.	S25
Fig. S18 ORR polarization curves of Ni–N/C_3_H ₂ O catalyst before and after CN ⁻ poisoning.	S26
Fig. S19 The non-faradaic current, HPR current, and H_2O_2 production current responses of eight-day-tested Ni–N/C_3_H ₂ O-coated electrode.	S27
Fig. S20 EXAFS fitting spectra of Ni foil in <i>R</i> space.	S28
Fig. S21 Collection efficiency of Ni–N/C_3_X and Ni–N/C_Y_H ₂ O catalysts in 0.1 M KOH.	S29
2. References	S30

1. Supplementary figures and tables

Fig. S1 (a) Small-angle XRD pattern, (b) N_2 adsorption-desorption isotherm, (c) BJH pore size distribution curve obtained from the adsorption branch of the corresponding isotherm, and (d) BF-STEM image of SBA-15.

Fig. S2 BR-STEM images of (a) Ni–N/C_3_Dry, (b) Ni–N/C_3_Acetone, (c) Ni–N/C_3_EtOH, and (d) Ni–N/C_3_H₂O catalysts.

Fig. S3 (a) N₂ adsorption-desorption isotherms and (b) BJH pore size distribution curves obtained from the adsorption branch of the corresponding isotherms of Ni–N/C_3_X catalysts. The isotherms of Ni–N/C_3_Acetone, Ni–N/C_3_EtOH, and Ni–N/C_3_H₂O were offset by 400, 800, and 1200 cm³ g⁻¹, respectively, for clarity.

Material	Mean pore diameter ^{<i>a</i>} (nm)	BET surface area ^b $(m^2 g^{-1})$	Total pore volume ^{c} (cm ³ g ⁻¹)
SBA-15	12.7	408	1.18
Ni-N/C_3_Dry	5.1	739	1.21
Ni-N/C_3_Acetone	5.1	719	1.13
Ni–N/C_3_EtOH	5.1	710	1.16
Ni–N/C_3_H ₂ O	5.1	730	1.10

Table S1 Textural properties of SBA-15 and the Ni–N/C_3_X catalysts

^{*a*} Determined at the maximum point in the pore size distribution curve. ^{*b*} Calculated in the relative pressure range of 0.05–0.2. ^{*c*} Calculated at the relative pressure of 0.98–0.99.

Material	Ni ^a	\mathbf{C}^{b}	H^{b}	N^b	\mathbf{O}^b
Ni–N/C_3_Dry	1.68	77.09	1.75	9.58	9.86
Ni-N/C_3_Acetone	1.62	76.83	2.03	9.15	9.64
Ni-N/C_3_EtOH	1.53	76.27	1.94	9.43	9.28
Ni–N/C_3_H ₂ O	1.73	75.81	1.88	10.39	9.54

 Table S2 ICP–OES and EA results of Ni–N/C_3_X catalysts in wt%

^{*a*} Determined by ICP-OES analysis. ^{*b*} Determined by EA.

Fig. S4 HPR polarization curves of Ni–N/C_3_X catalysts measured in N₂-saturated 0.1 M KOH containing 10 mM H_2O_2 .

Fig. S5 High-magnification BR-STEM image of Ni–N/C_3_Dry catalyst.

Fig. S6 Nyquist plots of Ni–N/C_3_X catalysts.

Fig. S7 BR-STEM images of (a) Ni–N/C_1_ H₂O, (b) Ni–N/C_2_ H₂O, and (c) Ni–N/C_3_ H₂O catalysts.

Fig. S8 Nyquist plots of Ni–N/C_*Y*_H₂O catalysts.

Fig. S9 (a) N₂ adsorption-desorption isotherms and (b) BJH pore size distribution curves obtained from the adsorption branch of the corresponding isotherms of Ni–N/C_Y_H₂O catalysts. The isotherms of Ni–N/C_2_H₂O and Ni–N/C_3_H₂O were offset by 600 and 1200 cm³ g⁻¹, respectively, for clarity.

