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Supplementary experimental materials and methods

Protein constructs
Sequences of wild-type A1-LCD and variants are based on the low complexity domain (residues 
186-320) of the human hnRNPA1 (UniProt: P09651; Isoform A1-A). The coding sequences for
the variants were synthesized (Thermo Fisher) including a coding sequence for an N-terminal
ENLYFQGS TEV protease cleavage site and 5’ and 3’ attB sites for Gateway cloning. The
sequences were recombined via LR reactions into the pDEST17 vector (Thermo Fisher), which
includes an N-terminal 6xHis-tag coding sequence. After expression, we cleaved of the N-
terminal 6xHis-tag using TEV protease, leaving only an additional GS sequence at the N-
terminus (Table S1).

Protein expression and purification
A1-LCD variants were expressed and purified as previously reported for similar constructs 
(39,41). The E. coli BL21 (DE3) pLysS strain was used for expression and grown in ZYM5052 
auto induction media at 37°C for 24 hours. Cell pellets were recovered by centrifugation and 
resuspended in 50 mM MES pH 6.0, 500 mM NaCl, 20 mM 2-mercaptoethanol. Cell lysis 
was achieved via sonication. Cell lysates were centrifuged to collect inclusion bodies, that 
were resuspended in 6 M GdmHCl, 20 mM Tris pH 7.5, 15 mM imidazole overnight at 4°C. 
The solutions containing the solubilized inclusion bodies were cleared from cell debris by cen-
trifugation, and supernatants were loaded onto self-packed columns of chelating Sepharose fast 
flow beads (GE Healthcare) charged with nickel sulfate. The columns were washed with four 
column volumes of 4 M urea, 20 mM Tris pH 7.5, 15 mM imidazole. Proteins were eluted 
from the Ni-NTA resin with 4 M urea, 20 mM Tris pH 7.5, 500 mM imidazole. TEV cleavage 
of the 6xHis-tag was done in 2 M urea, 20 mM Tris pH 7.5, 50 mM NaCl, 0.5 mM EDTA, 
1 mM DTT overnight at 4°C. Cleaved protein solutions were loaded onto Ni-NTA columns. 
The flow-through and wash fractions were collected and concentrated using a 3000 MWCO 
Amicon centrifugal filter. Finally, samples were transfered in 2 M GdmHCl, 20 mM MES 
pH 5.5 over a S75 Superdex size exclusion column (GE Healthcare). The molecular weight of 
the proteins and the purity of samples were confirmed via intact mass spectrometry and SDS-
PAGE. Samples were stored in 6 M GdmHCl, 20 mM MES pH 5.5 at 4°C.

We attempted to express and purify 15 variants of A1-LCD. Five of them (Table S1) ex-
pressed in E. coli with the protocol described above. The other ten (Table S2) expressed either 
at very low yield (X3) or with no detectable protein (X1–X2 and X4–X10).

SDS-PAGE
Gel electrophoresis was carried out using NuPAGE 4–12% Bis-Tris gradient gels (Invitrogen). 
1x NuPAGE MES SDS Running buffer (Invitrogen) was used to run gels. After the run, gels



were washed with water and stained with SimplyBlue SafeStain (Thermo Fisher Scientific) be-
fore destaining with water. PageRuler Plus Prestained protein ladder (Thermo Fisher Scientific)
was used as a molecular weight reference.

Buffer exchange
To remove the denaturant buffer used for storage and transfer the protein to 20 mM HEPES
(pH 7.0) we used ZebaTM Spin Desalting Columns (Thermo Fisher Scientific) with 7k MWCO
and 0.5 mL volume. After removal of storage solution from the column by centrifugation at
1000 ⇥g for 1 min, columns were washed three times with 300 µL of 20 mM HEPES (by
centrifugation at 1000 ⇥g for 1 min). Finally, protein sample is applied to the column and
recovered in 20 mM HEPES after a centrifugation. Additional washing steps (3–5) were carried
out in Amicon Ultra-0.5 Centrifugal Filter Units to remove residual denaturant.

Determination of saturation concentrations
Phase separation of protein samples was induced by adding NaCl to a final concentration of
150 mM. The dilute and dense phase were separated via centrifugation (101). The csat was
determined by the absorbance of the dilute phase at 280 nm.

