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1 Supplementary Note 1: Effect of Bandpass Filtering on System

Identification and the Detection of Nonlinearity

A standard step in the preprocessing of resting state fMRI time series is bandpass filtering, typically over the

range [0.01, 0.08] Hz [1], to reduce the contribution of non-neuronal sources on the signal and improve the

SNR. In this work, however, we purposefully avoided this step. In the following, we discuss in detail the role

and effects of pre-filtering in this rather unconventional context of system identification and, in particular,

detection of nonlinear dynamics.

1. First, band-pass filtering (or any linear filtering for this matter) has no effect on the fitting or evaluation

of linear models. The reason, in short, is the commuting property of linear systems. More specifically,

any linear system including all of the ones used in this work can be written in the impulse-response

form [2]

y(t) = G(q)e(t),

where G is the transfer matrix

G(q) =

G11(q) G12(q) · · ·
G21(q) G22(q) · · ·

...
...

. . .


such that for any i and j

Gij(q) = gij(0) + gij(1)q
−1 + gij(2)q

−2 + · · ·

Here, gij(t) is the impulse response from the the jth input ej(t) to the ith output yi(t), and q is the

standard shift operator such that q−1s(t) = s(t − 1) for any signal s(t) [3]. Recall that y(t) is the

BOLD time series without band-pass filtering, as used in the main text, and let

F (q) = f(0) + f(1)q−1 + f(2)q−2 + · · ·

be any linear filter, including the bandpass filter used in common preprocessing pipelines. Assume,

without loss of generality, that f(0) ̸= 0 (an almost identical argument can be given if f(0) or any

number of the first terms in F (q) are zero, simply by factoring out enough powers of q−1). The output

of the filter is

z(t) = F (q)y(t) = F (q)G(q)e(t).

It then immediately follows from the prediction error framework [3] that the one step ahead prediction

error of z(t) is given by

z(t)− ẑ(t|t− 1) = f(0)G−1(q)F−1(q)z(t)

= f(0)G−1(q)y(t)

= f(0)
[
y(t)− ŷ(t|t− 1)

]
.

In other words, the prediction error of z(t) is identical to the prediction error of y(t), except for a

constant factor equal to the instantaneous gain of the filter. Therefore, not only is fitting a model by

minimizing the prediction error of z(t) identical to fitting a model by minimizing the prediction error

of y(t), but the cross-validated R2 (up to a fixed constant) and residual whiteness of these models are

also identical.

This argument clearly fails for nonlinear systems. Indeed, fitting a nonlinear model on z(t) can result

in a different model with different R2 and residual whiteness than the same model fit on y(t). The

critical point, however, is that the linear filter F (q) cannot generate nonlinearity, while it can certainly

weaken and even eliminate it. We explain these two points in more detail next.
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2. Assume, first, that the dynamics of y(t) are truly linear, as seems to be the case from our analysis in

the main text. Then, the relationship between ∆y(t) and y(t − 1) (as random vectors) is linear. By

definition, if the relationship between two random vectors u and v is linear, they can be written in the

form [
u

v

]
=

[
A11 A12

A21 A22

] [
e1
e2

]
(S1)

where A is an appropriate matrix and e1 and e2 are independent. Now let uF be the result of applying

a linear filter F (q) to (the samples of) u. In other words, if N is the order of an (arbitrarily accurate)

FIR approximation of F (q),

uF =
[
u1 u2 · · · uN

]


f(0)

f(1)
...

f(N − 1)