Material	Mean pore diameter ^{<i>a</i>} (nm)	BET surface area ^b $(m^2 g^{-1})$	Total pore volume ^{c} (cm ³ g ⁻¹)
SBA-15	12.7	408	1.18
Ni-N/C_1_H ₂ O	5.1	741	1.17
Ni–N/C_2_H ₂ O	5.1	773	1.11
Ni–N/C_3_H ₂ O	5.1	730	1.10

Table S3 Textural properties of SBA-15 and Ni–N/C_Y_H₂O catalysts

^{*a*} Determined at the maximum point in the pore size distribution curve. ^{*b*} Calculated in the relative pressure range of 0.05–0.2. ^{*c*} Calculated at the relative pressure of 0.98–0.99.

Material	Ni ^a	\mathbf{C}^{b}	H^{b}	\mathbf{N}^b	O^b	
Ni–N/C_1_H ₂ O	1.68	76.68	2.07	8.13	10.08	
$Ni-N/C_2H_2O$	1.53	76.95	1.93	8.77	9.42	
Ni–N/C_3_H ₂ O	1.73	75.81	1.88	10.39	9.54	

Table S4 ICP-OES and EA results of Ni–N/C_Y_H2O catalysts in wt%

^{*a*} Determined by ICP-OES analysis. ^{*b*} Determined by EA.

Fig. S10 Ni 2p XPS spectra of Ni–N/C_2_H₂O and Ni–N/C_3_H₂O catalysts.

Fig. S11 N 1s XPS spectra of Ni–N/C_2_H₂O and Ni–N/C_3_H₂O catalysts.

Fig. S12 EXAFS fitting spectra of the (a) Ni–N/C_2_H₂O and (b) Ni–N/C_3_H₂O catalysts in *R* space.

Fig. S13 Model structure for EXAFS fitting of the Ni–N/C_2_H₂O and Ni–N/C_3_H₂O catalysts.

Material	k range (Å ⁻¹)	<i>R</i> range (Å)	Scattering	CN^{a}	<i>R^b</i> (Å)	$\sigma^{2 c}$ (10 ⁻³ Å ⁻²)	ΔE_0 (eV)	<i>R</i> factor (%)
Ni–N/C_2_H ₂ O	2.5– 11.7	1.0–2.0	Ni–N ₁	4.1 ± 0.3	$\begin{array}{c} 1.88 \\ \pm \ 0.02 \end{array}$	8.3 ± 3.6	4.5 ± 2.7	1.6
Ni–N/C_3_H ₂ O	2.5– 11.7	1.0–2.0	Ni–N ₁	3.9 ± 0.2	1.82 ± 0.04	7.7 ± 2.5	7.9 ± 1.1	0.9
Ni Foil	2.5– 12.5	1.7–4.25	Ni–Ni ₁	12	2.492 ±0.01	8.2 ± 1.5	5.9 ± 1.1	1.1
			Ni–Ni ₂	6	3.524 ±0.01			
			Ni–Ni ₃	24	4.317 ±0.01			
			Ni–Ni ₁ –Ni ₁	48	3.739 ± 0.01			
			Ni–Ni ₁ –Ni ₂	2 48	4.255 ± 0.01			

Table S5 Summary of EXAFS fitting parameters for Ni–N/C_2_H₂O, Ni–N/C_3_H₂O, and Ni foil

^{*a*}Coordination number. ^{*b*}Interatomic distance. ^{*c*}Debye–Waller factor. ^{*d*}All Ni foil CN values were fixed to a theoretical values for *fcc* Ni to obtain the passive electron reduction factor (S_0^2) which was determined to be 0.87.

Fig. S14 HPR polarization curves of Ni–N/C_Y_H₂O catalysts measured in N₂-saturated 0.1 M KOH containing 10 mM H_2O_2 .