DIC microscopy
Differential interference contrast microscopy (DIC) images were obtained at room tempera-
ture using a Nikon Eclipse Ni Widefield microscope with a 20X objective. Samples were at
concentrations slightly above their csat at room temperature. Phase separation was induced by
adding NaCl to the protein stock solution to reach a concentration of 150 mM. 2 µL of the pro-
tein solution were positioned in between two glass coverslips held toghether by 3M 300 LSE
high-temperature double-sided tape (0.34 mm) with a window for microscopy cut out.

Supplementary computational methods
The Rh for protein conformations was calculated using HullRadSAS (75, 102). The ensemble-
averaged Rh was calculated as 1/n�1

Pn
i (1/Rh,i) (103, 104), from each conformer i of an en-

semble. Sequence clustering was performed with a 65% sequence identity threshold using the
CD-HIT software (105,106). Calculations of !aro and  from sequences were performed using
the localCIDER python package (https://github.com/Pappulab/localCIDER), while
the z(�+�) scores for the IDRome sequences and the A1-LCD swap variants were calculated us-
ing a modified version of the NARDINI software which allowed us to define a custom threshold
for the largest fraction of negatively and positively charged residues below which the program



sets z(�+�) to zero (65). We set this threshold to 2.5% to obtain a non-zero z(�+�) score for A1-
LCD and sequences in the IDRome with fraction of charged residues similar to A1-LCD. For
the NARDINI analysis of IDRome sequences, we generated 105 randomly shuffled sequences,
while for the wild type and variants of A1-LCD, we used 5⇥105 randomly shuffled sequences.

We calculated error bars on averages calculated from MD simulations using block aver-
aging (https://github.com/fpesceKU/BLOCKING). Calculation of SAXS data from
conformations was performed with Pepsi-SAXS (v3.0) (107), using fixed parameters for the
contrast of the hydration layer and the effective atomic radius (respectively 3.34 e/nm3 and
1.025 ⇥ rm, where rm is the average atomic radius of the protein) (73). Prior to calculating the
�2
r , experimental SAXS curves are rebinned to 158 scattering angles and experimental error

bars are rescaled using the Bayesian indirect Fourier transform (BIFT) (108). Both rebinning
and error correction were carried out with the BayesApp webserver (https://somo.chem.
utk.edu/bayesapp/) (109).



Supplementary figures and tables
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Figure S1: Design of more expanded variants for ↵Syn, A1-LCD, LAF-1-RGG and FUS-PLD,
starting from the wild-type sequences.



Figure S2: Multiple sequence features were calculated from the variant sequences of ↵Syn,
A1-LCD and LAF-1-RGG and correlated with the Rg. SCD, similarly to , is related to the
patterning of charged residues. SHD (sequence hydropathy decoration) quantifies the patterning
of hydrophobic residues. !aro quantifies the patterning of aromatic residues.
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Figure S3: We performed ten runs for generating compact variants of A1-LCD. For each replica
we show (a) the evolution of the Rg from the generated sequences and (b) the total charge for the
N-terminal third (blue), the middle third (grey), and the C-terminal third (red) of each sequence.



Figure S4: To test the accuracy and efficiency of MBAR reweighting, we generated a random
sequence of 140 residues and performed 1000 position swaps between two randomly selected
residues. We simulated all 1000 sequences and calculate their Rg. Then we iterate through the
1000 sequences trying to predict their Rg by reweighting simulations from previous iterations.
We vary the maximum size of the MBAR pool and add a new simulation to the pool when the
Neff drops below 10000. Then we compare the reweighted Rg from MBAR with the simulated
Rg. The left panel shows the number of simulations required by varying the maximum MBAR
pool size. The right panel shows the relative absolute difference between reweighted and simu-
lated Rg (|�Rg|/Rsim

g ) as a function of Neff. For better visualization, we binned the data on the
Neff coordinate (with a bin width of 1000) and plot the average in the bins.
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Figure S5: For some of the centroids selected from the sequence clustering of the A1-LCD
variants the Rg values had been obtained by reweighting. We simulated each of these for 1 µs to
assess the accuracy of the reweighting. The reweighted and simulated Rg values are compared.
We observe an average error of 1.5% on the reweighted Rg, with a slight bias for the most
compact and expanded chains.
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Figure S6: Sequence identity to wild-type A1-LCD for the 119 designed A1-LCD variants.
Green vertical line correspond to the Rg of wild-type A1-LCD.