 =
[
u1 u2 · · · uN

]
f (S2)

where f(t) is the impulse response of F (q) and u1,u2, . . . ,uN are identically distributed (but not

necessarily independent) samples of u. From Eq. (S1),

[
u1 u2 · · · uN

]
=

[
A11 A12

] [e1,1 e1,2 · · · e1,N
e2,1 e2,2 · · · e2,N

]
(S3)

where e1,1, . . . , e1,N are identically distributed (but not necessarily independent) samples of e1, simi-

larly for e2. Note that each e1,t is still independent from each e2,s by definition. Substituting Eq. (S3)

into Eq. (S2) thus gives

uF =
[
A11 A12

] [e1,1 e1,2 · · · e1,N
e2,1 e2,2 · · · e2,N

]
f

=
[
A11 A12

] [e1,F
e2,F

]
where e1,F and e2,F are filtered versions of e1 and e2 and, still, independent of each other. Following

the same steps for v, we get [
uF
vF

]
=

[
A11 A12

A21 A22

] [
e1,F
e2,F

]
showing that uF and vF are still linearly related after filtering. This is indeed expected since a linear

filter cannot generate nonlinear dependence between two signals that are originally linearly related.

3. Now assume, in contrast, that the dynamics of y(t) is in fact nonlinear and we filter y(t) to get

z(t) = F (q)y(t). The best that can happen, as far as detecting nonlinearity is concerned, is that the

dynamics of z(t) remain nonlinear. However, it is possible that F (q) weakens or completely averages

out the nonlinearities in y(t), as we saw in the main text. In fact, the common bandpass filter over

[0.01, 0.08] Hz (compared to a Nyquist frequency of 1/2TR ≃ 0.7 Hz) is strongly lowpass and involves

significant averaging over time.

In conclusion, while bandpass filtering has no effect on linear models and preserves linearity of time

series, it can well weaken/eliminate any nonlinearity in the time series. Therefore, regardless of how much

“cleaner” bandpass-filtered data might be, finding no nonlinearity before bandpass filtering, as pursued in

the main text, is a stronger statement than the same finding would be if obtained after bandpass filtering.
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2 Supplementary Table 1: List of linear and nonlinear families of

models

Supplementary Table 1 | List of linear and nonlinear families of models. The marks † and ‡ indicate,

respectively, that a method is used only for fMRI or iEEG. See Methods for a description of each model.

Label Title Equation Hyper-parameters

Linear (dense)
Linear models with

states at the

BOLD/LFP level

y(t)− y(t− 1) = Wy(t− 1) + e(t)

None

Linear (sparse)
λ = 0.95 (fMRI)

λ = 1.35 (iEEG)

Linear (pairwise)† yi(t)− yi(t− 1) = wijyj(t− 1) + ei(t), i, j = 1, . . . , n None

AR-2 (sparse)†

Linear autoregressive

models

y(t)− y(t− 1) = Wy(t− 1) +D2y(t− 2)

+D3y(t− 3) + · · ·
+Ddy(t− d) + e(t)

d = 2, λ = 0.95, diagonal D2

VAR-2 (sparse)† d = 2, λ = 0.9

AR-3 (sparse)† d=3, λ=0.5, diagonal D2,D3

VAR-3 (sparse)† d = 3, λ = 0.35

AR-100 (sparse)‡ d = 112, λ = 1.35

AR-100 (scalar)‡ d = 112

x(t)− x(t− 1) = Wx(t− 1) + G1(q)ê1(t)

y(t) = H(q)x(t) + G2(q)ê2(t)

H(q) =
∑nh

p=1
diag(H:,p)q

−p

F1(q) = I− G−1
1 (q) =

∑nϕ

p=1
diag(Φ:,p)q

−p

F2(q) = I− G−1
2 (q) =

∑nψ

p=1
diag(Ψ:,p)q

−p

Linear w/ HRF†
Linear models with

states at the neural

level

nh = nϕ = nψ = 5, λ = 11

x(t)− x(t− 1) = Wx(t− 1) + e1(t)

y(t) = Cx(t) + e2(t)

Cov

([
e1(t)

e2(t)

])
=

[
Q M

MT R

]Subspace

Linear models with

abstract data-driven

states

s = 1, r = 3, nx = 25 (fMRI)

s = 10, r = 69, nx = 445

(iEEG)

NMM

Nonlinear neural

mass models

y(t)− y(t− 1) = (Wψα(y(t− 1))−Dy(t− 1))∆T + e(t)

MINDy default (fMRI)

