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1 Detailed results - Top-level comparison
Here we provide the results of all individual training runs for using (frozen) pre-trained embeddings (Table S1) and fine-tuning
(Table S2). These results are also available in their aggregated form with 95% confidence intervals in Tables S3-S6, which were
used to create Fig. 1.

1.1 Individual predictor results

Table S1. Individual training runs - pre-trained embeddings

Model Rand. GFP AAV GB1 Stab. Melt. Sub. Dis. Sec.
Seed Loc. Str.

ESM2 8M1

99 63.5% 68.2% 82.6% 71.6% 56.1% 52.0% 70.0% 75.3%
98 63.9% 66.5% 81.4% 75.6% 57.1% 53.1% 70.1% 75.2%
97 63.8% 66.3% 81.7% 75.1% 56.8% 51.6% 69.3% 75.2%
96 64.1% 66.4% 81.9% 74.8% 55.9% 52.2% 69.7% 75.3%
95 64.1% 66.9% 81.4% 78.0% 56.2% 51.2% 69.6% 75.2%

ESM2 35M1

99 65.1% 63.8% 82.3% 66.9% 58.4% 54.3% 68.7% 78.2%
98 65.1% 59.3% 82.9% 67.7% 58.3% 54.9% 67.8% 78.3%
97 64.7% 56.9% 82.5% 70.0% 59.0% 56.7% 69.1% 78.2%
96 64.9% 54.4% 82.6% 70.3% 59.3% 54.3% 68.9% 78.3%
95 65.1% 60.7% 83.1% 70.5% 58.1% 54.5% 68.9% 78.2%

ESM2 150M1

99 63.9% 67.4% 84.0% 79.3% 61.2% 58.8% 71.6% 82.1%
98 63.7% 65.3% 83.8% 75.3% 61.1% 60.0% 71.1% 82.2%
97 63.9% 62.9% 84.0% 78.7% 62.2% 61.0% 71.3% 82.0%
96 63.9% 65.4% 81.4% 78.1% 61.1% 58.8% 71.0% 82.2%
95 63.8% 67.4% 83.4% 80.7% 62.6% 58.6% 70.1% 82.2%

ESM2 650M1

99 64.9% 51.4% 86.1% 64.9% 65.4% 61.6% 72.5% 84.8%
98 64.7% 45.0% 85.9% 64.1% 65.0% 64.7% 71.5% 84.8%
97 64.7% 47.7% 85.9% 66.3% 66.6% 61.8% 72.2% 84.8%
96 64.8% 44.1% 84.8% 65.1% 66.0% 62.2% 71.9% 84.7%
95 64.9% 47.5% 85.5% 71.7% 65.2% 64.3% 72.1% 84.6%

ESM2 3B1

99 64.9% 77.6% 85.6% 80.2% 67.7% 63.9% 71.3% 85.6%
98 64.9% 77.5% 86.8% 78.7% 67.8% 63.5% 70.9% 85.6%
97 65.0% 77.3% 87.1% 78.4% 67.6% 65.1% 71.3% 85.5%
96 65.2% 77.3% 86.8% 78.4% 67.8% 64.3% 70.8% 85.6%
95 65.1% 78.0% 86.9% 78.8% 67.5% 64.1% 70.7% 85.6%

ProtT52

99 61.4% 70.1% 85.6% 77.0% 68.8% 62.0% 71.0% 84.2%
98 61.6% 71.0% 85.2% 76.9% 69.6% 63.1% 71.0% 84.3%
97 60.5% 64.1% 85.7% 79.3% 71.1% 59.0% 70.9% 84.4%
96 61.8% 67.6% 84.6% 76.0% 68.6% 60.4% 70.6% 84.4%
95 61.4% 69.8% 84.8% 79.6% 69.0% 62.2% 71.1% 84.3%

Ankh base3

99 65.9% 62.2% 85.3% 74.0% 56.3% 60.0% 70.9% 84.4%
98 65.9% 60.4% 84.5% 74.7% 58.6% 59.8% 70.8% 84.3%
97 65.8% 62.0% 85.3% 73.4% 57.9% 61.4% 70.6% 84.4%
96 65.9% 64.2% 84.6% 80.5% 58.1% 59.8% 71.4% 84.3%
95 66.3% 69.9% 83.8% 75.4% 57.9% 60.4% 71.0% 84.4%

Ankh large3

99 67.1% 75.4% 85.4% 69.4% 60.8% 61.4% 69.9% 86.0%
98 67.0% 71.1% 86.1% 65.2% 62.7% 58.8% 69.9% 86.0%
97 66.8% 72.7% 85.7% 66.4% 62.2% 59.6% 70.0% 86.0%
96 67.1% 72.9% 83.9% 67.4% 61.7% 62.4% 69.4% 86.0%
95 67.1% 72.7% 85.8% 77.3% 62.7% 60.8% 70.0% 86.1%
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For fine-tuning (Table S2) we generally did three reruns for each experiment. The only exception was a clear outlier for
full fine-tuning ESM2 150M, AAV, random seed 98 which we therefore reran (with random seed 96). The 70.1% result was
excluded for all further calculations. For ProtT5 unrelated experiments not published here resulted in additional values for three
of the datasets (Sub-cellular Location, Disorder and Secondary Structure prediction), which we included as well.

