Supporting information

Supporting tables

Table A: Experimented hyperparameters and smoothing techniques for each CN identification method on the CRC dataset. The selected ones are highlighted.

Method	Hyperparameter	Smoothing
CC	$m \in \{5, 8, 10, 15, 20\}$	None, Naive , HMRF
CF-IDF	$\varepsilon \in \{32, 40, 50\} (d \in \{3, 5, 8\}), r \in \{0.5, 0.8, 1.0\}$	None, Naive , HMRF
CNE	$perp \in \{5, 10, 15, 20, 25\}, \lambda = 0.25$	None, Naive , HMRF
Spatial LDA	$\varepsilon \in \{50, 75, 100\}, \ b \in \{0.025, 0.25, 2.5\}$	None, Naive , HMRF
ClusterNet	$k \in \{3, 6, 9, 12, 15\}$	None, Naive , HMRF
GAP	$k \in \{3, 6, 9, 12, 15\}$	None, Naive, HMRF

Table B: Experimented hyperparameters and smoothing techniques of CN identification methods on the T2D dataset. The selected ones are highlighted.

Method	Hyperparameter	Smoothing
CC	$m \in \{5, 8, 10, 15, 20\}$	None, Naive, HMRF
CF-IDF	$\varepsilon \in \{35, 45, 57\} (d \in \{3, 5, 8\}), r \in \{0.5, 0.8, 1.0\}$	None, Naive , HMRF
CNE	$perp \in \{5, 10, 15, 20, 25\}, \lambda = 0.25$	None, Naive , HMRF
Spatial LDA	$\varepsilon \in \{50, 75, 100\}, b \in \{0.025, 0.25, 2.5\}$	None, Naive , HMRF
ClusterNet	$k \in \{3, 6, 9, 12, 15\}$	None, Naive, HMRF
GAP	$k \in \{3, 6, 9, 12, 15\}$	None, Naive, HMRF

Table C: Experimented hyperparameters and smoothing techniques of CN identification methods on the HLT dataset. The selected ones are highlighted.

Method	Hyperparameter	Smoothing
CC	$m \in \{10, 15, 20, 25, 30\}$	None, Naive , HMRF
CF-IDF	$\varepsilon \in \{23, 29, 36\} (d \in \{3, 5, 8\}), r \in \{0.5, 0.8, 1.0\}$	None, Naive, HMRF
CNE	$perp \in \{5, 10, 15, 20, 25\}, \lambda = 0.25$	None, Naive, HMRF
Spatial LDA	$\varepsilon \in \{50, 75, 100\}, b \in \{0.025, 0.25, 2.5\}$	-
ClusterNet	$k \in \{3, 6, 9, 12, 15\}$	-
GAP	$k \in \{3, 6, 9, 12, 15\}$	-

Supporting figures for the CRC dataset

(c) CNE

(f) GAP

Figure A: Voronoi diagrams showing the identified CNs of different methods on image reg021_A of the CRC dataset. For GAP, we used k=6 and Naive smoothing for illustration.

(c) CNE

Figure B: Voronoi diagrams showing the identified CNs of different methods on image reg065_A of the CRC dataset. For GAP, we used k=6 and Naive smoothing for illustration.

Figure C: **CN analysis results of CC on the CRC dataset.** (A) CT Enrichment analysis. (B) Differential CT Enrichment analysis. (C) Tensor Decomposition analysis. (D) Inter-CN Communication Network analysis involving {PD1+, Ki-67+, ICOS+}CD8+ T cells and Ki-67+ Tregs.

Figure D: CN analysis results of CF-IDF on the CRC dataset. (A) CT Enrichment analysis. (B) Differential CT Enrichment analysis. (C) Tensor Decomposition analysis. (D) Inter-CN Communication Network analysis involving {PD1+, Ki-67+, ICOS+}CD8+ T cells and Ki-67+ Tregs.

Figure E: **CN analysis results of Spatial LDA on the CRC dataset.** (A) CT Enrichment analysis. (B) Differential CT Enrichment analysis. (C) Tensor Decomposition analysis. (D) Inter-CN Communication Network analysis involving {PD1+, Ki-67+, ICOS+}CD8+ T cells and Ki-67+ Tregs.

Figure F: **CN analysis results of ClusterNet on the CRC dataset.** (A) CT Enrichment analysis. (B) Differential CT Enrichment analysis. (C) Tensor Decomposition analysis. (D) Inter-CN Communication Network analysis involving {PD1+, Ki-67+, ICOS+}CD8+ T cells and Ki-67+ Tregs.

Figure G: **CN analysis results of GAP on the CRC dataset.** (A) CT Enrichment analysis. (B) Differential CT Enrichment analysis. (C) Tensor Decomposition analysis. (D) Inter-CN Communication Network analysis involving {PD1+, Ki-67+, ICOS+}CD8+ T cells and Ki-67+ Tregs.

Supporting figures for the T2D dataset

(c) CF-IDF

Figure H: Voronoi diagrams showing the identified CNs of different methods on image ABHQ115_2 of the T2D dataset. For GAP, we used k=6 and HMRF smoothing for illustration.

(c) CNE

Figure I: Voronoi diagrams showing the identified CNs of different methods on image AGBA390_4 of the T2D dataset. For GAP, we used k=6 and HMRF smoothing for illustration..

