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Reviewer #1 (Remarks to the Author):

Main contribution:

Similar to the impressive capability of large language models (LLMs) in natural language 

processing (NLP), protein language models (pLMs) have seen several successes in protein-related 

prediction tasks and become the "foundation models" for state-of-the-art solutions. Nevertheless, 

PLMs are unsupervised models and, in many applications, need to be adapted or fine-tuned to 

problem-specific regression or classification tasks. However, directly fine-tuning the entire pLM is 

computationally expensive.

This work studies 8 tasks where 3 pLMs (ESM2, ProtT5, Ankh) are applied and shows two main 

conclusions: (a) fine-tuning is beneficial as compared to using a pLM as a pre-trained feature 

encoder (b) PEFT could reach similar results with fewer resources.

This line of research does carry substantial significance.

I have two main concerns about the manuscript in its current form and which require a major 

revision of the paper:

(a) The PEFT part is very under-explored and lacks crucial information. Especially, there is very 

little about "resources", so we cannot learn exactly what "fewer" means.

(b) The paper is purely empirical, so rather than just show a bunch of tables with results, if they 

could prescribe a recipe for when to fine-tune, best practices for fine-tuning or using PEFT, that are 

actionable for readers, that would be a useful contribution.

(c) It is lacking some details to reproduce the results. Maybe the github repositories contain these 

in the code, but I am mentioning some below.

Point-wise comments (not in the order of importance):

1. Can the authors explain why some of the other prominent structure prediction models like 

AlphaFold, RoseTTAFold2 were not studied in these settings?

2. The authors do limited hyper-parameter optimization, but with deep learning models, these can 

make a significant performance difference. The supplementary section 2 on hyper-parameter 

tuning does not discuss what ranges of values were tried. It only mentions which one they chose. 

Did they see any overfitting: i.e. validation loss starts increasing, as this is a frequent problem 

with finetuned models.

3. There is no mention of the LoRA parameter optimization, like the LoRA’s hyperparameter alpha. 

See usage in proteomic tasks in [1].

4. There is no mention of what supervised head architectures were used for the pretrained models. 

Did they try simple linear models too, like logistic regression by using the embeddings as features? 

Was it a multi-layer perceptron?

5. There does not seem to be a discussion of which weight matrices from LoRA were adapted and 

whether they tried various combinations like (key, value), (query, key) etc.

6. While the original LoRA paper does not consider FFN matrices, people do adapt those matrices 

[2] to reach better performance.

7. It will be helpful if they can add text, on overall, on how much of an impact the improvement 

from finetuning can give, in practice? I understand that the tasks are very diverse, but the sense 

that metrics like Precision and Recall give, where you see the trade-off, is hard to get from 

Spearman correlation from 0.72 to 0.736 for instance. It seems a bit unfair to issue a blanket 

statement saying "fine-tuning is better" unless it is a significant margin.

8. There needs to be a section on compute time: how long does it take for the fine-tuned models 

vs the pretrained models so that practitioners can get a trade-off between these and make 

decisions based on their needs. Add info on training time and inference time per example, maybe?



9. In Table 3, can they add info on: while fine-tuning (all layers) for these models, and for 

inference, how much GPU memory would be needed. In the text, add info on what are the memory 

sizes of typical GPUs used by academic labs (e.g., V100, 32G; A100, 40/80G; A6000, 48G).

10. It would help to show a plot on the tradeoff between GPU memory and prediction performance 

(x-axis is % of parameters fine-tuned, y-axis is the performance).

11. Which version of PyTorch/Huggingface and what datatype (FP32 or FP16) is used for the 

experiments? This is important to consider when understanding efficiency.

12. It would also help to look at this other work as it is very related and cite it: [3]

13. Since this is a Nat-Comm submission, not a submission to a ML conference, and given that this 

work is highly empirical: no novel methods, no novel strategies in fine-tuning, or recipes to get a 

better model beyond the vanilla options (which also haven't been explored and hence this is a 

valuable study), it feels lacking. Here are options:

(a) what is it in fine-tuning that is helping get better models. Is it just more parameters being 

tuned? Is it the architecture that is helping? Is there a sense of how many layers to fine-tune 

before you see *some* improvement in performance?