Table S2. Individual training runs - fine-tuning

Model Fine-tuning Rand. GFP AAV GB1 Stab. Melt. Sub. Dis. Sec.
Seed Loc. Str.

ESM2 8M1 full model
99 68.6% 82.5% 89.1% 77.3% 58.1% 54.5% 71.0% 76.2%
98 68.9% 84.9% 88.2% 74.6% 58.5% 57.1% 71.6% 76.2%
97 69.1% 80.6% 87.5% 77.8% 58.8% 55.9% 71.8% 76.0%

ESM2 35M1 full model
99 69.2% 77.6% 87.4% 76.6% 58.2% 59.0% 72.7% 79.1%
98 68.7% 81.8% 88.1% 77.4% 59.0% 56.5% 74.3% 79.1%
97 68.9% 83.1% 88.2% 76.7% 62.3% 58.8% 73.1% 79.2%

ESM2 150M1 full model

99 69.3% 84.8% 87.8% 74.0% 63.8% 60.6% 74.8% 82.7%
98 68.9% 70.1% 87.8% 74.1% 62.6% 61.4% 72.9% 82.9%
97 69.0% 84.8% 88.1% 71.9% 61.5% 62.7% 74.4% 82.8%
96 - 84.2% - - - - - -

ESM2 650M1 full model
99 68.8% 78.1% 87.1% 69.8% 66.1% 65.1% 72.0% 85.5%
98 69.2% 80.7% 88.6% 78.5% 67.8% 63.5% 72.4% 85.5%
97 68.5% 76.2% 88.1% 74.5% 65.3% 62.9% 71.6% 85.5%

ESM2 8M1 LoRA
99 69,2% 80,7% 85,4% 77,0% 54,7% 55,5% 66,0% 75,9%
98 69,0% 77,4% 83,8% 81,3% 59,1% 56,1% 66,1% 76,0%
97 69,4% 81,3% 84,7% 72,0% 57,8% 54,5% 68,3% 75,8%

ESM2 35M1 LoRA
99 69,4% 77,4% 87,7% 75,1% 59,3% 58,2% 68,0% 78,9%
98 69,2% 81,7% 86,6% 76,8% 57,8% 57,6% 69,4% 78,8%
97 69,1% 82,5% 86,6% 75,8% 57,2% 56,5% 68,5% 78,7%

ESM2 150M1 LoRA
99 69,6% 84,6% 88,2% 74,9% 60,6% 63,3% 67,7% 82,5%
98 69,6% 80,7% 86,8% 79,9% 59,0% 59,6% 70,6% 82,5%
97 69,3% 85,0% 87,3% 79,9% 60,8% 59,8% 69,7% 82,4%

ESM2 650M1 LoRA
99 69,1% 78,6% 88,0% 82,8% 61,7% 63,9% 71,1% 85,6%
98 69,2% 84,5% 89,0% 85,3% 64,0% 63,3% 72,3% 85,5%
97 69,7% 81,8% 87,5% 82,9% 63,1% 64,5% 71,1% 85,5%

ESM2 3B1 LoRA
99 69,9% 85,4% 89,3% 84,1% 71,1% 68,2% 71,9% 86,4%
98 70,0% 86,6% 88,9% 84,5% 68,6% 66,9% 70,8% 86,4%
97 69,9% 85,0% 89,8% 83,6% 70,1% 68,4% 72,0% 86,5%

ProtT52 LoRA

99 66.9% 77.2% 87.9% 80.6% 72.6% 66.9% 70.9% 84.9%
98 68.2% 75.5% 87.6% 82.5% 72.8% 66.3% 71.6% 85.0%
97 68.8% 75.0% 88.1% 84.0% 72.4% 64.5% 71.3% 84.9%
96 - - - - - 64.5% 71.7% 84.9%
95 - - - - - 63.3% 71.1% 84.8%

Ankh base3 LoRA
99 69.0% 83.0% 86.6% 77.2% 62.0% 63.1% 68.5% 84.0%
98 69.2% 81.4% 87.4% 83.0% 61.9% 62.7% 68.0% 84.0%
97 69.3% 79.6% 85.5% 82.6% 60.1% 61.8% 68.8% 83.9%

Ankh large3 LoRA
99 69.6% 84.2% 87.8% 80.4% 57.2% 61.2% 69.2% 85.8%
98 69.2% 83.6% 89.4% 82.5% 58.5% 64.1% 68.4% 85.7%
97 69.8% 86.1% 89.2% 78.2% 64.0% 63.1% 68.3% 85.6%
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1.2 Aggregated results

