Article

https://doi.org/10.1038/s41589-024-01609-1

Chemical screening by time-resolved X-ray scattering to discover allosteric probes

In the format provided by the authors and unedited

Table of Contents

Supplementary Figures

Supplementary Figure 1. GL2500 time-resolved V_{R} SAXS similarity matrix (SSM) maps
Supplementary Figure 2. TR-SAXS characterization of the CX1 chemotype4
Supplementary Figure 3. TR-SAXS characterization of the CX2 chemotype (C9-D7)5
Supplementary Figure 4. TR-SAXS characterization of the CX2 chemotype (D8-E3)
Supplementary Figure 5. TR-SAXS characterization of the CX3 and CX4 chemotypes7
Supplementary Figure 6. TR-SAX characterization of the CX4 chemotype (B8-C4)
Supplementary Figure 7. SAXS k_{VR} exponential fits for CX1 and CX2 chemotypes
Supplementary Figure 8. Counter SAR from 4-aminoquinolines excluded from GL2500 HT-DSF
screening hits
Supplementary Figure 9. TR-SAXS characterization of AIF-W196A with CX1 chemotype ligands
Supplementary Figure 10. AIF-WT and AIF-W196A active site SA-omit maps
Supplementary Figure 11. Uncropped SDS-PAGE gels of wild-type and mutant AIF cross-linking reactions
Supplementary Figure 12. SDS-PAGE analysis of AIF-WT, AIF-W196A, and CHCHD4 SEC profiles 14
Supplementary Figure 13. Chemical 2D Diagrams of GL2500 Fragment Hits and 4-aminoquinoline scaffold
Supplementary Figure 14. Uncropped gel images from Supplementary Fig. 12

Supplementary Tables

Supplementary Table 1. Small molecule screening data	17
Supplementary Table 2. AIF HT-DSF GL2500 fragment hits.	19
Supplementary Table 3. SAXS collection and analysis parameters	20
Supplementary Table 4. Wild-type and W196A AIF affinities for mitochondrial partner CHCHD4	
stimulated by native NADH or CX1 chemotype ligands	22
Supplementary Table 5. AIF-GL2500 summary of crystallographic structures	22
Supplementary Table 6. X-ray data collection and refinement statistics for AIF-W196A-GL2500 complexes	23
Supplementary Table 7. X-ray collection and refinement statistics for AIF-WT-GL2500 complexes	24

Supplementary	References	25
---------------	------------	----

Supplementary Figure 1. GL2500 time-resolved V_R SAXS similarity matrix (SSM) maps. Samples within matrices are sorted using the clustered ranking from the SSM at 2.1 s.

Supplementary Figure 2. TR-SAXS characterization of the CX1 chemotype. Overlays of I(q) and Kratky transforms at 0.3, 0.6, 1.2,1.5, 1.8, and 2.1 s. Linear Guinier transforms at initial and final exposures indicate absent aggregation.

Supplementary Figure 3. TR-SAXS characterization of the CX2 chemotype (C9-D7). Overlays of I(q) and Kratky transforms at 0.3, 0.6, 1.2,1.5, 1.8, and 2.1 s. Linear Guinier transforms at initial and final exposures indicate absent aggregation.

Supplementary Figure 4. TR-SAXS characterization of the CX2 chemotype (D8-E3). Overlays of I(q) and Kratky transforms at 0.3, 0.6, 1.2,1.5, 1.8, and 2.1 s. Linear Guinier transforms at initial and final exposures indicate absent aggregation.

Supplementary Figure 5. TR-SAXS characterization of the CX3 and CX4 chemotypes. Overlays of I(q) and Kratky transforms at 0.3, 0.6, 1.2,1.5, 1.8, and 2.1 s. Linear Guinier transforms at initial and final exposures indicate absent aggregation.

Supplementary Figure 6. TR-SAXS characterization of the CX4 chemotype (B8-C4). Overlays of I(q) and Kratky transforms at 0.3, 0.6, 1.2, 1.5, 1.8, and 2.1 s. Linear Guinier transforms at initial and final exposures indicate absent aggregation.