Figure S7: Characterization of the 120 variants of A1-LCD. We show the relationship between
Rg and (a) SCD, (b) !aro (patterning of aromatic residues) and (c) the csat calculated from sim-
ulations of 100 chains in slab geometry. We highlight the wild-type sequence of A1-LCD in
green, the five variants that we characterized experimentally in red, and ten variants that did not
express in E. coli in blue.
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Figure S8: csat values calculated by slab simulations of experimental constructs. Replicas 1,2
and 3 were performed with CALVADOS M1 (49) and 100 chains in the simulation box. Replica
1 (green) is 20-µs long, while replicas 2 and 3 (blues) are 50-µs long. For V5, we also performed
a 20-µs long simulation with CALVADOS M1 but using 200 chains (pink), and a 20-µs long
simulation with 100 chains but the CALVADOS 2 parameters (brown) (53).
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Figure S9: Rebinned experimental SAXS data with corrected error bars (black) compared to
SAXS curves calculated from simulations.
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Figure S10: Design of swap variants starting from A1-LCD to target the V1 contact map.
(A) Total charge in the N-terminal third (blue), middle third (grey) and C-terminal third (red)
of the variants proposed during the design. (B) Charge segregation (as quantified by ) of the
sequences proposed during the design. (C) Sequence identity to V1 of the variants proposed
during the design.
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Figure S11: Design of swap variants with varying compaction using a support vector regression
machine learning model to predict the scaling exponent (⌫SVR) from sequences. We applied this
to the seven IDPs that we also studied using the simulation-based algorithm (main text Fig. 2
and 7) . For each sequence during design we show (A) ⌫SVR (B) targeting either ⌫SVR=0.3 (green
lines) or ⌫SVR=0.7 (orange lines), , (C) total charge in the N-terminal third (blue), middle third
(grey) and C-terminal third (red). Starting c value for Monte Carlo was set to 2⇥10-5. (D) We
ran molecular dynamics simulations of 10 variants of each protein and compared the simulation-
derived values of ⌫ with ⌫SVR.
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Figure S12: Schematic outline of the design algorithm.
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Figure S13: SAXS data collected on samples of (from top to bottom rows) V2, V3, V4, V5 and
wild-type A1-LCD. From the left to the right column, SAXS profiles are shown on logarithmic
scales, as a Guinier plot in the range used for the linear fit (in red) to derive the the Guinier
Rg, the dimensionless Kratky plot with rebinned SAXS data, and the normalized pair distance
distribution function (calculated using BIFT (108)).



Figure S14: In line SEC-SAXS data collection. In blue, we show the mean solvent-subtracted
intensity for each SAXS frame collected during sample elution from the SEC column. In or-
ange, we show the Guinier Rg calculated for each SAXS frame.



Table S1: Sequences of the wild type A1-LCD and the five designed variants that we character-
ized experimentally. The first two residues (GS) are left over by the TEV protease cleavage of
the 6xHis-tag.

Label Sequence
WT GS—MASASSSQRGRSGSGNFGGGRGGGFGGNDNFGRGGNFSGRGGFG

GSRGGGGYGGSGDGYNGFGNDGSNFGGGGSYNDFGNYNNQSSNFGP
MKGGNFGGRSSGGSGGGGQYFAKPRNQGGYGGSSSSSSYGSGRRF

V1 GS—GSGSGGSRGGNKRRRKRRGGSGGYRYSRRGGGFNQGGGFNSSGF
FGGMGSGGGSGGGFGNGPSFAGSNNFNGGGGGSAGNFGQYGGRGGPY
SGSGGSGSGSNSGQNGGSGNYMGSGYDAFYNSSFNNQSFFGDDD

V2 GS—GGYGSSQGGFFGGGDAGGNGDGSDFGGGYPSGSNQNSGGFSGYG
NDSFQGSAGMFNGFKSASKFSNSGGYGGGGQGNNNGSGGGSSFRNRR
RRSNYSGGGSGRGRRYGSNFGGMYGGRSGFGGNGPGRSGFGGSN