Table S3. ESM2 - pre-trained embeddings

ESM2 8M ESM2 35M ESM2 150M ESM2 650M ESM2 3B

GFP 63.9% ± 0.20 65.0% ± 0.16 63.9% ± 0.08 64.8% ± 0.11 65.0% ± 0.14
AAV 66.9% ± 0.70 59.0% ± 3.14 65.7% ± 1.63 47.1% ± 2.50 77.6% ± 0.25
GB1 81.8% ± 0.41 82.7% ± 0.28 83.3% ± 0.95 85.7% ± 0.44 86.6% ± 0.51
Stability 75.0% ± 2.02 69.1% ± 1.44 78.4% ± 1.74 66.4% ± 2.67 78.9% ± 0.64
Meltome 56.4% ± 0.46 58.6% ± 0.47 61.7% ± 0.63 65.6% ± 0.56 67.7% ± 0.12
Sub. Loc. 52.0% ± 0.61 54.9% ± 0.91 59.4% ± 0.92 62.9% ± 1.26 64.2% ± 0.53
Disorder 69.7% ± 0.29 68.7% ± 0.43 71.0% ± 0.48 72.0% ± 0.33 71.0% ± 0.25
Sec. Str. 75.3% ± 0.05 78.2% ± 0.03 82.2% ± 0.06 84.7% ± 0.05 85.6% ± 0.02

Table S4. ESM2 - fine-tuning

ESM2 8M ESM2 35M ESM2 150M ESM2 650M ESM2 3B
full model full model full model full model LoRA

GFP 68.8% ± 0.30 68.9% ± 0.24 69.1% ± 0.25 68.8% ± 0.40 69,9% ± 0,08
AAV 82.7% ± 2.41 80.8% ± 3.27 84.6% ± 0.37 78.3% ± 2.54 85,7% ± 0,96
GB1 88.3% ± 0.95 87.9% ± 0.45 87.9% ± 0.19 87.9% ± 0.87 89,3% ± 0,48
Stability 76.5% ± 1.96 76.9% ± 0.50 73.3% ± 1.37 74.3% ± 4.89 84,1% ± 0,48
Meltome 58.4% ± 0.40 59.8% ± 2.50 62.6% ± 1.31 66.4% ± 1.47 69,9% ± 1,43
Sub. Loc. 55.9% ± 1.50 58.1% ± 1.54 61.6% ± 1.16 63.8% ± 1.31 67,8% ± 0,87
Disorder 71.5% ± 0.50 73.4% ± 0.91 74.0% ± 1.10 72.0% ± 0.45 71,6% ± 0,72
Sec. Str. 76.1% ± 0.13 79.1% ± 0.07 82.8% ± 0.10 85.5% ± 0.03 86,4% ± 0,08

Table S5. T5 models - pre-trained embeddings

ProtT5 Ankh base Ankh large

GFP 61.4% ± 0.42 66.0% ± 0.16 67.0% ± 0.14
AAV 68.5% ± 2.45 63.7% ± 3.25 73.0% ± 1.36
GB1 85.2% ± 0.43 84.7% ± 0.54 85.4% ± 0.73
Stability 77.8% ± 1.40 75.6% ± 2.49 69.1% ± 4.20
Meltome 69.4% ± 0.88 57.8% ± 0.76 62.0% ± 0.71
Sub. Loc. 61.3% ± 1.43 60.3% ± 0.60 60.6% ± 1.28
Disorder 70.9% ± 0.17 71.0% ± 0.25 69.8% ± 0.23
Sec. Str. 84.3% ± 0.05 84.4% ± 0.03 86.0% ± 0.03

Table S6. T5 models - fine-tuning

ProtT5 Ankh base Ankh large
LoRA LoRA LoRA

GFP 68.0% ± 1.10 69.2% ± 0.19 69.5% ± 0.35
AAV 75.9% ± 1.35 81.3% ± 1.97 84.7% ± 1.48
GB1 87.9% ± 0.26 86.5% ± 1.08 88.8% ± 0.95
Stability 82.4% ± 1.90 80.9% ± 3.68 80.4% ± 2.44
Meltome 72.6% ± 0.20 61.3% ± 1.19 59.9% ± 4.09
Sub. Loc. 65.1% ± 1.31 62.5% ± 0.71 62.8% ± 1.64
Disorder 71.3% ± 0.28 68.4% ± 0.50 68.7% ± 0.57
Sec. Str. 84.9% ± 0.07 84.0% ± 0.05 85.7% ± 0.14
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2 Detailed evaluation of sub-cellular location and secondary structure prediction
To gain further insights we investigated fine-tuning effect results of both classification tasks (Q10 sub-cellular location prediction
and three class per residue secondary structure prediction) on a class level. Results shown here are based on the best ProtT5
predictors for these datasets (Table S2, S1).
For the Secondary Structure prediction task (Table S7) the f1-score increased for all three classes. Fine-tuning was not
over-fitting to the majority classes, with the largest f1-score gain even seen for the minority class (Strand). While the overall
gains were low for this task (refer Fig. 1, Fig. S3, S5) this still was a clear improvement.