(b) a biological case study of what this work impacts. Pick one or two of the tasks and show 

examples where benefits were seen and in what aspect.

[1] Bo Chen et al., xTrimoPGLM: Unified 100B-Scale Pre-trained Transformer for Deciphering the 

Language of Protein, 2023

[2] Edward J Hu et al., LoRA: Low-Rank Adaptation of Large Language Models}, ICLR, 2022

[3] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659351/

Minor:

Typo in Figure 2(a)

Reviewer #2 (Remarks to the Author):

Summary of the work: The paper "Fine-tuning protein language models boosts predictions across 

diverse tasks" by Schmirler and colleagues presents a comprehensive study on the impact of fine-

tuning protein Language Models (pLMs) on various protein prediction tasks. The authors explore 

the benefits of task-specific supervised fine-tuning across three state-of-the-art pLMs (ESM2, 

ProtT5, Ankh) over eight different prediction tasks. The study highlights two primary findings: 

task-specific fine-tuning generally enhances prediction performance, and parameter-efficient fine-

tuning achieves comparable improvements with significantly fewer resources. The research 

underscores the utility of fine-tuning pLMs for protein prediction tasks.

Strengths:

This work is highly timely. Many pLMs have been recently published for various tasks and it is 

unclear whether fine-tuning approaches can improve the performance of these models.

This a highly rigorous benchmark, employing 8 different tasks and 7 variations of 3 state-of-the-

art pLMs (Ankh Base, Ankh Large, ProtT5, ESM2 8M, ESM2 35M, ESM2 150M, ESM2 650M) to 

assess the impact of fine-tuning on prediction quality.

Two key findings are highlighted: task-specific supervised fine-tuning generally improves 

predictions, and parameter-efficient fine-tuning achieves similar enhancements with fewer 

resources.



It explicitly investigates the use of Low Rank Adaptation (LoRA), a popular parameter-efficient 

fine-tuning approach very popular for NLP applications, but relatively unknown in the pLM world. 

LoRA only updates a minimal fraction of the model's weights, significantly reducing the 

computational requirements and reducing the likelihood of catastrophic forgetting.

Overall, the paper supports the broader application of fine-tuning in bioinformatics, underlining the 

general applicability and efficiency of fine-tuning in protein prediction models.

Software is mostly available, although see later comment.

Weaknesses:

The authors only explore the use of LoRA for the T5-based models (ProtT5, ProstT5, and Ankh 

models), while all weights are fine-tuned for ESM2 models. Could the authors discuss and justify 

this choice?

The effectiveness of fine-tuning varies by task, pLM, and model, indicating that although fine-

tuning generally enhances performance, significant disparities remain unexplained. For example, 

for the largest tested ESM2 model (ESM2 650M), 3 out of 8 tasks showed negligible performance 

gains, while about half of the tasks tested on both Ankh-based models resulted in negligible or 

negative performance improvements. This variation suggests a need for additional analysis to 

determine the specific conditions under which fine-tuning yields statistically significant benefits.

To investigate why fine-tuning works better for certain tasks and models but not for others, the 

authors could consider several approaches:

1. Task characteristics and input data: For those tasks where fine-tuning shows significant 

improvement, are there specific patterns in task difficulty (structure, function, interaction) or data 

characteristics (sequence length, diversity, motifs) that might explain the variance in fine-tuning 

benefits?

2. Model architecture and parameters: Can the architecture and number of parameters (e.g. model 

size, number of layers, type of attention, or other task-specific adaptations, etc) explain the 

observed differences in fine-tuning performance gain? Similarly, how does the choice of 

hyperparameters such as learning rate, batch size, and the amount of fine-tuning data affect the 

gain in performance?

3. Representation quality: Could fine-tuning's varied effectiveness relate to pre and post-fine-

tuning representation quality? Models with high-quality initial representations might show minimal 

fine-tuning benefits. Testing this hypothesis could involve assessing feature quality through simple 

models focusing on key features before and after fine-tuning, or examining performance declines 

after synthetically removing or corrupting important features. Alternatively, selective ablation, 

targeting samples with particular features, could further provide insight into feature significance 

before and after fine-tuning.