Supplementary Figure 7. SAXS k_{VR} exponential fits for CX1 and CX2 chemotypes.

Supplementary Figure 8. Counter SAR from 4-aminoquinolines excluded from GL2500 HT-DSF screening hits.

Supplementary Figure 9. TR-SAXS characterization W196A with CX1 chemotype fragments. Overlays of I(q) scattering curves and Kratky transforms from 0.2-s exposures collected over 3.0 s. Linear Guinier transforms at initial (0.2 s) and final (3.0 s) exposures indicate absent aggregation.

Supplementary Figure 10. AIF-WT and AIF-W196A active site SA-omit maps. Views of AIF's active site with simulated-annealing (SA) composite omit maps calculated with omission of ligands and residues H454, F482, F310, and Y492. Refined ligand occupancies less than 100% are indicated in parentheses. Maps are displayed at 1 σ within 2.0 Å of selected ligands and residues for Monomer A with the exception of AIF-WT-C11, which displays Monomer B.

Supplementary Figure 11. Uncropped SDS-PAGE gels of wild-type and mutant AIF crosslinking reactions. Lanes containing AIF-WT and sodium dithionite (NaTh) are from a separate study.

Superdex200 16/600 Elution Profile

Superdex75 10/300 Elution Profile

Superdex200 16/600 Elution Profile

Supplementary Figure 12. SDS-PAGE analysis of AIF-WT, AIF-W196A, and CHCHD4 SEC profiles. AIF-WT and AIF-W196A run at their expected molecular weight of 60 kDa. The C-terminus of CHCHD4 is enriched in negatively charged amino acids causing it to run at a higher molecular weight relative to mass of 16 kDa. The displayed gels are representative of at least 3 independent protein purifications.

Supplementary Figure 13. Chemical 2D Diagrams of GL2500 Fragment Hits and 4aminoquinoline scaffold. Overview of all chemical structures reported in the manuscript, including negative screening hits G1-G4.

AIF (78-613)-WT AIF (78-613)-W196A

CHCHD4-WT

Supplementary Figure 14. Uncropped gel images from Supplementary Fig. 12.

Category	Parameter	Description
Assay	Type of assay	In vitro differential scanning fluorescence
	Target	Apoptosis-inducing factor, mitochondrial (AIFM1, Uniprot O95831)
	Primary measurement	Fluorescent detection of SYPRO Orange signal
	Key reagents	SYPRO Orange protein gel stain (5000X) ThermoFisher Scientific (Life Technologies), NADH (Sigma-Aldrich)
	Assay protocol	See Methods section - High-throughput DSF Screening
	Additional comments	Mashalidis, <i>et al</i> (doi:10.1038/nprot.2013.130) provides additional information for performing HT- DSF screening assays.
Library	Library size	2500 compounds
	Library composition	The GL2500 library is distributed among the following fragment libraries offered by Life Chemicals: brominated (19%), fluorinated (19%), protein–protein interaction disruptors (PPI) (15%), Fsp3-enriched (fragments containing sp3 hybridized carbon units) (19%), and Superior (fragments designed for solubility, low toxicity and cell permeability) (27%). Fragments were chosen for chemical diversity, absence of PAINS liabilities, and predicted favorable physicochemical properties.
	Source	Life Chemicals
	Additional comments	The library was purchased pre-dispensed into 96- deep-well blocks at 10 mg/mL (15-30 mM) in deuterated DMSO and stored at -30°C. Further details on library composition and its applications can be found in Moiani, <i>et al</i> (doi: 0.1016/bs.mie.2021.09.003).
Screen	Format	384-well PCR plates (Thermo Fisher)
	Concentration(s) tested	0.75-1.5 mM (0.5 mg/mL), 5% DMSO
	Plate controls	Each PCR plate contained 4 AIF controls repeated in triplicate – buffer, 5% DMSO, 83 μM NADH, 83 μM NADH + 5% DMSO
	Reagent/ compound dispensing system	Beckman Biomek FX liquid-handling system
	Detection instrument and software	Applied Biosystems QuantStudio 6 Flex Real-Time PCR instrument
	Assay validation/QC	Standard deviation of DMSO controls, CV across plates (see also Figure S1).