Table S7. Secondary structure prediction - per class results

embedding class
share

training

fine-tuned

precision recall f1-score precision recall f1-score
Other 0.788 0.837 0.812 38.6% 0.812 0.829 0.820
Helix 0.887 0.889 0.888 38.4% 0.888 0.900 0.894
Strand 0.866 0.772 0.816 23.0% 0.864 0.815 0.839

With more classes and stronger class imbalance the Sub-cellular location task was more informative here. The lower
performance for underrepresented classes could not be resolved by fine-tuning. Previous findings4 showed the same tendency.
It seems there is not enough training data for these classes in the training data. Still, the significant average improvements (Fig.
1, Fig. S3, S5) together with the balanced improvements seen here (increased or unchanged f1-score for all but the "Plastid"
class) are clearly preferable to the embedding based prediction.

Table S8. Sub-cellular location prediction - per class results

embedding class
share

training

fine-tuned

precision recall f1-score precision recall f1-score
Nucleus 0.632 0.848 0.724 29.0% 0.788 0.828 0.808
Cytoplasm 0.514 0.650 0.574 19.6% 0.524 0.744 0.615
Extracellular 0.896 0.750 0.817 13.9% 0.901 0.793 0.844
Mitochondrion 0.333 0.700 0.452 10.6% 0.562 0.900 0.692
Cell membrane 0.619 0.398 0.484 9.5% 0.672 0.459 0.545
Endoplasmic reticulum 0.467 0.412 0.437 6.3% 0.548 0.500 0.523
Plastid 1.000 0.727 0.842 5.4% 0.667 0.727 0.696
Golgi apparatus 0.333 0.154 0.211 2.5% 0.333 0.231 0.273
Lysosome/Vacuole 0 0 0 2.3% 0 0 0
Peroxisome 0 0 0 1.1% 0.667 0.667 0.667

These results demonstrated that even in imbalanced datasets, we did not observe over-fitting to majority classes at the expense of
minority ones. These findings further reinforce our belief that fine-tuning is a superior approach to using pre-trained embeddings
in general.
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3 Sub-cellular location prediction results
We provide the results for the Sub-cellular location prediction here. Learned light attention (LA) based pooling on pre-trained
ProtT5 embeddings had previously4 shown to be a clear improvement over the use of standard average pooling (ProtT5 FFN).
LoRA fine-tuning even surpassed these results without using a complex pooling mechanism like LA.

Table S9. Q10 sub-cellular location prediction * Values are taken from previous work4. Performance measured as 10-class
accuracy (Q10) on the "set_HARD" test dataset which estimates the performance for unkown proteins that are not
sequence-similar to those with experimentally known location.

Model set_HARD

ProtT5 FFN* 61.3±1.0
ProtT5 LA* 65.2±0.6
ProtT5 FFN-LoRA 66.2±0.6

4 GPU requirements for embedding generation
In contrast to fine-tuning (Fig. 5b), embedding computation was much less demanding on GPU memory and therefore can be
performed even for datasets with very long sequences (Fig. S1).

Figure S1. GPU requirements - embedding creation. Maximum sequence length before GPU runs out of memory, given a
GPU size and model. These values assume the model is loaded in half precision (apart from the Ankh models, which do not
support this) and a single embedding is computed at a time. Source data are provided as a Source Data file.
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5 Full model fine-tuning vs LoRA
Analog to the main result heatmap (Fig. 1) we compute the percentage differences between the LoRA fine-tuned and fully
fine-tuned models (1) here:

∆(PT ) = per f ormance(PT )LoRA − per f ormance(PT ) f ull_model (1)

Fig. S2 confirms, that LoRA reaches a similar performance when compared to fine-tuning of the entire model. While there are
some exceptions, the difference is not significant for most model / prediction task (PT) combinations. The average improvement
across all tasks, shown in the rightmost column, suggests that smaller models should be fully fine-tuned, while for ESM2 650M
the use of LoRA fine-tuning is preferable. Contrary to this we decided to still use the full model results for the 650M model
(Table S4) to avoid another red (unsuccessful) tile for the Meltome task in Fig. 1.
While full fine-tuning of larger models is possible with our available hardware (Fig. 5b), it is not practical due to the resulting
significant longer training times (Fig. 5a). Also, during experimentation with ESM2 3B we saw the occurrence of exploding
gradients, leading to termination of training runs within the first epoch. While this problem can possibly be mitigated (e.g.
deploying lower learning rates or gradient clipping), this decrease in training stability makes full model fine-tuning even less
attractive for large models. Due to these findings and the trend seen for the smaller models (Fig. S2), we do not recommend full
fine-tuning for PLMs larger than ESM2 650M.

