iScience, Volume 27

Supplemental information

Assessing de novo parasite genomes

assembled using only Oxford Nanopore

Technologies MinION data

Kaylee S. Herzog, Rachel Wu, John M. Hawdon, Peter Nejsum, and Joseph R. Fauver

Supplemental Figure 1. Histograms of average read quality scores (i.e., Q scores) for unaligned basecalled MinION read data, and for basecalled MinION read data aligned to the final MinION data only genome assembly, related to STAR Methods. (A) *Brugia malayi*. (B) *Trichuris trichiura*. (C) *Ancylostoma caninum*.

Supplemental Figure 2. Focused (top) and complete (bottom) GenomeScope histograms based on quality-controlled Illumina read datasets generated for each species, realted to STAR Methods. (A) Brugia malayi. (B) Trichuris trichiura. (C) Ancylostoma caninum.

Supplemental Figure 3. BlobTools output for the MinION data-only assembly generated for *Brugia malayi*, related to STAR Methods. (A) BlobPlot. (B–C) Read coverage plots.

Supplemental Figure 4. BlobTools output for the MinION data-only assembly generated for *Trichuris trichiura*, realted to STAR Methods. (A) BlobPlot. (B–C) Read coverage plots.

Supplemental Figure 5. BlobTools output for the MinION data-only assembly generated for *Ancylostoma caninum*, realted to STAR Methods. (A) BlobPlot. (B–C) Read coverage

Supplemental Figure 6. BlobTools output for the hybrid assembly generated for *Brugia malayi*, related to STAR Methods. (A) BlobPlot. (B–C) Read coverage plots.

Supplemental Figure 7. BlobTools output for the hybrid assembly generated for *Trichuris trichiura*, realted to STAR Methods. (A) BlobPlot. (B–C) Read coverage plots.

Supplemental Figure 8. BlobTools output for the hybrid assembly generated for *Ancylostoma caninum*, realted to STAR Methods. (A) BlobPlot. (B–C) Read coverage plots.

Supplemental Figure 9. K-mer multiplicity plots generated from purged hybrid assemblies, realted to STAR Methods. (A) *Brugia malayi*. (B) *Trichuris trichiura*. (C) *Anyclostoma caninum*.

Supplemental Table 1. Extraction and ONT MinION and Illumina sequence data generation details for each of the focal species sequenced, related to STAR Methods. Asterisk (*) indicates amount of ONT MinION library remaining after the aliquot of the original library remaining following the first round of sequencing was rewashed with Long Fragment Buffer (LFB).

		Brugia malayi	Trichuri	s trichiura	Ancylostoma caninum		
ion	Extracted material	Single adult female	Single adult male		Pooled L3 larvae		
act	Total amount of gDNA extracted (ng)	737	1,508		5,200		
Ext	Mean fragment length of gDNA (bp)	>60,000			33,504		
ta	gDNA input for library prep (ng)	42	40		400		
a da	No. PCR cycles	7		7	5		
min	Data pre-quality control and filtering (bp)	7,992,851,592	4,567,580,276		20,844,376,730		
nIII	Data post-quality control and filtering (bp)	7,850,596,985	4,442,501,155		20,179,886,997		
	Library name	Bm ♀ C	Tt ♂ 2D (all)	Tt ♂ 2D (LFB washed aliquot)	Acan L3 B1	Acan L3 B2	Acan L3 B1 + Acan L3 B2
	Mean fragment length of gDNA post- additional bead cleanup (bp)				31,955	34,563	
lata	Amount of gDNA input for library prep (ng)	500	1,259		406	399	
No	Amount of library generated (ng)	287	1,012	483*	189	264	
inIC	Amount of library sequenced (ng)	134	78.7	76.2	164	125	25 (B1) + 123 (B2)
Σ	No. pores available at start of sequencing	1,413	1,544	1,635	1,527	1,465	1,538
NO	Total sequencing run time (hr)	72	72	62.75	80	67.75	80
	MinKNOW estimated read N50 (kb)	8.65	2.72	5.59	6.68	6.54	6.64
	MinKNOW estimated data generated (Gb)	15.91	14.06	12.76	10.86	10.73	11.56
	Data post-basecalling with Guppy (bp)	11,349,419,698	11,891,465,167	10,868,016,523	8,521,058,505	8,261,315,652	7,784,337,997
	Est. depth of coverage for Illumina reads	82.95×	48.58×		38.64×		
2	Proportion of Illumina reads that mapped to reference assembly	95.74%	90.71%		90.31%		
ldm	Est. depth of coverage for MinION reads	124.85×	249.91×		49.42×		
Asse	Proportion of MinION reads that mapped to reference assembly	98.77%	99.91%		99.85%		
	GenomeScope estimated genome size (bp)	85,917,606		68,538,097	329,957,709		
	GenomeScope estimated heterozygosity	0.28%		1.35%	1.09%		