V3 GS—KQGGRGGNRSGSGNGNASGAGGGGRDGGSDGGFDGFDYQFSGG
GNPSSQYYGSRGGSGRNSAGGYYFFRNSSGGNGSSGNMNPGNGYFGFS
RSGGRGQNRGFFFGGMGGGGFGRSSNFGSYNSSNKSGSGGGGGG

V4 GS—GSNGGGSQSSGQGYGKSGGNRRRGRGGAGGGFGMGDGSNQYGY
GPFRRGSGFNGNGDYANYGGNGDSNNFSNYRGGNSANGNFQSGGGGG
FDNGGGSGFGGSFSMSGGSSSGKRRGSGGFFSGRSGSGFGGFYPS

V5 GS—GFSNMGNGFGGRFGGGRGFSRYSQQFSYYDGGQSSGGNGSSGGF
NSYGGYNNGRNGSSFGGAGGGGRSSFGFSGGGGFGADGGYNRFSSGD
RNNNGPSKGGGGGNGSGSRGFAGNGSMSDRGNSYGGGPGRQKGS



Table S2: Sequences of the computationally designed variants that we could not express in E.

coli. The first two residues (GS) are part of the TEV protease cleavage site.
Label Sequence
X1 GS—GYAGGRGKRRRRKRRNRRRGYQSGSGGGGGGNGSNGGSGGYGA

SNNNGSGFFGGYGGNSGFFSNSYFGGGQGANGSGNPGSFGGGGSGPSG
SGMSFYGGGSSGGFGQDDGDFDGQSNSSGNNSFSMFGGGNYSFG

X2 GS—GGFNSQQKRRRRKRRFRFRSYGGNGSSNGSGGGYFGNNSGSGSG
GGRGGYGFGRGNSGGSGNPGAGAGFPGYSSSGMAGYGQNGNSSGFGG
SNMSFGNGNGGFSGGSDDGDYDFSGSFGGGGFGQYGNSNGSGGG

X3 GS—GKGKRGGGRGSNGAFFSPRRRRFRRSASGRRAGSGGQGQGQGGG
YYYNGGSSFNSGMGSGNGNSPYGNGNGGGGGGGGFSYGNGSSMSGFN
SGSSGGGGNYGGGFGGSGNGSGSNQSSNFFSFDFDFGGDGYNGD

X4 GS—GGGGYGAGRGSGGNRSRRRRSRSRKRRKGYSGQSNFNGGSGFGG
FSQQGGPGSSGGGGNGGSYFAYFGGGGGQNGSSGSSGMYFNGSSNFGS
SGNNGDSGSGANMFSNGGSFPGGGGNDDGDNNFFFGGYYGGGG

X5 GS—SAGGNSKNGNGGRGFGGRRSSRMRRGFFRNFRRSFPGNNGSGGY
QGGFGGKFGGSSGSGGGRFYPYNNGGNNGSGFSGGSGGGSSGSGSSQG
SGGSNGASNGQGAGGGGGSNGGGFYGDSYYFYDNMDGGFSDQG

X6 GS—GGGGSMFKFSSSGRGGRRRKFRSRRGRGFGSGQGSNRGSSGFGGP
GSGGGYGPGGGSFNYSGSGAYGGSGNSQYGDNGSGQFYGNSQMNGY
GNGNGSGGGSNYSNGSGGGFRGFGGGNDDGDSNNFSFAGAGNGF

X7 GS—SSDFGNKRRRRRRFRRRFRGYGSFGGGSGGQANGGYMGAGGNG
GGSPGGNFMNSNGGGFGFFYGGSASGGGGNNGSNNSDYQGGDSNNGG
PFQGGSGGGNGSNFSFQYKGDYSSGYSSGGGGGSSGGSGGSFGSG

X8 GS—SPFFGYQGNNFRRKRGRRKGGGSYGSSRGSGNNSGGGGSRSSGG
GSGGGSGGFYYFRNNFSQRGNSGDGFSSGGGNYFGGSSGSAQGRGYG
GNFGAGNGGGSSNGGGNGGANNGFFFSGGQMGSGPMSYGGGDDD