4. Data leakage: The paper mentions potential data leakage between training and testing, 

particularly in the context of the Ankh models, however, little discussion is shared in the 

supplementary file. This information is crucial and should be further discussed in the main text. 

Can data leakage also explain the insignificant gains in performance in other pLMs and models?

5. Related to the last one, the risk of overfitting is only briefly discussed in the supplementary file, 

but it is an important point that deserves a detailed discussion in the main paper including 

strategies to detect and prevent overfitting in the context of fine-tuned models.

I am not suggesting that the authors perform all these analyses, but I encourage them to 

investigate a few of them in the hope of gaining a deeper understanding of when fine-tuning will 

bring a performance gain and when it will not.

Computational complexity: The document does not explicitly discuss the computational complexity 

or memory requirements of fine-tuning large pLMs. While a rigorous study might be outside the 



scope of this paper, some quantitative information would be useful for the reader to decide on a 

fine-tuning strategy.

Open-source code: The authors have made available a GitHub repository containing notebooks for 

ProtT5 fine-tuning (https://github.com/agemagician/ProtTrans/tree/master/Fine-Tuning). They 

mention a Colab library that can be adjusted to fine-tune ESM2 models. Similarly, they mention a 

GitHub library that can be adapted to fine-tune Ankh or ProstT5 with LoRA. To improve 

reproducibility, it would be beneficial for the authors to share the complete pipeline and training 

parameters for all tasks and models. This also includes the prediction heads used for the different 

tasks and models.

Reviewer #3 (Remarks to the Author):

#### **Summary.**

This paper is dedicated to investigating the downstream fine-tuning performance of diverse pre-

trained protein language models. The authors study three protein language models (ESM2, ProT5, 

Ankh) on eight downstream tasks. They consider both full fine-tuning and parameter-efficient fine-

tuning (PEFT) in their experiments. The results tell that (1) task-specific supervised fine-tuning 

almost always improved downstream predictions; (2) PEFT could reach similar performance 

improvements by consuming substantially fewer resources.

#### **Pros.**

1. The authors conduct extensive experimental studies and consider eight downstream prediction 

tasks and three pre-trained protein language models.

2. Multiple runs are performed and errorbar estimation is provided.

3. Sufficient details, codes, and configurations are provided for reproducibility.

#### **Cons.**

1. It is well known that the full fine-tuning performance highly relies on appropriate tuning 

configurations and the number of tuning samples. Detailed studies of tuning configurations (such 

as learning rate, tuning iterations, batch size, weight decay, etc.) and the amount of tuning data 

are missing.

2. As indicated in Figure 1, the fine-tuning significantly hurts model prediction performance in five 

(red) settings. Any reasons behind it?

3. As for parameter-efficient fine-tuning techniques, soft prompt tuning, adapter, prefix, and Lora 

are the most representative ones. It is needed to investigate the other three methods, for a more 

convincing and consistent conclusion.
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Response to Reviewer #1 

Q 

A Sorry for this oversight. We have added the number of trainable LoRA parameter for each 

model to Table 1. We now provide details about the LoRA configuration in Methods.   

The comparison of the plethora of available PEFT methods exceeds the scope of this work 

focused on assessing the effect of fine-tuning and showing the applicability of PEFT to pLMs 

and computational biology. However, we have added a comparison of different PEFT methods 

to our Results (Fig. 2) to confirm LoRA being a good choice. 

Overall, pLMs have also shown to be not particularly sensitive to hyperparameter changes, 

neither in our work not that of others (S Sledzieski et al & JL Ferres bioRxiv doi 

10.1101/2023.11.09.566187). Nevertheless, we agree that identifying optimal PEFT strategies 

would be beneficial. However, as the variation between models, data sets, task types and even 

between training runs is considerable, it may be difficult to draw generalized implications. We 

encourage future research in this direction and feel our code provides a good starting point for 

such experiments. 

Q 

A Thank you for this idea, we agree this is a useful addition, especially for lowering the barrier 

for future users, potentially, even expanding towards users with less ML but stronger biology 

background. We added an actionable recipe to our Discussion with best practices to train pLM 

based predictors. Along with the sample code that we now provide, this will hopefully help 

others to apply PEFT to their own work. 