Figure S2. LoRA compared to fine-tuning full models. Values represent associated metrics with each dataset (Spearman
ranking correlation for GFP, AAV, GB1, Stability, Meltome and Disorder; accuracy for 10-class, per-protein sub-cellular
location and 3-class per-residue secondary structure). Each tile compares LoRA fine-tuning to fine-tuning of the full model for
one prediction task. Blue tiles mark statistically significant performance increases (exceeding 1.96 standard errors; LoRA over
full model fine-tuning), yellow tiles mark statistically insignificant changes (0 lies within the error margins of ±1.96 stderr) and
for red tiles LoRA gained significantly less performance. Error estimates (±percentage values) represent the 95% confidence
intervals (CI). For individual results see Table S2. Source data are provided as a Source Data file.
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6 Model training - Hyperparameters

We provide the parameters used for model training in Table S10 and S12.

Table S10. Training Parameters - pre-trained embeddings

Dataset Epochs Validation learning batch
per epoch rate size

GFP 240 1 1e-04 8 sequences
AAV 120 1 1e-04 8 sequences
GB1 240 1 1e-04 8 sequences

Stability 120 1 1e-04 8 sequences
Meltome 120 1 1e-04 8 sequences
Sub. Loc. 120 1 1e-04 8 sequences
Disorder 50 1 1e-04 8 residues
Sec. Str. 10 1 1e-04 8 residues

Table S11. Grid search - Hyperparameter

learning rate
1e-03 3e-04 2e-05

batch
size

2 64.3% 63.9% 65.1%
8 65.8% 66.3% 63.3%

32 65.1% 64.9% 47.6%
128 65.7% 64.7% 32.2%

Batch size and learning rate for LoRA fine-tuning were determined using a coarse grained grid search (Table S11), on the
sub-cellular location dataset, training the ProtT5 model. We do not expect this to be the most optimal parameter set for all
models and datasets but this configuration has shown to be a good starting point leading to stable training behaviour throughout
our experiments.

Table S12. Training Parameters - fine-tuning

Model fine-tuning Dataset Epochs Validation learning batch
per epoch rate size

ESM2 full model

GFP 20 5 2e-05 8 sequences
AAV 10 5 2e-05 8 sequences
GB1 20 5 2e-05 8 sequences

Stability 10 10 2e-05 8 sequences
Meltome 10 10 2e-05 8 sequences
Sub. Loc. 10 10 2e-05 8 sequences
Disorder* 20 10 2e-5 / 2e-4 1 / 8 sequences
Sec. Str. 5 20 2e-05 1 sequence

Ankh LoRA

GFP 50 1 3e-04 8 sequences
AAV 20 1 3e-04 8 sequences
GB1 50 1 3e-04 8 sequences

Stability 50 1 3e-04 8 sequences
Meltome 10 2 3e-04 8 sequences
Sub. Loc. 10 10 3e-04 8 sequences
Disorder 20 10 3e-04 1 sequence
Sec. Str. 5 20 3e-04 1 sequence

ProtT5
ESM2 LoRA

GFP 50 1 3e-04 8 sequences
AAV 20 1 3e-04 8 sequences
GB1 50 1 3e-04 8 sequences

Stability 50 1 3e-04 8 sequences
Meltome 20 1 3e-04 8 sequences
Sub. Loc. 5 10 3e-04 8 sequences
Disorder 20 10 3e-04 1 sequence
Sec. Str. 5 20 3e-04 1 sequence

* for the Disorder dataset, fine-tuning full models, ESM2 150M and 650M did not show stable conversion with our default
parameters. We had to increase learning rate and batch size to 2e-4 and 8 sequences
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7 Model size impact remains dataset dependent
Here we explored the influence of growing model size on prediction performance. Fig. S3 shows this for the eight prediction
tasks. While pre-trained embeddings of the largest model (ESM2 3B) were not the best for all individual tasks, we saw an
upward slope of the regression line in all cases, which confirms previous findings5. Contrary, for fine-tuned models, larger
model size only helped performance for the four diverse datasets in the right column, while for the three mutational landscapes
size had little to no impact. Interestingly, for the diverse Disorder task smaller models were better than larger ones. While the
difference between mutational landscapes and the four diverse datasets on the right followed a clear logic, disorder stood out as
an exception. We would have expected disorder and secondary structure prediction to behave similarly, as both are per residue
tasks, trained on a diverse set of proteins and redundancy reduction is performed in the same way (using mmseqs with the same
thresholds). This again shows the need to investigate prediction tasks / datasets individually and common behavior for similar
PTs is not guaranteed. In this particular case the key difference might be the dataset size (see SOM Section 10).