Supplementary Table 1. Small Molecule Screening Data

	Correction factors	N/A
	Normalization	N/A
	Additional comments	Optimization and production HT-DSF screens were performed at the former Center for Molecular Structure and Function (CMSF) core at M.D. Anderson Cancer Center
Post-HTS analysis	Hit criteria	Hits were selected as
		$ \Delta T_m = T_m(compound) - T_m(AIF-DMSO-control) $
		$ \Delta T_m > 1.5 \text{ x SD}(AIF-DMSO-control, N=216)$
	Hit rate	1%, $\Delta T_m > 1.5 \text{ x SD}$ 2.4%, $\Delta T_m < 1.5 \text{ x SD}$
	Additional assay(s)	Differential scanning fluorescence, microscale thermophoresis, small-angle X-ray scattering
	Confirmation of hit purity and structure	The following top-ranking hits were re-purchased from Life Chemicals for follow-up analysis: F2156- 0068 (C12), F2156-0057 (D1), F9995-2431 (D3).
		The following hits were verified by X-ray crystallography in complex with AIF: F2156-0068 (C12), F2156-0057 (D1), F9995-2431 (D3), F2156- 0070 (C9), F2156-0047 (C11), F2183-0014 (D7).
	Additional comments	

Supplementary Table 2. AIF HT-DSF GL2500 Fragment Hits. Screening and verification T_m shifts and MST amplitudes for the top 39 fragment-binders from the GL2500 HT-DSF screen. Fragments in bold exhibited binding in at least one verification assay. Significance thresholds of three standard deviations relative to AIF-DMSO are 1.7°C (HT-DSF), 0.7°C (DSF), and 960.5 response units (MST).

			HT-DSF	DSF	MST
Compound	Group	Reference ID	∆T _m (°C)	∆T _m (°C)	Amplitude
F0345-3713	Fluorinated	B1	3.0	-0.5	966.3
F6541-5066	Superior	B2	2.9	0.3	955.7
F0823-0057	PPI	B3	2.8	-8.4	952.0
F1980-0013	Brominated	B4	2.5	-0.1	955.6
F1967-1331	PPI	B5	2.5	1.3	1003.1
F2184-0232	Superior	B6	2.4	-0.1	951.1
F1092-1243	PPI	B7	2.3	0.3	975.8
F0664-0094	Brominated	B8	2.2	1.4	952.7
F3098-2193	Fluorinated	B9	2.1	-0.1	957.7
F3222-2571	Superior	B10	2.0	0.2	953.9
F2130-0094	Fluorinated	B11	2.0	-0.3	963.5
F6559-1405	Fluorinated	B12	1.9	0.3	952.3
F0001-2710	Fluorinated	C1	1.9	0.8	954.5
F0894-0163	Fsp3	C2	1.8	0.7	953.5
F2167-2742	Superior	C3	1.7	0.7	970.6
F1906-0093	PPI	C4	1.7	2.1	952.7
F3083-0166	Brominated	C5	1.7	-0.2	955.3
F2135-1123	Superior	C6	1.7	0.8	957.2
F8888-6524	Fluorinated	C7	1.7	1.2	950.6
F1957-0058	Brominated	C8	-9.4	-9.9	955.1
F2156-0070	Fluorinated	С9	-5.6	-4.8	966.6
F1957-0061	Brominated	C10	-5.6	-6.5	954.5
F2156-0047	Fluorinated	C11	-5.0	-3.5	1036.9
F2156-0068	Fluorinated	C12	-4.6	-4.2	1022.3
F2156-0057	Superior	D1	-4.1	-3.3	958.9
F1894-0242	Fluorinated	D2	-3.8	-1.9	954.4
F9995-2431	Superior	D3	-3.7	-3.6	967.0
F2189-0161	Fluorinated	D4	-3.2	-2.1	951.1
F1957-0186	Brominated	D5	-2.9	-1.3	953.2
F2163-0004	Brominated	D6	-2.5	-2.0	959.9
F2183-0014	Superior	D7	-2.5	-3.2	978.3
F2135-0800	Superior	D8	-2.5	-2.7	974.6
F0722-0745	PPI	D9	-2.4	-1.7	961.0
F0818-0021	PPI	D10	-2.4	-0.7	965.7
F6541-1463	Superior	D11	-2.4	-1.5	969.9
F1957-0100	Superior	D12	-2.4	-2.9	986.0
F6543-8631	Superior	E1	-2.3	-1.3	952.0
F1957-0093	Superior	E2	-2.2	-2.2	991.5
F2169-0129	Fluorinated	E3	-2.2	-0.8	965.1