λ1 = λ2 = 0.2, λ3 = 0.7,

λ4 = 0.5 (iEEG)

NMM w/ HRF†

x(t)− x(t− 1) = (Wψα(x(t− 1))−Dx(t− 1))∆T

+ e1(t)

y(t) = H(q)x(t) + e2(t)

MINDy default

DNN (MLP)

Nonlinear models via

multi-layer

perceptron deep

neural networks

y(t)− y(t− 1) = f(y(t− 1), . . . ,y(t− d)) + e(t) d = 1, D = 6,W = 2 (fMRI)

d = 4, D = 3,W = 29 (iEEG)

DNN (CNN)

Nonlinear models via

convolutional deep

neural networks

y(t)− y(t− 1) = f(y(t− 1), . . . ,y(t− d)) + e(t)

d = 17, D = 2, lfilt = 7,

nfilt = 11, npool = 4,

pdrop = 0.4 (fMRI)

d = 13, D = 2, lfilt = 5,

nfilt = 10, npool = 2,

pdrop = 0.51 (iEEG)

LSTM (IIR)
Nonlinear models via

long short-term

memory recurrent

neural networks

y(t)− y(t− 1) = f(y(t− 1), . . . ,y(0)) + e(t)
W = 12 (fMRI)

W = 7 (iEEG)

LSTM (FIR) y(t)− y(t− 1) = f(y(t− 1), . . . ,y(t− d)) + e(t)
d = 1,W = 16 (fMRI)

d = 32,W = 2 (iEEG)

Manifold

Nonlinear

manifold-based

models

y(t)− y(t− 1) = f(y(t− 1), . . . ,y(t− d)) + e(t)
d = 1, h = 830 (fMRI)

d = 7, h = 1.3× 104 (iEEG)

MMSE (pairwise)† Nonlinear minimum

mean squared error

models (optimal)

yi(t)−yi(t−1) = E[yi(t)−yi(t−1)|yj(t−1)], i, j = 1, . . . , n N = 280, β = 0.156

MMSE (scalar)‡
yi(t)− yi(t− 1) = E[yi(t)− yi(t− 1)|yi(t− 1), . . . ,

yi(t− d)], i = 1, . . . , n
d = 9, N = 309, β = 0.007

Zero Zero model y(t)− y(t− 1) = e(t) None
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3 Supplementary Figures

a

b

1
Supplementary Fig. 1 | Effect of window size h on the accuracy of the manifold-based locally linear

(‘Manifold’) model in fMRI data. (a) Boxplot of the R2 distribution as a function of h, combined across the 116

brain regions of 70 randomly selected subjects (10% of all subjects to reduce computational cost). The R2 values were

not computable (‘NaN’) for h = 10 due to limited machine precision. The model is equivalent to the zero model for

the three leftmost boxplots as no training point falls within the Gaussian-weighted neighborhood of any test points.

As h is increased to h ∼ 10, few training data points start to fall within the neighborhood window of some of the

test points, but are far enough that their Gaussian weights fall below machine precision, leading to missing (‘NaN’)

predicted values and, hence, R2. As h is further increased, more training points fall within the neighborhood of each

test point, but are few enough to lead to poor R2, until h is increased enough to reach the globally linear regime.

(c) The distribution of the Euclidean distance between all pairs of training and test points for a randomly selected

subject (subject 103818) to aid in understanding the trends that are apparent in panels (a) and (b). In particular,

note that h = 104 (and even smaller values) clearly lead to a globally linear model as almost all of the training-test

pairs of points have distances less than h/10.
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a b

c d

e f

1Supplementary Fig. 2 | The effects of the number of lags and sparsity patterns on the prediction

accuracy and computational complexity of linear AR models of rsfMRI. Panels parallel those in Fig. 2 in

the main text and the descriptions of method acronyms are given in Table 1 therein. Generally, the number of lags

and sparsity patterns have little effect on the prediction accuracy of linear AR models for rsfMRI data (in contrast to

rsiEEG data, as explained in the main text), as seen from panel (a). The estimates of statistical significance in panel

(b) are to a great extent due to the large sample size (700×116). However, increasing the number of regressors, both

by increasing the number of AR lags and by allowing for off-diagonal entries of all lags (‘VAR’ models), does lead to

a non-trivial improvement in the whiteness of residuals, even though is often accompanied by non-trivial increases in

model complexity and computation time as well. In all box plots, the center line, box limits, and whiskers represent

the median, upper and lower quartiles, and the smallest and largest samples, respectively, and sample size = 81200.