Figure S3. Model size impact per prediction task. Reuses the aggregated fine-tuning and pre-trained embedding results
from Table S3 - S6, this time mapped to the model size with corresponding models shown at the top. Analog to Fig. 1 and Fig.
S5 we report performance of fully fine-tuned models for smaller ESM2 models up to 650M (marked with *). Lighter colored
areas are 95% confidence intervals. Source data are provided as a Source Data file.
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8 Initial representation quality important for diverse tasks
Here (Fig.S4) we investigated , whether the quality of initial model representations (pre-trained model embeddings) for
individual tasks had influence on the observed fine-tuning gains. For all prediction tasks, but Meltome, regression lines showed
a downwards slope. This meant that pre-trained models doing well on a specific task will gain less on average compared to
other models. This is somewhat intuitive as worse initial performance might allow to pick "lower hanging fruits" making
performance increases easier to achieve.
For the mutational landscape datasets (GFP, AAV and GB1), these results are in line with previous findings (Fig. S3), where all
fine-tuned models achieved nearly identical performance and differences between models not being significant. This already
implied that better initial representations gained less from fine-tuning. Still in two out of three cases the model with best initial
representation leads to the best fine-tuned one (Fig. S4 marked as star).
In contrast, for the diverse datasets, the slightly higher gains seen for models with less optimal initial representations do not
fully offset this initial gap between representations (Fig. S3). As resulting differences between fine-tuned models are significant
here, we suggest to select a model with good initial representation for these tasks.

Figure S4. Impact of initial representation quality. Reuses the aggregated fine-tuning and pre-trained embedding results
from Table S3 - S6. Mapping initial representation quality (performance of pre-trained embeddings) to gains achieved from
fine-tuning. The best model (average values) for each task marked as star. Analog to Fig. 1 and Fig. S5 we report performance
of fully fine-tuned models for smaller ESM2 models up to 650M. Grey regression line with 95% confidence intervals. Source
data are provided as a Source Data file.
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9 Model training behavior
During training we saw three different kind of model behaviours:
First we encountered noisy test performance, i.e. the test loss and performance metric are not converging cleanly but stay
fluctuating even though training and validation loss flatten out smoothly. This occurred for the Stability and AAV datasets.
Second, for some tasks we saw over-fitting. This occurred for Meltome, Sub-cellular location and Disorder predictions and is
normal behaviour. But for two of those three (Disorder and to a lesser extend Meltome) the validation loss does not reflected
this. Which led to an inability to early stop at the correct epoch.
The third very forgiving behaviour was clean convergence without over-fitting. This happened for the GFP, GB1 and secondary
structure tasks. Here training can be continued beyond initial convergence without any over-fitting.
These behaviours were reflected in the top-level comparison (Fig. 1). To evaluate the impact of these (unwanted) behaviours
we analysed the training results a second time. Instead of applying early stopping, we averaged over the 10 highest test
performances (which were computed during training parallel to validation performance) for each experiment. This represents a
theoretical upper bound of test performance for the predictors (when stopping training at their best performance).

Figure S5. Upper bound comparison of models and tasks * marks models which were fully fine-tuned, for the other
models we used LoRA (for more details see Fig. S2). Instead of applying early stopping, we averaged over the 10 highest test
performance values during training for each individual experiment (per model, task, seed). All further aggregation follows Fig.
1 methodology. Source data are provided as a Source Data file.

Those upper bound results are shown in Fig. S5 and Tables S13-S16. While the difficulties to fine-tune the Ankh models
remained here, supervised fine-tuning looked better for the other models across tasks (compared to Fig. 1). Averaging
over the ten best values reduced the random variance from the noisy test behaviour, which mainly helped Stability (AAV
improves so much by fine-tuning that the random variance does not matter to much). For the over-fitting datasets (Meltome,
Sub-cellular location and Disorder) we also saw improvements. Fine-tuned models train more parameters and were more prone
to over-fitting, therefore they gained more compared to embedding based predictors.
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9.1 Aggregated results - upper bound

Table S13. ESM2 - pre-trained embeddings - upper bound

ESM2 8M ESM2 35M ESM2 150M ESM2 650M ESM2 3B

GFP 64.1% ± 0.19 65.0% ± 0.17 64.0% ± 0.13 64.8% ± 0.10 64.9% ± 0.11
AAV 68.6% ± 0.35 62.8% ± 1.69 67.0% ± 1.40 62.7% ± 2.87 76.9% ± 0.25
GB1 82.9% ± 0.27 83.1% ± 0.34 84.5% ± 0.42 86.3% ± 0.39 86.3% ± 0.49
Stability 76.6% ± 1.45 74.0% ± 1.15 79.6% ± 1.62 70.7% ± 2.27 77.6% ± 0.93
Meltome 57.6% ± 0.18 59.0% ± 0.19 62.6% ± 0.43 66.6% ± 0.39 67.2% ± 0.17
Sub. Loc. 52.8% ± 0.39 56.1% ± 0.97 60.3% ± 0.64 63.9% ± 0.45 63.7% ± 0.53
Disorder 70.0% ± 0.18 69.1% ± 0.15 71.4% ± 0.12 72.3% ± 0.09 70.7% ± 0.30
Sec. Str. 75.2% ± 0.03 78.2% ± 0.01 82.1% ± 0.02 84.6% ± 0.04 85.5% ± 0.02