Sample	Details	AIF-WT	AIF-W196A		
Orga	nism	H. sapiens	H. sapiens		
- -		E. coli expressed	E. coli expressed		
50u	rce	(Brosey <i>et al.,</i> 2016 ¹)	(Brosey <i>et al.</i> , 2016 ¹)		
UniProt ID (reside	ues in construct)	095831 (78-613)	095831 (78-613)		
Extinction coe	fficient (FAD)	13 /002	13 /00 ²		
(A ₄₅₀ , M	⁻¹ cm ⁻¹)	13,400	13,400		
\bar{v} from chemical co	mposition (cm ³ g ⁻¹)	0.739	0.739		
Particle contrast from sequer	nce and solvent components,				
$\Delta \bar{\rho} (\rho_{\text{protein}} - \rho_{\text{sc}})$	$_{\rm olvent}; 10^{10} {\rm cm}^{-2})$	2.82 (12.23 – 9.46)	2.82 (12.23 – 9.46)		
Mr from chemical	composition (Da)	60,237	59,335		
Solvent (buffer for subtraction	n taken from preparatory SEC	25 mM HEPES, pH 7.5.	25 mM HEPES, pH 7.5.		
flowthrough prior to	elution of protein)	150 mM NaCl	150 mM NaCl		
HT-SAXS samples	s concentrations	4 mg/mL	4 mg/mL		
HT-SAXS san	nple volume	30 µL	30 μL		
SAXS Data-Collection Pa	arameters				
Instrument/data processing	Advanced Light Source (ALS) S	IBYLS SAXS beamline (12.3.1	l) with Dectris Pilatus3 2M Detector ³		
Wavelength (Å)	1.27	1.27			
Beam size (µm)	Converging beam, 500x2000 a	Converging beam, 500x2000 at sample, 100x100 at detector			
Camera length (m)	1.5				
<i>q</i> measurement range (Å ⁻¹)	0.01–0.59				
Absolute scaling method	On a detector scale				
Normalization	To transmitted intensity by be	am-stop counter			
Monitoring for radiation damage	Data and R _g frame-by-frame c	omparison			
Exposure time	Sequential 0.2-0.3 s exposures	s for 10 s.			
Sample configuration	Samples were loaded by a mu	ltichannel Tecan Evo 100 liq	uid-handling robot into needle tips		
	containing mica windows. Effe	ective sample path length 1.	5 mm.		
Sample temperature (°C)	10				
SAXS Analysis Software					
SAXS data reduction	Advanced Light Source (ALS) S	IBYLS SAXS beamline (12.3.1) with Dectris Pilatus3 2M Detector ³		
Extinction coefficient	ProtParam ⁴				
estimate	MUChy 1 1 15 (https://www.	cocoarch cmh usud adu au/A	ICV/Mah (index icn)		
Calculation of V and $\Delta \rho$	Solution (https://blacations/	acu/scottor/) Drimus/st AT	sAs 2 0 16		
Craph visual display	SCATTER (<u>https://bil231.als.lbi.gov/scatter/</u>), Primus/qt ATSAS 3.0.1°				
Graph visual display Microsoft Excel, GraphPad Prism 9.0					
Graph visual display					