Q 

A Thanks & sorry. All data and code is now in the repository https://github.com/RSchmirler/data-

repo_plm-finetune-eval/tree/main. We also added previously missing information in the 

Methods section (more details at the respective comments below). 

Q 

A Thanks for this question! In our work, we explored how far we can  foundation models 

(pLMs) into specific directions by training on specific prediction tasks. While the structure 

prediction models are very powerful tools, they are not foundation models, but already geared 

towards a very specific direction (predicting structure). Fine-tuning those models is therefore 

mostly interesting in the context of domain adaptation to specific protein families.   

Neither AlphaFold2 (nor the just published AlphaFold3 for that matter), nor RoseTTAFold2 

are based on pLMs. The answer gets a little more murky for ESMfold which you didn’t

explicitly list in your question but which aspires to competing with both the methods you 

mentioned by using pLMs as input rather than MSAs. However, ESMfold and other related 
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solutions tap into many of the concepts published by DeepMind that actually achieve 

performance increase through pLM-independent modules, i.e., for those our LoRa story still 

wouldn’t provide relevant lessons. To the best of our knowledge, this leaves us only with the

in-house tools EMBER2 and EMBER3D that predict 2D/3D structure directly from pLM 

embeddings. These we didn’t included because we have stopped working on those tools simply

because they are not competitive, yet. Put simply, at this point, they can only compete in terms 

of prediction speed (10^6 times faster than AF2), but remain too inaccurate to ascertain that 

LoRA lessons would hold once those tools have been raised to a competitive level.   

More generally, while AF2/3, ColabFold, OpenFold, and RoseTTAFold2 are so powerful 

structure prediction tools that they are changing protein biology completely, pLMs continue to 

address rather different objectives. For instance, embedding-based tools complement AF2 et al 

in predicting the membrane region in the predicted structure, and the effect of sequence 

variation. More generically, pLMs provide protein-specific predictions where AF2 et al 

optimize family-averaged predictions. 

Q 

A Thanks for pushing us substantially further! We have added the information about the 

hyperparameter search (SOM Table S11) and explored several additional factors impacting 

training (incl. the new figures 2 and several display items in SOM). We do not claim that the 

parameter used by us will be optimal for all cases but they worked well enough during all our 

experiments to suggest them as a default starting point. As already mentioned in the first 

question, we found pLM fine-tuning rather insensitive to hyperparameters (S Sledzieski et al & 

JL Ferres bioRxiv doi 10.1101/2023.11.09.566187). In fact, the data/task combination itself 

(redundancy, data set splits, representativeness, generalizability, difference between prediction 

and experimental accuracy) seems to play a much more important role in influencing 

performance and training behavior. We saw some overfitting for smaller and especially 

imbalanced datasets. We have added more detailed investigations of overfitting in SOM 8 and 

SOM 9.  

Q 

A As explained above (Q(a)): we could not systematically optimize the LoRA parameters. 

However, we HAVE added some experiments toward this end (e.g. Fig. 2). 

Q 

A Sorry for the lack of clarity. The architecture is now mentioned in Methods 4.3. 
 Next, we trained a single fully connected layer of size 32, inputting exclusively these embeddings and 

outputting either a single value (regression) or going into another output layer with one neuron for each 
possible output class, followed by a softmax layer to get a probability distribution. Reaching a plateau in 
training loss terminated training. We repeated each training step five times with different random seeds. 



5

For fine-tuning, we added the same fully connected layer (size 32) to the pLM encoder as a prediction 
head. 

We took this small multi-layer perceptron to be simple enough and did not consider adding 

linear models. We found repeatedly in previous work that linear models were doing worse (e.g. 

Ilzhöfer, D. et al & Rost, B. doi fbinf.2022.1019597). We therefore mirror existing prediction 

methods for embedding-based predictors to give them a fair shot when comparing to fine-

tuning. 

Q 

A Thanks, we provide this information now in Methods. We applied adapters to key, query, value 

and output within the attention layers, and did not investigate other configurations, this setting 

was also suggested in previous work (https://doi.org/10.48550/arXiv.2205.05638). Others 

investigated this specifically for pLMs and found that at least the value matrix Wv should be 

adapted for optimal results (Table 3 [https://doi.org/10.1101/2023.11.09.566187]).  