Table S14. ESM2 - fine-tuning - upper bound

ESM2 8M ESM2 35M ESM2 150M ESM2 650M ESM2 3B
full model full model full model full model LoRA

GFP 68.9% ± 0.36 69.1% ± 0.14 69.2% ± 0.31 69.0% ± 0.26 69,7% ± 0,11
AAV 83.1% ± 1.00 82.0% ± 2.76 84.9% ± 0.62 79.6% ± 2.94 84,8% ± 0,93
GB1 88.4% ± 0.78 88.2% ± 0.45 88.5% ± 0.38 88.5% ± 0.77 89,2% ± 0,43
Stability 79.8% ± 1.10 81.0% ± 0.37 82.5% ± 0.70 82.7% ± 0.36 82,7% ± 0,58
Meltome 59.4% ± 0.88 61.1% ± 1.30 64.1% ± 0.91 68.5% ± 1.14 69,6% ± 1,58
Sub. Loc. 58.2% ± 0.29 60.1% ± 0.62 62.9% ± 0.33 65.1% ± 0.82 66,8% ± 0,55
Disorder 72.4% ± 0.21 74.2% ± 0.59 74.4% ± 0.55 73.7% ± 0.27 71,0% ± 0,88
Sec. Str. 76.1% ± 0.04 79.1% ± 0.06 82.8% ± 0.05 85.5% ± 0.03 86,3% ± 0,02

Table S15. T5 models - pre-trained embeddings - upper bound

ProtT5 Ankh base Ankh large

GFP 61.6% ± 0.29 66.1% ± 0.14 67.1% ± 0.15
AAV 72.4% ± 0.61 66.1% ± 1.92 74.4% ± 0.57
GB1 86.0% ± 0.34 85.1% ± 0.36 86.5% ± 0.23
Stability 79.8% ± 0.74 80.0% ± 0.89 75.8% ± 2.20
Meltome 70.3% ± 0.34 58.4% ± 0.30 62.6% ± 0.58
Sub. Loc. 61.9% ± 1.25 61.1% ± 0.64 61.4% ± 0.73
Disorder 71.3% ± 0.16 71.0% ± 0.20 70.1% ± 0.09
Sec. Str. 84.2% ± 0.01 84.3% ± 0.02 86.0% ± 0.02

Table S16. T5 models - fine-tuning - upper bound

ProtT5 Ankh base Ankh large
LoRA LoRA LoRA

GFP 69.0% ± 0.30 69.6% ± 0.08 69.8% ± 0.13
AAV 76.1% ± 1.54 81.2% ± 2.32 84.7% ± 0.70
GB1 88.0% ± 0.40 86.9% ± 0.78 88.8% ± 0.79
Stability 83.3% ± 1.70 81.3% ± 1.94 81.7% ± 1.34
Meltome 72.4% ± 0.42 60.6% ± 0.49 59.3% ± 4.00
Sub. Loc. 66.0% ± 0.45 61.9% ± 0.58 61.5% ± 1.71
Disorder 72.2% ± 0.52 69.5% ± 0.82 69.8% ± 1.41
Sec. Str. 84.9% ± 0.03 84.0% ± 0.05 85.7% ± 0.05
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10 Data saturation
To gain a better understanding on why over-fitting (SOM Section 9) occurred, we investigated how fine-tuned model performance
changed when trained only on a random subset of the original datasets. For these experiments we started with the entire dataset
and gradually halved the data again and again until reaching 3.125% of the original size. To keep training times reasonable we
chose the ESM2 150M model and again reran each experiment three times. We excluded AAV and Stability here as both did not
even show stable training behavior for their full dataset.

Figure S6. Downsampled datasets This shows fine-tuned (full model) ESM2 150M results, trained on randomly
down-sampled datasets, each experiment rerun three times. Values represent associated metrics with each dataset (Spearman
ranking correlation for GFP, GB1, Meltome and Disorder; accuracy for 10-class, per-protein sub-cellular location and 3-class
per-residue secondary structure). The complete results, including data-points above the x-axis threshold shown here, can be
found in the source data. Source data are provided as a Source Data file.