6



a b

c d

1Supplementary Fig. 3 | The effect of the LASSO parameter λ on the accuracy of the ‘VAR-3 (sparse)’

model. Panels parallel those in Fig. 2 of the main text. (a) The distribution of the cross-validated regional R2
i ,

combined across all regions and 10% of subjects (randomly selected), for varying values of λ. (b) The p-values of the

one-sided Wilcoxon signed rank test performed between all pairs of distributions of R2 in panel (a). (c, d) Similar

to panels (a, b) but for the Q statistic of the test of whiteness of the residuals.
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1
Supplementary Fig. 4 | Histogram of scanner SNR estimates for rsfMRI data. Scanner SNR was estimated

for 50 randomly selected rest scans by comparing the average signal powers inside the respective subject’s gray matter

and outside of their head (see Methods). Due to the conservatism of this method, the resulting SNR estimates are

expectedly over-estimated, but yet are not far from the SNR = 1 level that is enough to completely mask nonlinear

interactions on its own (Fig. 4g-h).
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a
Brain-wise Pairwise

b

c d

1

Supplementary Fig. 5 | Separate training and test times for system identification methods of rsfMRI.

Details in panels (a,b) and (c,d) parallel those in of Fig. 2e,f in the main text. Note that the ‘Zero’, ‘Manifold’,

and ‘MMSE (pairwise)’ methods do not have a training time by definition and hence we have set their training times

uniformly to zero.
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a b

c d

1

Supplementary Fig. 6 | Separate training and test times for system identification methods of rsiEEG.

Details in panels (a,b) and (c,d) parallel those in of Fig. 3e,f in the main text. Note that the ‘Zero’, ‘Manifold’,

and ‘MMSE (scalar)’ methods do not have a training time by definition and hence we have set their training times

uniformly to zero.
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1
Supplementary Fig. 7 | Hyper-parameter tuning of linear and nonlinear model families for fMRI.

For each parametric family of models, its hyper-parameters were simultaneously optimized using stochastic gradient

descent (SGD, see Methods) to select the model with the highest cross-validated R2 within that model family. (a)

Linear (sparse); (b) AR-2 (sparse); (c) VAR-2 (sparse); (d) AR-3 (sparse); (e) VAR-3 (sparse); (f) Linear w/ HRF;

(g) Subspace; (h) DNN (MLP); (i) Manifold; (j) MMSE (pairwise); (k) LSTM (FIR); (l) LSTM (IIR); (m) DNN

(CNN). Each panel shows the evolution of the hyper-parameter(s) of one model family during the SGD iterations,

color-coded with the value of R2 at each iteration, and the hyper-parameter value(s) selected as optimal (dotted

gray lines, also given in Table 1 in the main text). Note that the hyper-parameter(s) are not expected to converge

to a fixed (optimal) value, but rather to fluctuate around it due to the stochastic nature of SGD and the natural

variability of data segments.
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1
Supplementary Fig. 8 | Hyper-parameter tuning of linear and nonlinear model families for iEEG.