Q 

A Thanks for mentioning this. We provide this information now in  along with all the 

other LoRA parameters. As mentioned above, we adapted not only weight matrices but also the 

output FFN layer within the attention blocks. We focused our work on the variation between 

models and datasets and therefore left LoRA parameters unchanged during our experiments.  

Q 

A Thank you, point very well taken! We agree and added a more detailed investigation for the 

classification tasks (SOM Section 2). This showed balanced gains across prediction classes.   

For the regression tasks we feel that Spearman correlation is already the most informative 

measure. Other correlation coefficients are not beneficial (as ranking is the most interesting 

here) and error metrics like MSE are not informative for arbitrary fitness scores.  

Q 

A True, thank you! We agree and included a section on training times in . We also added 

a measure of relative training speed between models in Fig. 5. 

Q 

A Thanks, we added a resource section to Results and provide GPU memory requirements for 

finetuning (Fig. 5b) as well as embedding creation (Fig. S1), which is also what you need for 
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inference. 

Q 

A Thanks for this suggestion. From our results we have no reason to believe that such a trade-off 

exists. While there certainly is a correlation between model size and performance (shown in 

SOM Section 7), we show in SOM Section 5, that there is no systematic difference in 

performance between finetuning full models and LoRA finetuning (we use rank of 4, which is 

at the lower end in respect to tuned parameters), so we also do not expect to see any systematic 

effect between those two extremes. We suggest using LoRA to make training faster and more 

stable for large models but not to directly increase performance over full model finetuning. 

Q 

A Thanks! We added the information to methods. We used Torch version 1.13.1 with 

transformers version 4.26.1. We found that mixed precision training does not lose performance 

vs. full precision. So, we recommend this in general. A disadvantage of the Ankh models is, 

that they do not support this. 

Q 

A Thank! We completely agree and now refer to their work in several places. 

Q 

A Thanks! We feel this study is valuable, as it shows the limits of pretrained pLMs (their 

embeddings) for downstream use, especially for mutational fitness prediction. We believe that 

providing practical instructions together with explanatory notebooks easily adaptable to new 

data, will prove valuable to the research community, especially for research groups less 

experienced in computational methods, i.e., a group of users highly enriched in those who will 

NOT attend ML conferences.  

It has been shown (F-Z Li, AP Amini, KK Yang, AX Lu: 

 MLSB) that the pretraining 

sequence reconstruction objective does not lead to a good representation for all tasks. Fine-

tuning the attention allows the models to access this information from lower layers. Fine-

tuning also lets models implicitly learn pooling per-residue embeddings for per-protein tasks. 

The latter was turned into a method specifically optimizing pLM-based prediction of 

subcellular location (H Stärk et al 2021, https://doi.org/10.1093/bioadv/vbab035). 
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In fact, this IS one of the reasons for picking this particular prediction task. LoRA performed on 

par with the highly specific method designed toward this end by simply fine-tuning! 

The fitness landscape tasks chosen provide another example for a topic of high relevance for 

protein design/engineering both of which are immensely relevant to both academia and 

industry.   

Overall, however, we chose NOT to choose just a few prediction tasks to exactly avoid cherry-

picking. In contrast, we “cherry picked” a diversity of tasks hoping that exactly through this

large diversity, our results become meaningful to a wider group of users. Ultimately, diversity 

bears generality. As it turns out, the devil was, as usual, in the detail: diversity taught us 

humbleness, i.e., that simple generic rules are difficult to come by. This message would have 

been lost if we had zoomed into only protein structure prediction, or only location, or only 

fitness landscapes.  

Q 

A Sorry, we couldn’t find this typo. May be that originated from the figure at too low resolution,

we tried to do better in R1. 
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Response to Reviewer #2 

Q 

A Thanks for bringing this up. In short: we wished there were!  