Supplemental Table 2. Comparison of different long read and hybrid *de novo* assemblers for *Brugia malayi*, related to STAR Methods. All QUAST and compleasm comparative data were generated from raw assemblies output by each assembler (i.e., from assemblies that were not purged for duplication, not polished, did not have contigs suspected as contamination removed, and did not have organellar genomes refined or added). "Popped" for the canu assembly indicates the raw assembly output by canu from which contigs indicated as potential alternative alleles (i.e., with FASTA headers including "suggestBubble=yes") were removed.

		QUAST			Compleasm (Nematoda)				
		Size (bp)	N50 (bp)	No. contigs	GC	Single copy	Duplicated	Fragmented	Missing
Ghedin et al. (2007) reference		88,235,797	14,214,749	197	28.49%	3,097 (98.91%)	16 (0.51%)	10 (0.32%)	8 (0.26%)
<u>v</u>	canu	101,963,718	4,682,872	319	28.36%	2,979 (95.15%)	134 (4.28%)	10 (0.32%)	8 (0.26%)
ıta on	canu (popped)	95,068,481	6,405,829	195	28.47%	3,044 (97.22%)	69 (2.20%)	10 (0.32%)	8 (0.26%)
N da	wtdbg2	94,153,502	2,614,318	650	28.16%	2,930 (93.58%)	32 (1.02%)	13 (0.42%)	156 (4.98%)
inlo	Flye	84,647,476	3,811,129	167	28.62%	3,097 (98.91%)	12 (0.38%)	11 (0.35%)	11 (0.35%)
Σ	shasta	49,567,258	26,897	2,171	28.00%	1,515 (48.39%)	78 (2.49%)	81 (2.59%)	1,457 (46.53%)
lybrid	MaSuRCA	86,029,419	2,961,229	57	28.56%	3,062 (97.80%)	50 (1.60%)	11 (0.35%)	8 (0.26%)
	WENGAN	81,095,327	2,941,126	105	28.59%	3,094 (98.82%)	8 (0.26%)	13 (0.42%)	16 (0.51%)
	HASLR	81,702,517	1,358,706	180	28.46%	3,026 (96.65%)	8 (0.26%)	12 (0.38%)	85 (2.71%)

Supplemental Table 3. Scores from compleasm for the assemblies generated as part of this study and the reference assemblies available for each species using the Metazoa and Eukaryota BUSCO databases, related to Table 2, Figure 2, and STAR Methods. Scores withing each category are presented as number of BUSCOs recovered in each assembly followed in parentheses by proportion of the total number of orthologs assessed by compleasm (954 and 255 for the Metazoa and Eukaryota databases, respectively).