Supplementary Table 3. SAXS Collection and Analysis Parameters

Structural Parameters	AIF-WT (0.3 s)	AIF-WT (2.1 s)	AIF-WT (3.0 s)	
Guinier Analysis				
I(O)	20.80 (0.19)	23.54 (0.23)	26.95 (0.28)	
R _g (Å)	29.42 (0.39)	32.19 (0.44)	33.39 (0.48)	
q _{min} (Å ⁻¹)	0.0137	0.0137	0.0137	
$qR_{\rm g}$ max ($q_{\rm min}$ = 0.0137 Å ⁻¹)	1.29	1.30	1.29	
Coefficient of correlation, R ²	1.00	1.00	0.96	
Mass from Porod invariant (Da) ⁷	45,582	51,347	52,669	
Real-space Analysis				
I(O)	20.69 (0.69)	22.58 (0.72)	26.23 (1.42)	
R _g (Å)	30.09 (0.85)	32.25 (0.95)	33.98 (1.47)	
D _{max} (Å)	109	113	126	
q range (Å⁻¹)	0.0137 - 0.2338	0.0137 - 0.2338	0.0137 - 0.2338	
χ ²	0.38	0.33	0.33	
Porod volume, V _p (ų)	101,436	116.936	122,452	
Porod coefficient, P _x	3.98 (0.15)	3.96 (0.13)	4.04 (0.11)	
Structural Parameters	AIF-WT/ NADH (0.3 s)	AIF-WT / NADH (2.1 s)	AIF-WT / NADH (3.0 s)	
Guinier Analysis				
I(O)	45.94 (0.49)	45.11 (0.49)	48.08 (0.53)	
R _g (Å)	42.14 (0.59)	42.27 (0.62)	41.69 (0.61)	
q _{min} (Å ⁻¹)	0.0125	0.0125	0.0125	
$qR_{\rm g}$ max ($q_{\rm min}$ = 0.0125 Å ⁻¹)	1.30	1.28	1.29	
Coefficient of correlation, R ²	1.00	1.00	0.99	
Mass from Porod invariant ⁷	100,900	99,497	103,410	
Real-space Analysis				
I(O)	45.85 (0.99)	45.53 (0.82)	44.84 (1.05)	
R _g (Å)	44.70 (2.00)	45.47 (1.62)	42.77 (2.43)	
D _{max} (Å)	181	187	175	
q range (Å⁻¹)	0.0137 - 0.2338	0.0137 - 0.2338	0.0137 - 0.2338	
χ ²	0.21	0.24	0.92	
Porod volume, V _p (ų)	314,858	304,031	309,876	
Porod coefficient, P _x	2.70 (0.03)	2.84 (0.03)	2.71 (0.05)	
Structural Parameters	AIF-W196A (0.3 s)	AIF-W196A (2.1 s)	AIF-W196A (3.0 s)	
Guinier Analysis	• •	• •		
I(O)	24.76 (0.22)	30.03 (0.31)	31.18 (0.35)	
R _g (Å)	33.40 (0.40)	37.35 (0.49)	38.13 (0.54)	
q _{min} (Å⁻¹)	0.0101	0.0101	0.1010	
$qR_{ m g}$ max ($q_{ m min}$ = 0.0101 Å ⁻¹)	1.30	1.30	1.29	
Coefficient of correlation, R^2	1.00	1.00	1.00	
Mass from Porod invariant ⁷	71,332	90,153	95,054	
Real-space Analysis				
I(O)	24.41 (0.87)	29.18 (0.58)	31.53 (0.71)	
R _g (Å)	34.15 (0.95)	37.41 (0.85)	39.20 (1.18)	
D _{max} (Å)	124	138	140	
q range (Å⁻¹)	0.0101 - 0.2142	0.0101 - 0.2142	0.0101 - 0.2142	
χ ²	0.16	0.56	0.31	
Porod volume, V _p (ų)	143,938	178,046	216,953	
Porod coefficient, P _x	3.94 (0.11)	3.99 (0.08)	3.23 (0.03)	

Supplementary Table 3. SAXS Collection and Analysis Parameters (cont.)