Figure J: CN analysis results of CC on the T2D dataset. (A) CT Enrichment analysis. (B) Differential CT Enrichment analysis. (C.1) Inter-CN Communication Network analysis involving vascular cells (endothelial cells and pericytes). (C.2) Inter-CN Communication Network analysis involving immune cells (T cells, macrophages, and other immune cells).

Figure K: **CN analysis results of CF-IDF on the T2D dataset.** (A) CT Enrichment analysis. (B) Differential CT Enrichment analysis. (C.1) Inter-CN Communication Network analysis involving vascular cells (endothelial cells and pericytes). (C.2) Inter-CN Communication Network analysis involving immune cells (T cells, macrophages, and other immune cells).

Figure L: CN analysis results of Spatial LDA on the T2D dataset. (A) CT Enrichment analysis. (B) Differential CT Enrichment analysis. (C.1) Inter-CN Communication Network analysis involving vascular cells (endothelial cells and pericytes). (C.2) Inter-CN Communication Network analysis involving immune cells (T cells, macrophages, and other immune cells).

Figure M: **CN analysis results of ClusterNet on the T2D dataset.** (A) CT Enrichment analysis. (B) Differential CT Enrichment analysis. (C.1) Inter-CN Communication Network analysis involving vascular cells (endothelial cells and pericytes). (C.2) Inter-CN Communication Network analysis involving immune cells (T cells, macrophages, and other immune cells).

Figure N: **CN analysis results of GAP on the T2D dataset.** (A) CT Enrichment analysis. (B) Differential CT Enrichment analysis. (C.1) Inter-CN Communication Network analysis involving vascular cells (endothelial cells and pericytes). (C.2) Inter-CN Communication Network analysis involving immune cells (T cells, macrophages, and other immune cells).

Supporting figures for the HLT dataset

Figure O: Visualization of the identified CNs of different methods on the HLT dataset.

Figure P: **CN analysis results of CC on the HLT dataset.** (A) CN Combination Map analysis. (B) Assembly Rule Identification analysis.

Figure Q: CN analysis results of CF-IDF on the HLT dataset. (A) CN Combination Map analysis. (B) Assembly Rule Identification analysis.

Sensitivity analysis of CNE on the CRC dataset

(c) CNE (perp = 15)

(e) CNE (perp = 20)

Figure R: Voronoi diagrams showing the identified CNs of CNE on images of the CRC dataset, with hyperparameter *perp* varying in [10, 12.5, 15, 17.5, 20]. The diagrams with $perp \in \{10, 15, 20\}$ were similar, while for $perp \in \{12.5, 17.5\}$, the diagrams differed from others mainly in the diagonal region of reg065_A, which might be caused by its complex cell composition (mostly "Others" minor cell types).

Figure S: **CT Enrichment analysis for CNE on the CRC dataset, with hyperparameter** *perp* **varying in** {10, 12.5, 15, 17.5, 20}. Eight of nine CNs agreed in CT compositions across different *perp*, with CN-7 varying between plasma cell enriched CN and tumor boundary CN.

Figure T: Differential CT Enrichment analysis for CNE on the CRC dataset, with hyperparameter *perp* varying in $\{10, 12.5, 15, 17.5, 20\}$. Our findings of *perp*=15 could be mostly recovered by other *perp* in the range. That is, (i) Ki-67+CD8+ T cells were more enriched in the T cell enriched CN in CLR donors, Ki-67+ Treg cells were more enriched in the macrophage enriched CN in DII donors (except *perp*=20), and ICOS+ Treg cells were more enriched in the bulk tumor CN in DII donors (except *perp*=17.5), showing that immunosuppressive activity is increased in macrophage enriched and bulk tumor CNs in DII donors, while in CLR donors cytotoxic activity is increased in the T cell enriched CN; (ii) PD-1+CD4+ T cells were more enriched in the granulocyte enriched CN in DII donors, showing its potential contribution to the antitumoral response.

Figure U: Tensor Decomposition analysis for CNE on the CRC dataset, with hyperparameter *perp* varying in $\{10, 12.5, 15, 17.5, 20\}$. Our findings of *perp*=15 could be mostly recovered by other *perp* in the range. That is, (i) there was a tumor compartment and an immune compartment as tissue modules in CLR donors, and a tumor & immune compartment and a granulocyte compartment as a tissue module in DII donors; (ii) there was a CN module with high weights for T cell and macrophage enriched CNs, whose corresponding CT module had high weights for T cells and macrophages, only in DII donors, which together showed that tumors in DII donors are more correlated to the immune processes with increased coupling between T cell and macrophage enriched CNs.

Figure V: Inter-CN Communication Network analysis involving $\{PD1+, Ki-67+, ICOS+\}CD8+T$ cells and Ki-67+ Tregs for CNE on the CRC dataset, with hyperparameter *perp* varying in $\{10, 12.5, 15, 17.5, 20\}$. The follicle CN was connected to immune CNs only in CLR donors (except *perp*=12.5), and the tumor CN had stronger connection to the macrophage enriched CN in DII donors, which match our findings with hyperparameter *perp*=15. Still none of them could support the original conclusions that T cell and macrophage enriched CNs could communicate in functional T cells with the bulk tumor via the tumor boundary, and the communication between tumor boundary and bulk tumor CNs could be disrupted in DII donors.