		Metazoa Database		Eukaryota Database					
		Single	Duplicated	Fragmented	Missing	Single	Duplicated	Fragmented	Missing
Brugia malayi	Ghedin et al. (2007) reference assembly	772 (80.92%)	6 (0.63%)	13 (1.36%)	163 (17.09%)	251 (98.43%)	0 (0%)	1 (0.39%)	3 (1.18%)
	MinION data only assembly	775 (81.24%)	4 (0.42%)	12 (1.26%)	163 (17.09%)	251 (98.43%)	0 (0%)	1 (0.39%)	3 (1.18%)
	MinION assembly polished with Illumina data	775 (81.24%)	4 (0.42%)	12 (1.26%)	163 (17.09%)	251 (98.43%)	0 (0%)	1 (0.39%)	3 (1.18%)
	Hybrid assembly	775 (81.24%)	3 (0.31%)	12 (1.26%)	164 (17.19%)	250 (98.04%)	1 (0.39%)	1 (0.39%)	3 (1.18%)
	Foth et al. (2014) reference assembly	667 (69.92%)	24 (2.52%)	23 (2.41%)	240 (25.16%)	217 (85.10%)	10 (3.92%)	8 (3.14%)	20 (7.84%)
chiura	Doyle et al. (2022) reference assembly	667 (69.92%)	24 (2.52%)	23 (2.41%)	240 (25.16%)	217 (85.10%)	10 (3.92%)	8 (3.14%)	20 (7.84%)
richuris tric	MinION data only assembly	676 (70.86%)	10 (1.05%)	22 (2.31%)	246 (25.79%)	219 (85.88%)	6 (2.35%)	8 (3.14%)	22 (8.63%)
	MinION assembly polished with Illumina data	676 (70.86%)	10 (1.05%)	22 (2.31%)	246 (25.79%)	218 (85.49%)	6 (2.35%)	9 (3.53%)	22 (8.63%)
	Hybrid assembly	679 (71.17%)	10 (1.05%)	21 (2.20%)	244 (25.58%)	222 (87.06%)	5 (1.96%)	7 (2.75%)	21 (8.24%)
/lostoma caninum	International Helminth Genomes Consortium (2019) reference assembly	643 (67.40%)	68 (7.13%)	37 (3.88%)	206 (21.59%)	215 (84.31%)	18 (7.06%)	14 (5.49%)	8 (3.14%)
	MinION data only assembly	678 (71.07%)	41 (4.30%)	19 (1.99%)	216 (22.64%)	228 (89.41%)	11 (4.31%)	6 (2.35%)	10 (3.92%)
	MinION assembly polished with Illumina data	681 (71.38%)	40 (4.19%)	20 (2.10%)	213 (22.33%)	228 (89.41%)	11 (4.31%)	6 (2.35%)	10 (3.92%)
Anc	Hybrid assembly	693 (72.64%)	30 (3.14%)	21 (2.20%)	210 (22.01%)	234 (91.76%)	7 (2.75%)	6 (2.35%)	8 (3.14%)

Supplemental Table 4. Distance matrix for assemblies of the genome of the *Wolbachia* endosymbiont of *Brugia malayi* from both the MinION data only and hybrid assemblies generated herein compared to existing reference assemblies, related to STAR Methods. *Wolbachia* reference assemblies were obtained from Foster et al. (2005) (AE017321.1) and Lefoulon et al. (2019) (CP034333.1).

	AE017321.1 reference	MinION data only assembly	CP034333.1 reference	Hybrid assembly
AE017321.1 reference		23	39	184
MinION data only assembly	23		18	169
CP034333.1 reference	39	18		
Hybrid assembly	184	169	185	

Supplemental Table 5. Genome-wide pairwise comparison statistics from MuMmer4 for the MinION data only assemblies versus the hybrid and Illumina data-polished MinION assemblies for each species, related to STAR Methods.

		Genome-wide nucleotide-level pairwise identity where aligned	No. gSNPS	No. gIndels
llayi	MinION data only assembly vs. hybrid	99.57%	35,115	36,140
B. ma	MinION data only assembly vs. MinION assembly polished with Illumina data	99.89%	7,300	15,338
chiura	MinION data only assembly vs. hybrid	99.22%	150,681	9,434
T. tric	MinION data only assembly vs. MinION assembly polished with Illumina data	99.86%	23,322	4,413
A. caninum	MinION data only assembly vs. hybrid	99.04%	299,510	49,610
	MinION data only assembly vs. MinION assembly polished with Illumina data	99.74%	147,516	45,902