Supplementary Table 4. Wild-type and W196A AIF affinities for mitochondrial partner CHCHD4 stimulated by native NADH or CX1 chemotype ligands. Standard errors of fitting are included in parentheses. Binding constants for wild-type AIF with the CX1 chemotype are approximate as saturation was not reached.

	Dissociation Constants for CHCHD4 (µM)				
	AIF-WT AIF-W196A				
DMSO	ND	4.29 (0.30)			
NADH	0.47 (0.02)	0.70 (0.04)			
C12	46 (12)	1.54 (0.07)			
D1	13 (1.2)	0.99 (0.11)			
D3	12 (1.1) 0.99 (0.06)				

Supplementary Table 5. AIF-GL2500 Summary of Crystallographic Structures.

					Refined Ligar	nd Occupancy
Target	Chemotype	Ligand	Resolution (Å)	R _{work} / R _{free} (%)	Monomer A	Monomer B
	1	C12	2.38	18.0 / 21.2	100%	Unmodelled
AIF-	1	D1	2.58	19.4 / 24.2	88%	77%
W196A	1	D3	2.51	20.4 / 23.1	100%	100%
	1	4AQ	2.65	21.3 / 24.4	100%	100%
	1	D3	2.25	20.7 / 23.7	74%	77%
	2	С9	2.40	19.7 / 21.4	100%	100%
AIF-WT	2	C11	2.30	18.9 / 22.0	80%	100%
	2	D7	2.25	21.3 / 23.7	76%	76%

	AIF-W196A-C12	AIF-W196A-D1	AIF-W196A-D3	AIF-W196A-4AQ
Data collection				
Space group	P212121	P212121	P212121	P212121
Cell dimensions				
a, b, c (Å)	90.79, 114.33, 120.07	88.3, 110.97, 114.77	90.79, 114.77, 120.91	91.06, 114.97.122.03
α, β, γ (°)	90, 90, 90	90, 90, 90	90, 90, 90	90, 90, 90
Resolution (Å)	29.25-2.39 (2.47-2.39)	29.33-2.58 (2.67-2.58)	29.36-2.51 (2.6-2.51)	29.49-2.65 (2.75- 2.65)
R _{merge}	0.102 (0.712)	0.105 (0.77)	0.0839 (0.731)	0.128 (0.905)
l / σl	16.1 (3.3)	14.4 (2.9)	18.7 (3.0)	15.4 (2.5)
Completeness (%)	99.3 (93.4)	99.7 (98.9)	99.5 (96.7)	99.9 (100.0)
Redundancy	10.7 (10.5)	9.9 (9.8)	10.4 (10.5)	11.0 (11.1)
Refinement				
Resolution (Å)	2.39	2.58	2.51	2.65
No. reflections	50130 (4649)	36094 (3543)	43661 (4182)	37870 (3728)
Rwork / Rfree	18.0% / 21.2%	19.4% / 24.2%	20.4% / 23.1%	21.3% / 24.3%
No. atoms	7006	6666	6802	6627
Protein	6523	6425	6488	6428
Ligand/ion	127	134	134	147
Water	356	107	180	52
B-factors	47.46	59.98	62.67	55.34
Protein	47.71	60.35	63.02	55.55
Ligand/ion	36.85	49.35	56.77	49.43
Water	46.55	50.6	54.57	46.13
R.m.s. deviations				
Bond lengths (Å)	0.004	0.005	0.004	0.004
Bond angles (°)	0.59	0.62	0.59	0.59

Supplementary Table 6. X-ray data collection and refinement statistics for AIF-W196A-GL2500 complexes

*Values in parentheses are for highest-resolution shell.