Fig. S6 shows the results. For the Sec.Str. and the GFP datasets which showed no over-fitting tendency before, we saw an over
saturation, meaning reducing the dataset to half or even on fourth (in case of Sec.Str.) did not reduce predictor performance.
For the third dataset not prone to over-fitting, GB1, a further increase in dataset size is not possible by design. All possible
single, double and triple mutants are already in the training set and the predictor tries to generalize to test variants where all four
selected positions are mutated. The upward slope showed that the predictors benefited from every added lower order variant,
confirming the strong epistatic effects between those four positions6.
The Disorder dataset would likely benefit from more data. It is also the smallest dataset shown here, which explains the
over-fitting tendency as well as the comparatively worse performance of larger models (as those are even more prone to over-fit)
on this dataset (see Fig. S3).
Sub-cellular location prediction was not gaining a lot from more data. This was driven by the strong class imbalance (Table S8)
and the lack of data for minority classes during training. There was enough data for majority classes (therefore down sampling
did not hurt) but too little data on minority classes (that’s why overall accuracy is relatively low). This imbalance also caused
the over-fitting seen for this dataset. When training was continued for too long the models started to over-fit to majority classes
(data not shown).
While Meltome was the largest dataset, we still found a performance increase up to the full data set size. As shown before
(Fig. S3), Meltome favored larger models, which likely meant the sequence-function (thermo-stability) relationship is too
complex for smaller models to capture. We were not able to track down the cause of over-fitting here, but found that over-fitting
weakened with model size and the two best performing models (ESM2 3B and ProtT5) were hardly affected.
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11 ESM2 fine-tuning with random initialization
To determine how much of the performance gains achieved by fine-tuning (over the use of frozen embeddings) can be attributed
to the model architecture itself and how much to the model’s pre-training, we fine-tuned randomly initialized models.
For training we randomly initialized all model parameters (embedding weights, model weights and the prediction head) and
reused the training scripts from our intra-model comparison. Due to the random starting point model training took much longer
to converge. We ran each training for 250 epochs and only validated once per epoch.

Figure S7. Model fine-tuning from random initialization. Values represent associated metrics with each dataset (Spearman
ranking correlation for GFP, AAV, GB1, Stability, Meltome and Disorder; accuracy for 10-class, per-protein sub-cellular location
and 3-class per-residue secondary structure), error bars mark the 95% confidence intervals (CI), calculated from multiple reruns
of the same model training. Circles represent individual training runs. Source data are provided as a Source Data file.

We find (Fig. S7, Table S17) similar results for both tested models (ESM2 8M and 150M). For all five diverse datasets we
see that models fine-tuned from fully randomly initiated weights (light red) do not reach the performance of predictors using
pre-trained embeddings (blue). We concluded that for these datasets pre-training provides a major contribution.
For the mutational landscapes frozen embeddings performed worse than models fine-tuned from random initialization. In case
of GFP we even found no difference between fine-tuning from pre-trained models compared to starting from random weights.
This explains previous findings7 about the lack of discriminating power of the TAPE8 GFP datasplit. While fine-tuning from
pre-trained models still preformed better for the other two landscapes and is also recommended due to much faster training
convergence (at least 10 times faster, depending on the dataset), random models did surprisingly well here.
We draw from these results that transfer learning from the unsupervised pre-training is less effective for local landscapes and a
large portion of model performance stems from the transformer architecture itself.
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Table S17. Detailed results - Model fine-tuning from random initialization

ESM2 8M

Fine-tuning
(random init)

Frozen
embeddings

Fine-tuning
(from pre-trained)

GFP 68.9% ± 0.02 64.1% ± 0.2 68.9% ± 0.4
AAV 70.8% ± 0.9 68.6% ± 0.4 83.1% ± 1.0
GB1 85.7% ± 0.8 82.9% ± 0.3 88.4% ± 0.8

Stability 68.4% ± 3 76.6% ± 1.4 79.8% ± 1.0
Meltome 52.7% ± 0.5 57.6% ± 0.2 59.4% ± 0.9
Sub. Loc. 47% ± 0.2 52.8% ± 0.4 58.2% ± 0.3
Disorder 64.9% ± 2 70.0% ± 0.2 72.4% ± 0.2
Sec. Str. 70.8% ± 0.02 75.2% ± 0.03 76.1% ± 0.04

ESM2 150M

GFP 69% ± 0.03 64.0% ± 0.1 69.2% ± 0.3
AAV 70.4% ± 4 67.0% ± 1.4 84.9% ± 0.6
GB1 87% ± 0.9 84.5% ± 0.4 88.5% ± 0.4

Stability 67.5% ± 6 79.6% ± 1.6 82.5% ± 0.7
Meltome 51.3% ± 0.1 62.6% ± 0.4 64.1% ± 0.9
Sub. Loc. 45.9% ± 0.1 60.3% ± 0.6 62.9% ± 0.3
Disorder 63.5% ± 0.4 71.4% ± 0.1 74.4% ± 0.6
Sec. Str. 70.8% ± 0.1 82.1% ± 0.02 82.8% ± 0.05
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