(a) Linear (sparse); (b) AR-100 (sparse); (c) AR-100 (scalar); (d) Subspace; (e) NMM; (f) Manifold; (g) DNN; (h)

MMSE (scalar); (i) LSTM (FIR); (j) LSTM (IIR); (k) DNN (CNN). Details and interpretations are the same as

Supplementary Fig. 7.
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a

b

c

d

e

1
Supplementary Fig. 9 | Comparing the ‘DNN (MLP)’ model with linear models in fitting simulated

data from the Izhikevic model. Panels (a-c) parallel those in Supplementary Figs. 7-8 and show the resulting

hyper-parameter trajectories for (a) AR-d (sparse); (b) Subspace; (c) DNN (MLP) when tuned via SGD. Panels (d,e)

parallel those in Fig. 2a for (d) v(t) and (e) u(t) outputs of the Izhikevic model. Unlike Fig. 2a where we combined

across all output channels, we here kept them separate due to the distinct form and role of their dynamics.
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a b

c

1
Supplementary Fig. 10 | Comparison of ‘Liner (dense)’ and ‘DNN (MLP)’ models on the logistic map

dynamical system. System dynamics are given by y(t + 1) = ry(t)[1 − y(t)], r = 3.7707. (a) Box plots of cross-

validated one-step-ahead prediction R2. The neural network model achieves near perfect R2 even with 10 hidden

units while the linear model achieves R2 ≃ 0.5. (b) The approximations that each model provides to the nonlinear

function y 7→ ry(1− y). (c) The cross-validated one-step-ahead predictions of each model for the first 50 samples of

a random run.
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a

b

c

1
Supplementary Fig. 11 | Comparing ‘DNN (MLP)’ model with a linear activation function against

‘Linear (dense)’ and ‘Linear (sparse)’. (a) The comparison results for the ‘DNN (MLP)’ model with a linear

activation function and hidden depth of 0. The network therefore only consists of input and output layers and a

fully connected layer in between. The right panel displays the same information as the left panel except for using

violin plots. Red crosses and green squares show means and medians, respectively. (b) Hyper-parameter tuning for

a ‘DNN (MLP)’ model with a linear activation function and hidden depth of 1. W denotes the width of the hidden

layer. As with hyper-parameter tunings in the main text, 100 subjects whose data is not used in subsequent model

comparisons are used for hyper-parameter tuning to avoid potential over-fitting to hyper-parameters. (c) Similar to

(a) for but for a ‘DNN (MLP)’ model with a hidden depth of 1.
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a
Brain-wise Pairwise

b
Wilcoxon signed rank test:

Row > Column

Row < Column

Not significant

c d

e f

1

Supplementary Fig. 12 | Linear vs. nonlinear models of finely-parcellated rsfMRI activity. 400 cortical

parcels (Schaefer 400x17 [4]) and 50 subcortical ones (Melbourne Scale III [5]) were used. Panels and details parallel

those in Fig. 2 in the main text, except that only data from 32 randomly selected subjects and a single-fold cross-

validation has been used to reduce computational complexity. The half-session used as the test for each subject has

been selected at random and the remaining 7 half-sessions have been used for training, as in the main text. The

model with the highest R2 is now the ‘Linear (sparse)’ even though ‘VAR-3 (sparse)’ still has whiter residuals.
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a
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Not significant
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e f

1
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g Brain-wise Pairwise
h

Wilcoxon signed rank test:

Row > Column

Row < Column

Not significant

i j

k l

1

Supplementary Fig. 13 | Linear vs. nonlinear models of unparcellated cortical rsfMRI activity. To

reduce computational complexity and be able to fit and validate all model families, we considered only vertices taken

from two randomly selected cortical parcels: (a-f) a left somato-motor area ‘17Networks LH SomMotB S2’ consisting

of 152 vertices, and (g-l) a right precuneus/posterior cingulate cortex area ‘17Networks RH DefaultA pCunPCC 1’

consisting of 177 vertices [4]). Panels and details parallel those in Supplementary Fig. 12.
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a
Brain-wise Pairwise

b
Wilcoxon signed rank test:

Row > Column

Row < Column

Not significant

c d

e f

1

Supplementary Fig. 14 | Linear vs. nonlinear models of unparcellated subcortical rsfMRI activity.

To reduce computational complexity and be able to fit and validate all model families, we considered only voxels

from one randomly selected subcortical parcel (left dorsoanterior caudate, ‘CAU-DA-lh’ [5], consisting of 154 voxels).