	AIF-WT-D3	AIF-WT-C9	AIF-WT-C11	AIF-WT-D7
Data collection				
Space group	P212121	P212121	P212121	P212121
Cell dimensions				
a, b, c (Å)	91.32, 115.22, 122.48	91.47, 115.32, 123.97	91.39, 115.02, 124.12	91.10, 115.05, 122.17
$lpha,eta,\gamma$ (°)	90, 90, 90	90, 90, 90	90, 90, 90	90, 90, 90
Resolution (Å)	73.21-2.25 (2.33-2.25)	84.44-2.4 (2.49-2.4)	57.51-2.3 (2.38-2.3)	73.03-2.25 (2.33-2.25)
R _{merge}	0.118 (1.26)	0.0887 (0.712)	0.0756 (0.656)	0.0750 (0.874)
l / σl	12.89 (1.69)	19.85 (3.25)	21.63 (3.58)	17.75 (2.20)
Completeness (%)	99.9 (99.9)	99.8 (99.8)	99.9 (99.8)	99.5 (99.0)
Redundancy	8.9 (9.1)	10.4 (9.8)	13.2 (13.4)	11.2 (10.9)
Refinement				
Resolution (Å)				
	2.25	2.4	2.3	2.25
No. reflections	61911 (6074)	51865 (5113)	58686 (5762)	61308 (6011)
Rwork / Rfree	20.7% / 23.5%	19.9% / 21.4%	19.0% / 22.0%	21.3% / 23.7%
No. atoms	6977	6820	6960	6828
Protein	6526	6487	6554	6508
Ligand/ion	168	161	161	176
Water	283	172	245	144
B-factors	53.75	54.44	53.71	64.61
Protein	54.02	54.76	54.04	64.99
Ligand/ion	48.28	48.18	47.01	58.8
Water	50.67	48.15	49.43	54.42
R.m.s. deviations				
Bond lengths (Å)	0.005	0.004	0.005	0.004
Bond angles (°)	0.64	0.59	0.66	0.55

Supplementary Table 7. X-ray data collection and refinement statistics for AIF-WT-GL2500 complexes

*Values in parentheses are for highest-resolution shell.

Supplementary References

- 1 Brosey, C. A. *et al.* Defining NADH-Driven Allostery Regulating Apoptosis-Inducing Factor. *Structure* **24**, 2067-2079, doi:10.1016/j.str.2016.09.012 (2016).
- Churbanova, I. Y. & Sevrioukova, I. F. Redox-dependent changes in molecular properties of mitochondrial apoptosis-inducing factor. *J Biol Chem* 283, 5622-5631, doi:10.1074/jbc.M709147200 (2008).
- 3 Classen, S. *et al.* Implementation and performance of SIBYLS: a dual endstation smallangle X-ray scattering and macromolecular crystallography beamline at the Advanced Light Source. *Journal of Applied Crystallography* **46**, 1-13, doi:10.1107/S0021889812048698 (2013).
- 4 Gasteiger, E. *et al.* in *The Proteomics Protocols Handbook* (ed John M. Walker) 571-607 (Humana Press, 2005).
- 5 Whitten, A. E., Cai, S. & Trewhella, J. MULCh: modules for the analysis of small-angle neutron contrast variation data from biomolecular assemblies. *Journal of Applied Crystallography* **41**, 222-226, doi:doi:10.1107/S0021889807055136 (2008).
- Franke, D. *et al.* ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. *J Appl Crystallogr* 50, 1212-1225, doi:10.1107/S1600576717007786 (2017).
- 7 Rambo, R. P. & Tainer, J. A. Accurate assessment of mass, models and resolution by small-angle scattering. *Nature* **496**, 477-481, doi:10.1038/nature12070 (2013).