Manuscript ID: PONE-D-24-08941R1

Title: Analyzing chaos and superposition of lump waves with other waves in the timefractional coupled nonlinear schördinger equation

1) The values behind the means, standard deviations, and other measures reported

Model: The time fractional coupled nonlinear Schr ödinger equation, which explains the interaction between modes in nonlinear optics and Bose-Einstein condensation.

Methods: we are using two advanced and powerful techniques to solve the non-linear model and obtain the new solitary wave solutions.

- > Generalized projective Riccati equation method.
- Modified auxiliary equation method.

To make it more flavorful we add a Dynamical investigation.

➤ Chaos analysis.

Software: we use three different software.

- Overleaf: for writing (https://www.overleaf.com/project)
- Mathematica: for plotting graphs (<u>https://www.wolfram.com/mathematica/online/</u>)
- Maple: for calculations (https://www.maplesoft.com/products/Maple/)

2) The values used to build graphs for soliton solutions using generalized projective Riccati equation method.

Graph values:

In "Figure 1", we express the solutions of $\psi 2, 1(x, t)$ with parameters, $\delta = 1.3$, $\Gamma = 0.25, \ \aleph = -1.25, \ f = 0.45, \ \beta = 0.5, \ \theta = 0.75, \ r = 0.65, \ v = 0.9, \ \sigma = 1.36, \ \ell = -0.63 \ \text{and} \ \Omega = 1.25.$

In "Figure 2", we express the travelling wave for $\psi 3,2(x, t)$ with parameters, $\delta = 1.3$, $\Gamma = 0.25$, $\kappa = -1.25$, f = 0.45, $\beta = 0.5$, $\theta = 0.75$, r = 0.65, v = 0.2, $\sigma = 1.36$, $\ell = -0.62$ and $\Omega = 1.25$.

In "Figure 3", we express the solutions of $\psi 6,1(x, t)$ with parameters, $\delta = 1.3$, $\Gamma = 0.25$, $\aleph = -1.25$, f = 0.45, $\beta = 0.3$, $\theta = 0.75$, r = 0.65, v = 0.9, $\sigma = 1.36$, $\ell = -1.25$ and $\Omega = 1.25$.

In "Figure 4", we express the travelling wave f ψ 7,2(x, t) with parameters, $\delta = 1.3$, $\Gamma = 1.25$, $\aleph = 1.5$, f = 0.45, c = 2.5, $\beta = -0.3$, $\theta = 0.75$, r = 0.65, v = 0.9, $\sigma = 1.36$, $\ell = -1.25$ and $\Omega = 1.25$.

3) The values used to build graphs for soliton solutions using modified auxiliary equation method.

Graph values:

In "Figure 5", we express the solutions of travelling wave for $\psi 8,1(x, t)$ with parameters, $\zeta = 1.3$, $\Gamma = 0.25$, $\aleph = 0.5$, f = 0.45, $\nu = 0.5$, $\beta = -1.95$, $\kappa = 0.175$, r = 0.65, $\nu = -1.75$, $\sigma = 1.36$, $\ell = 1.25$ and $\Omega = 1.25$.

In "Figure 6", we express the travelling wave for $\psi 11,1(x, t)$ with parameters, $\zeta = -2.3$, $\Gamma = 0.25$, $\aleph = 0.5$, f = 0.45, $\nu = 0.5$, $\beta = 0.63$, $\kappa = 0.175$, r = 0.65, $\nu = 1.9$, $\sigma = 1.36$, $\ell = -1.25$ and $\Omega = 1.25$

In "Figure 7", we express the solutions of $\psi 14,2(x, t)$ with parameters, $\zeta = 1.3$, $\Gamma = 0.25$, $\aleph = 0.5$, f = 0.45, $\nu = 0.5$, $\beta = 0.63$, $\kappa = 0.75$, r = 0.65, $\nu = 0.09$, $\sigma = 1.36$, $\ell = -1.5$ and $\Omega = 1.25$

In "Figure 8", we express the travelling wave $\psi 16,1(x, t)$ with parameters, $\zeta = 1.3, \Gamma = 0.25, \varkappa = 0.5, f = 0.45, \nu = 0.5, \beta = -2.3, \kappa = 0.75, r = 0.65, \nu = 2.9, \sigma = 1.36, \ell = -1.25$ and $\Omega = 1.25$

4) Chaotic analysis

In chaotic analysis "Figs 9-11" describes the Galilean transformation process can introduce chaotic analysis to the time-fractional coupled nonlinear Schrodinger equation within the dynamical system.

In "Figure 9", Profile of periodic with parametric values, $\aleph = 0.03$, $\Omega = 0.05$, f = 0.06, $\sigma = 0..08$, $\omega = 0.08$, r = 0.07 and the perturbation term, x = 0.09, Y0 = 0.002.

In "Figure 10", Profile of Quasi-periodic with parametric values, $\aleph = 0.03$, $\Omega = 0.05$, f = 0.06, $\sigma = 0.01$, $\omega = 0.06$, r = 0.07 and the perturbation term, x = 2.9 and Y0 = 0.5.

In "Figure 11", Profile of Quasi-periodic chaotic with parametric values, $\aleph = 0.03$, $\Omega = 0.05$, f = 0.06, $\sigma = 0.01$, $\omega = 0.08$, r = 0.07 and the perturbation term, x = 4.1 and Y0 = 1.2.