X9 GS—QGGGSSSGNGGGGKGGGSNGNGRFFRFRGGFYGRRSGKNRRYN
GFGMSRYGGFSRSGNGGSMGFRGQSGGGPSSQSFAQYGGGSNFNGSA
GYNDGPFGGSSFGGSGAGDSYGDGGNNGFDGGSYSGGGGSNNGSN

X10 GS—SNFNGSGNRRQSRGSNRRGRRGYYSFRGNFYFRNGGGGGGGKNG
GSGGNNPGGMGGFQGSGGSGGGAGNSKRAGGMGGAGSFGYGSGNGG
DSGSGGQGSSNSGGNSGSSGQNGFFDSGFSPYGDDGFFGFSYYGS



Table S3: SAXS sample, data-collection and analysis for the wild-type A1-LCD and its
variants⇤.

(a) Sample details
V2 V3 V4 V5 WT

Organism Artificial Artificial Artificial Artificial Human
Source E. coli BL21 (DE3) pLys recombinant expression
Sample environment/configuration

Solvent composition 20 mM HEPES pH 7.0, 150 mM NaCl, 2 mM DTT
Sample temperature (K) 298
In-beam sample cell 1 mm quartz capillary flow cell
Size exclusion chromatography

Sample injection concentration (mg/mL) 2.6 2.6 2.6 2.6 2.6
Sample injection volume (mL) 250
SEC column type Superdex 75 Increase 10/300 GL column (Cytiva)
SEC flowrate (mL/min) 0.6

(b) SAXS data collection
Data-acquisition/reduction software BioXTAS RAW 2.1.4
Source/instrument description BioCAT (Sector 18, APS)
Measured q-range (qmin – qmax) (Å�1) 2.90e-03 – 4.17e-01
Method for scaling intensities Absolute scaling with glassy carbon
Exposure time (s) 0.5

(c) SAS-derived structural parameters
Guinier analysis

Method(s)/software autorg (ATSAS 3.1.3)
I(0) 0.0011 ± 5.4e-06 0.0013 ± 6.8e-06 0.0013 ± 5.3e-06 0.0018 ± 6.6e-06 0.0018 ± 8.7e-06
Rg (Å) 23.1 ± 0.2 23.48 ± 0.21 23.95 ± 0.17 24.84 ± 0.16 23.55 ± 0.21
qRg range 0.13 – 1.3 0.12 – 1.3 0.16 – 1.3 0.15 – 1.3 0.21 – 1.3
Linear fit assessment (autorg fidelity) 1 1 1 0.98 0.01
Pair distance distribution function analysis

Method(s)/software BIFT (BayesApp 1.1)
I(0) 1.09e-03 1.35e-03 1.34e-03 1.85e-03 1.79e-03
Rg (Å) 23.65 24.89 25.47 26.21 24.5
Dmax (Å) 82.56 93 98.89 95.35 80.32
P(r) reciprocal-space fit: �2

r , p-value 0.80, 4.40e-04 0.77, 4.1e-05 0.87, 2.6e-02 0.84, 4.5e-03 0.73, 4.1e-07

(d) Scattering particle size
Porod volume (Å3) 16726 14254 14874 22680 15360
Theoretical MW (kDA) 13.1
SAXS MW (DatBayes)⇤⇤ (kDA), probability 15.475, 0.45 14.825, 0.48 14.825, 0.43 14.825, 0.39 15.475, 0.50

(e) Modelling (SAXS calculation from molecular simulations)
Software Pepsi-SAXS 3.0
q-range for calculation (Å�1) 2.90e-03 – 4.17e-01
Number of frames used 10000
Scale factor and offset Fixed to constant in Pepsi-SAXS, then globally fit to experiment by least square
�⇢ (e/nm3) 3.34
Average atomic radius (rm; Å) 1.58
r0/rm 1.025
�2
r 1.49 2.19 1.94 2.28 1.34

(f) Data deposition
SASDB ID SASDTK2 SASDTL2 SASDTM2 SASDTN2 SASDTJ2

⇤ Table in accordance with guidelines from (110) and (111).
⇤⇤ See (112).
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