We found stark differences between mutational fitness landscapes and diverse datasets, with 

larger fine-tuning gains seen for the former (SOM Sections 7 & 11). On the one hand, small and 

imbalanced data sets size tended to perform poorly (SOM Section 10). For instance, the location 

prediction task is only hard for minority classes because so little data is provided for those 

(SOM Table S8). On the other hand, the over 3-order of magnitude smaller and more 

imbalanced location data performed better than that for secondary structure. The difficulty of 

predicting comes down to the combination of data and prediction task. With data available 

currently, conclusions about underlying biologic task difficulty are not well grounded. We 

have added several paragraphs to R1 which discuss these findings.  

Q 

A Model size explained a significant share of the differences (SOM Section 7). In terms of the 

other model specific parameters you mention, current SOTA models are very similar with only 

two underlying architectures (RoBERTa for ESM2 and T5 for the others). We find no 

categorical difference between those two, apart from the  models responding less well to 

fine-tuning, possibly because the Ankh models have already been optimized using several 

prediction tasks.  

One important conclusion – added to the  in R1 – is that fine-tuning seems 

surprisingly robust with respect to hyperparameter changes. The amount of data and pLM-

model size are, on the other hand is very relevant (SOM Section 7 & 10). 

Q 

A Yes, you are right on. Very much so! We added new results in SOM Section 8 and Fig. S4. In 

short, models with lower initial representations (worse performance from pretrained 

embeddings) are gaining more. As expected from our other results, this is very prevalent for 

mutational landscapes where all fine-tuned models reach the same performance. For the 

diverse tasks the trend is less clear and does not compensate for initially weaker performance. 

Q 
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A Thanks for mentioning this. We rewrote this part to make it clearer. The alleged data leakage 

pertained to the optimization undertaken by the authors of Ankh: this is a foundation model 

type of pLM generated by unsupervised masking objective, but optimized by comparing 

downstream task performance. Some of the data sets (GFP, GB1, sub-cellular location, and 

secondary structure) used in this study had partaken in Ankh’s optimization. Comparing Ankh-

large with ProtT5, which is the most similar model in size and architecture, using pretrained 

embedding results (SOM Table S5), Ankh is doing worse for ,  and 

which it was not optimized for (only for AAV it does better than ProtT5 despite not having 

seen it before).  

The bias introduced by this optimization might have led to the difficulties in fine-tuning , 

especially for diverse tasks. This is therefore not relevant for other models and does not explain 

insignificant gains for some tasks.  

Q 

A Thanks. We expanded the overfitting discussion in the SOM (adding SOM Section 10) and 

found that overfitting is mostly data related. Small and imbalanced data sets lead to overfitting. 

If sufficient high-quality data is available, no overfitting could be observed. We added this 

observation to our  section in . 

Q 

A Thanks for suggesting this. We added information about training times to Methods and a 

paragraph about (GPU) memory requirements and relative training speed in Results, including 

Fig. 5. 

Q 

A Thanks! We now make the entire training pipeline available through notebooks in the 

repository. Those support all models and training settings used in our work. Training 

parameters used for all experiments are given in the Methods and SOM Section 6. All datasets 

are also available in the repository. 
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Response to Reviewer #3 

Q 

A The number of tuning samples obviously has a strong impact, but more data (of high quality) is 

nearly always beneficial. We added these results (SOM Section 10). While deep learning 

methods often highly rely upon hyperparameter tuning, we found pLMs remarkably robust 

against a wide range of choices. For instance, our grid search for the ProtT5 model on the 

subcellular location data (SOM Table S11) revealed a stable performance, with 10 out of 12 

hyperparameter sets still achieving a superior performance to the pretrained embedding 

prediction method on the same task (SOM Table S5). Only too low a learning rate in 

combination with too high batch sizes performed markedly worse. Similarly, pLMs have been 

found to be robust against LoRA parameter variation, recently (S Sledzieski et al & JL Ferres 

bioRxiv https://doi.org/10.1101/2023.11.09.566187). 

Q 

A Just to identify those 5: ESM2-150M: Stability and Ank-base, Ank-large SecondaryStructure 

and Disorder (2x2=4). Overall, the  task did not show stable training behavior. Early 

stopping picks suboptimal model checkpoints for the ESM2 150M model by chance. This 

resulted in the red tile. In Fig. S5 fine-tuning is successful when looking at the ten best model 

checkpoints instead of applying early stopping.  