Sample	Mass activity @ 0.70 V (A g ⁻¹)	Max. H ₂ O ₂ selectivity by RRDE (%)	References
Ni-N/C_3_H ₂ O	490.9	92	This work
Co-N/C	35.7	65	S 1
Fe-CNT	25.1	95	S2
Co ₁ -NG(O)	392.9	80	S 3
Ni SA/G-O	9.9	94	S4
O-C (Al)	270.4	95	S5
Mo ₁ /OSG-H	34.0	95	S6
meso-Ni-N/C	61.4	82	S 7
F-mrGO(600)	110.8	100	S8
O-CNT	29.9	90	S9
BN-C1	8.9	90	S10
NCMK3IL	19.1	86	S11
MesoC	1.3	80	S12
o-GOMC-1	73.1	93	S13
Oxo-G/NH ₃ ·H ₂ O	1.9	82	S14
N-MFLG-8	3.0	95	S15
GNP _{C=0,1}	38.9	98	S16
NF-Cs	24.0	82	S17
OCB-120+CTAB	30.2	92	S18
OCNS ₉₀₀	191.0	90	S19
HCB+0.5 KC1	201.3	87	S20
O-GOMC-5.5	120.6	92	S21
B-C	32.3	90	S22

Table S6 Benchmarking electrochemical H_2O_2 production performance of Ni–N/C_3_H₂O catalyst with those of previously reported nonprecious metal ADCs and carbon-based catalysts in terms of mass activity and maximum H_2O_2 selectivity in 0.1 M KOH (or NaOH)

Fig. S15 FT-IR spectrum of Ni–N/C_3_H₂O catalyst.

Fig. S16 In-situ ATR-SEIRAS spectra of Ni $-N/C_3_H_2O$ catalyst collected in the (a) O₂-saturated and (b) Ar-saturated 0.1 M KOH electrolyte with 0.1 V intervals from 0.9 V to 0.2 V. The * symbol denotes catalyst surface.

Fig. S17 (a) Full and (b) carbonyl reduction part enlarged CV curves of Ni–N/C_3_H₂O catalyst collected in Ar-saturated 0.1 M KOH at a scan rate of 20 mV s⁻¹.

Fig. S18 ORR polarization curves of Ni–N/C_3_H₂O catalyst before and after CN^- poisoning.

Fig. S19 The non-faradaic current, HPR current, and H_2O_2 production current responses of the eight-day-tested Ni–N/C_3_H₂O-coated electrode at 0.6 V (vs. RHE). The non-faradaic current and H_2O_2 production current responses of the fresh Ni–N/C_3_H₂O-coated electrode at 0.6 V (vs. RHE) were used as references.

Fig. S20 EXAFS fitting spectra of Ni foil in the *R* space.

Fig. S21 Collection efficiency of (a) Ni–N/C_3_X and (b) Ni–N/C_ Y_H_2O catalysts in 0.1 M KOH.