Panels and details parallel those in Supplementary Fig. 12.
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a
Brain-wise Pairwise

b
Wilcoxon signed rank test:

Row > Column

Row < Column

Not significant

c d

e f

1Supplementary Fig. 15 | Linear vs. nonlinear models of minimally pre-processed rsfMRI activity.

Data from HCP minimally preprocessed data without ICA-FIX denoising has been used in order to ensure that the

observed linearity has not stemmed from ICA-FIX. Panels parallel those in Fig. 2 in the main text, except that data

from a random selection of 10% (70) of subjects is used to reduce computational complexity.
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a
Brain-wise Pairwise

b
Wilcoxon signed rank test:

Row > Column

Row < Column

Not significant

c d

1
Supplementary Fig. 16 | Test-retest validation of model comparisons for rsfMRI data. Panels in each

row parallel those in Fig. 2a,b in the main text. Panels (a,b) show the results of a session-wise approach, where

the data from a single resting state session is used for both training (75%) and test (25%). Panels (c,d) show the

results of a leave-one-session-out approach where 3 resting state sessions (chosen at random) from a subject are used

for training and the last session from the same subject is used for test. Data from a random selection of 10% (70) of

subjects is used to reduce computational complexity.
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1
Supplementary Fig. 17 | The channel-wise R2 distribution of the zero model for iEEG data with

different subsampling ratios and the corresponding sampling frequency. As expected, higher subsampling

results in less smooth time series, which in turn results in lower ‘Zero’ R2, but also allows for using data from longer

time intervals in model fitting and validation with the same amount of memory.
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a b
Wilcoxon signed rank test:

Row > Column

Row < Column

Not significant

c d

e f

1

Supplementary Fig. 18 | Linear versus nonlinear models of 5-fold subsampled rsiEEG activity. Panels

parallel those in Fig. 3 in the main text. In panel (a), the box plot for the subspace method only has the top line

(100th percentile) because for more than 75% of data segments the subspace method was unable to complete (either

hung indefinitely or caused MATLAB to crash). For such cases we assign R2 = −∞, Q = +∞, run time = +∞ for

the subspace method, causing its boxplot to miss the third quartile and anything below that. A similar situation

holds in panels (c) and (e).
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a b
Wilcoxon signed rank test:

Row > Column

Row < Column

Not significant

c d

e f

1

Supplementary Fig. 19 | Linear versus nonlinear models of 25-fold subsampled rsiEEG activity. Panels

and details parallel those in Supplementary Fig. 18. Note that here the ‘AR-100 (sparse)’ (which includes network

interactions) has the highest R2 distribution, even though the ‘AR-100 (scalar)’ model still has the whitest residuals.
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Supplementary Fig. 20 | k-step ahead prediction of rsfMRI data. Panels in each row parallel those in

Fig. 2a,b in the main text for (a,b) k = 2, (c,d) k = 3, (e,f) k = 5, (g,h) k = 10. Data from a random selection of

10% (70) of the subjects is used to reduce computational complexity.
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Supplementary Fig. 21 | k-step ahead prediction of rsiEEG data. Panels in each row parallel those in

Fig. 3a,b in the main text for (a,b) k = 5, (c,d) k = 10, (e,f) k = 20. Data from a random selection of 84 iEEG

segments (1% of the total data used in the main text) is used to reduce computational complexity.

28



a b
Wilcoxon signed rank test:

Row > Column

Row < Column

Not significant

c d

e f

g

1

Supplementary Fig. 22 | Model comparisons on iEEG data without channel removal. Panels (a-f) parallel

those in Fig. 3 in the main text, except that here no channels are removed due to being noisy as done in the main

text and explained under Methods and we only compared the top-performing linear model (‘AR-100 (scalar)’) with

nonlinear models. The result echos the results obtained in the main text and ensures that channel removal (although

performed according to standard practices and highly advisable from a data quality perspective) had not confounded

the superiority of the linear models. (g) The distributions of channel counts across all subjects before and after the

removal of noisy channels. The two distributions have medians 110.5 and 98 and means 108.8 and 95.4, respectively.
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