The other four belong to the Ankh family, which does not seem to behave well when it comes 

to fine-tuning on diverse tasks. Optimizing Ankh embeddings for downstream tasks during 

pretraining, might have had negative effects on the ability to fine-tune these models. We added 

the following paragraph to R1: 
 For five of the 64 pLM/task combinations (tiles in Fig. 1), fine-tuning performed worse. The observation 

ESM2-150M on stability (Fig. 1 red tile) originated from instability in training picking a suboptimal model 
(Fig. S5). The other four originated from the Ankh pLM family on disorder and secondary structure. We 
were not able to track down a root cause here but suspect that the different nature of the pre-training plays 
a role. 

Q 

A We added a comparison of LoRA with prefix tuning, IA3 activation scaling and a recent LoRA 

variant DoRA to Results (Fig. 2). LoRA and its variant did best but overall differences were 

low. We also expanded the comparison between full model tuning and LoRA in SOM  

Section 5. 



Reviewer #1 (Remarks to the Author):

The authors have addressed the concerns I had adequately. Re: citations, it seems that the 

following paper is now published at PNAS.

. Sledzieski, S. et al. Democratizing Protein Language Models with Parameter-Efficient Fine-Tuning

Reviewer #1 (Remarks on code availability):

I also checked the github repository and the notebooks for fine-tuning and generating embeddings 

look alright to me. I did not run any of the code however. I downloaded the dataset provided 

(training_data.zip) and it contains the train/test/val splits for the 7 tasks. I did not open the files, 

but I hope they contain the protein relevant info as well as the labels.

Reviewer #2 (Remarks to the Author):

I thank the authors for carefully and thoroughly addressing my comments and other reviewers' 

comments. One important question that is still not fully answered is under which conditions fine-

tuning helps, and if so, how much improvement can be expected. While fully understanding this 

question will require follow-up investigations and is beyond the scope of this paper, the authors 

show some initial analysis indicating that the initial representation quality plays a significant role 

(Supp. Fig. 4). I thank the authors for this figure, which I find very interesting.

Overall, I recommend publication.

Minor comments:

• There are a few sentences that have strange constructions, e.g., "Fine-tuning mostly successful," 

"Initial representation quality important for diverse tasks" (the verb is missing in both sentences). 

I spotted other strange constructions. I recommend proofreading the manuscript with Grammarly 

or similar.

• The link to the GitHub repo in the abstract is broken (the link points to 

https://github.com/RSchmirler/data-).

Reviewer #3 (Remarks to the Author):

Below is the second review based on the author's feedback.

1. The author has provided additional hyperparameter studies on tuning configuration and the 

amount of data. My concern is resolved.

2. The author has provided stability explanations about the inferior performance in the original 

Figure 1. The new results show that the fine-tuning is successful when looking at the ten best 

model checkpoints. I prefer this group of results.

3. Additional PEFT methods are studies. My concern is resolved.

Reviewer #3 (Remarks on code availability):

The codes are well-structured and have adequate details. I have not installed and run the codes.
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Response to Reviewer #1 

Q 

A Thank you again for your insights and suggestions, the additional focus on PEFT details has 

improved our study significantly. 

Q 

A Thanks for spotting this, we corrected this and cite the publication instead of the preprint now. 

Q 

A Thank you. Datasets indeed contain the needed sequences and labels 



2

Response to Reviewer #2 

Q 

A Thank you again for suggesting this, we found this angle of investigation very helpful as well. 

We agree that this is promising avenue for future research. 

Q 

A Thank you for the suggestion, we used Grammarly and modified the manuscript according to 

those suggestions. 

Q 

A Thank you for spotting this. We made sure to provide the complete link in our submission (to 

https://github.com/RSchmirler/data-repo_plm-finetune-eval). 



3

Response to Reviewer #3 

Q 

A Thank you for your comments, it has significantly benefited this work. 

Q 

A We agree and prefer those results as well. To adhere to common practices and to point out the 

difficulties with early stopping, we leave the original Figure 1 in place 

Q 

A Thank you for bringing up this suggestion. 

Q 

A Thank you for checking the code as well. 