2. References

- S1 Y. Sun, I. L. Silvioli, N. R. Sahraie, W. Ju, J. Li, A. Zitolo, S. Li, A. Bagger, L. Arnarson, X. Wang, T. Moeller, D. Bernsmeier, J. Rossmeisl, F. Jaouen and P. Strasser, J. Am. Chem. Soc., 2019, 141, 12372–12381.
- S2 K. Jiang, S. Baek, A. J. Akey, C. Xia, Y. Hu, W. Liang, D. Schaak, E. Stabitski, J. K. Nørskov, S. Siahrostami and H. Wang, *Nat. Commun.*, 2019, **10**, 3997.
- S3 E. Jung, H. Shin, B.-H. Lee, V. Efremov, S. Lee, H. S. Lee, J. Kim, W. H. Antink, S. Park,
 K.-S. Lee, S.-P. Cho, J. S. Yoo, Y.-E. Sung and T. Hyeon, *Nat. Mater.*, 2020, 19, 436–442.
- S4 X. Song, N. Li, H. Zhang, L. Wang, Y. Yan, H. Wang, L. Wang and Z. Bian, ACS Appl. Mater. Interfaces., 2020, 12, 17519–17527.
- S5 Q. Yang, W. Xu, S. Gong, G. Zheng, Z. Tian, Y. Wen, L. Peng, L. Zhang, Z. Lu and L. Chen, *Nat. Commun.*, 2020, **11**, 5478.
- S6 C. Tang, Y. Jiao, B. Shi, J.-N. Liu, Z. Xie, X. Chen, Q. Zhang and S.-Z. Qiao, Angew. Chem., Int. Ed., 2020, 59, 9171–9176.
- S7 J. S. Lim, J. Kim, K.-S. Lee, Y. J. Sa, S. H. Joo, *Electrochim. Acta*, 2023, 444, 142031.
- S8 H. W. Kim, M. B. Ross, N. Kornienko, L. Zhang, J. Guo, P. Yang and B. D. McCloskey, *Nat. Catal.*, 2018, **1**, 282–290.
- S9 Lu, Z., G. Chen, S. Siahrostami, Z. Chen, K. Liu, L. Liao, T. Wu, D. Lin, Y. Liu, T. F. Jaramillo, J. K. Nørskov and Y. Cui, *Nat. Catal.*, 2018, **1**, 156–162.
- S10 S. Chen, Z. Chen, S. Siahrostami, D. Higgins, D. Nordlund, D. Sokaras, T. R. Kim, Y. Liu, X. Yan, E. Nilsson, R. Sinclair, J. K. Nørskov, T. F. Jaramillo and Z. Bao, J. Am. Chem. Soc., 2018, 140, 7851–7859.
- S11 Y. Sun, I. Sinev, W. Ju, A. Bergmann, S. Dresp, S. Kuhl, C. Spöri, H. Schmies, H. Wang, D. Bernsmeier, B. Paul, R. Schmack, R. Kaehnert, B. Roldan Cuenya and P. Strasser, *ACS Catal.*, 2018, 8, 2844–2856.
- S12 S. Chen, Z. Chen, S. Siahrostami, T. R. Kim, D. Nordlund, D. Sokaras, S. Nowak, J. W. F. To, R. Sinclair, J. K. Nørskov, T. F. Jaramillo and Z. Bao, ACS Sustainable Chem. Eng., 2018, 6, 311–317.
- S13 Y. J. Sa, J. H. Kim and S. H. Joo, Angew. Chem., Int. Ed., 2019, 58, 1100–1105.
- S14 L. Han, Y. Sun., S. Li, C. Cheng, C. E. Halbig, P. Feicht, J. L. Hübner, P. Strasser and S. Eigler, *ACS Catal.*, 2019, **9**, 1283–1288.
- S15 L. Li, C. Tang, Y. Zheng, B. Xia, X. Zhou, H. Xu and S.-Z. Qiao, Adv. Energy Mater., 2020, 10, 2000789.
- S16 G.-F. Han, F. Li, W. Zou, M. Karamad, J.-P. Jeon, S.-W. Kim, S.-J. Kim, Y. Bu, Z. Fu, Y. Liu, S. Siahrostami and J.-B. Baek, *Nat. Commun.*, 2020, **11**, 2209.
- S17 W. Wang, X. Lu, P. Su, Y. Li, J. Cai, Q. Zhang, M. Zhou and O. Arotiba, *Chemosphere*, 2020, **259**, 127423.
- S18 K.-H. Wu, D. Wang, X. Lu, X. Zhang, Z. Xie, Y. Liu, B.-J. Su, J.-M. Chen, D.-S. Su, W. Qi and S. Guo, *Chem*, 2020, 6, 1443–1458.

- S19 S. Chen, T. Luo, K. Chen, Y. Lin, J. Fu, K. Liu, C. Cai, Q. Wang, H. Li, X. Li, J. Hu, H. Li, M. Zhu and M. Li, *Angew. Chem., Int. Ed.*, 2021, **60**, 16607–16614.
- S20 J. Lee, J. S. Lim, G. Yim, H. Jang, S. H. Joo and Y. J. Sa, ACS Appl. Mater. Interfaces., 2021, **13**, 59904–59914.
- S21 J. S. Lim, J. H. Kim, D. S. Baek, K. Ihm, T. J. Shin, Y. J. Sa and S. H. Joo, *Chem*, 2021, 19, 436–442.
- S22 Y. Xia, X. Zhao, C. Xia, Z.-Y. Wu, P. Zhu, J. Y. Kim, X. Bai, G. Gao, Y. Hu, J. Zhong, Y. Liu and H. Wang, *Nat. Commun.*, 2021, **12**, 4225.