The novel ribosome biogenesis inhibitor usnic acid blocks nucleolar pre-60S maturation

Supplementary Information

Source data of Supplementary Information are provided with this paper.

Lisa Kofler^{1*}, Lorenz Emanuel Grundmann^{2,3*}, Magdalena Gerhalter¹, Michael Prattes¹, Juliane Merl-Pham⁴, Gertrude Zisser¹, Irina Grishkovskaya², Victor-Valentin Hodirnau⁵, Martin Vareka⁶, Rolf Breinbauer⁶, Stefanie M. Hauck⁴, David Haselbach² and Helmut Bergler¹

¹ Institute of Molecular Biosciences, University of Graz, Graz, 8010, Austria

² Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, 1030, Austria

³ Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical 10 University of Vienna, 1030, Vienna, Austria

⁴ Metabolomics and Proteomics Core, Helmholtz Center Munich, German Center for Environmental Health GmbH, D-80939, Germany

⁵ Institute of Science and Technology Austria, Klosterneuburg, Austria

⁶ Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria

Correspondence should be addressed to helmut.bergler@uni-graz.at or david.haselbach@imp.ac.at

*These authors contributed equally.

Supplementary Fig. 1. Schematic overview of eucaryotic 35S pre-rRNA processing in yeast. Pol I transcribes the 35S pre-rRNA that enters a sophisticated processing pathway of exo- and endonucleolytic cleavage reactions. Internal and external spacer segments are removed generating the mature ends of the ribosomal RNAs (18S, 25S, 5.8S; 5S rRNA is transcribed separately by Pol III). If cleavage at sites A₀ to A₂ are inhibited, A₃ cleavage can take place (indicated in grey dashed lines) leading to aberrant 23S pre-rRNA and 27SA₃ pre-rRNA.

untreated

DMSO 60 min

Rpl7A-mCherry Nog1-GFP

Supplementary Fig. 2 (previous page). **Usnic acid targets maturation of the large ribosomal subunit. a** Kinetics of usnic acid effects on small subunit maturation. Nuclear accumulation of the 40S reporter strain Rps9-GFP¹ occurs only after 30 minutes of incubation with usnic acid. **b** Usnic acid does not exert its effects on ribosome biogenesis through inhibition of TORC1. The Rpl7-mCherry Nog1-GFP strain was treated either with usnic acid or the TORC1 inhibitor rapamycin. While Nog1-GFP showed nucleolar accumulation (white triangles) within 5 minutes of usnic acid treatment, it required 30 to 60 minutes of rapamycin treatment. Moreover, Rpl7-mCherry accumulates in the nucleus of usnic acid treated cells, but stays in the cytosol in rapamycin treated cells. Cells untreated or treated with DMSO, the solvent of rapamycin, served as controls.

5/25

Supplementary Fig. 3 (previous page). New usnic acid derivatives tested for their inhibitory effect on ribosome biogenesis. a The derivatives Usnic_1-12 were tested for their inhibitory effect on ribosome biogenesis by fluorescence microscopy of the Rpl7a-GFP reporter strain¹. The cells were treated for 10 minutes with 60 μ M of each compound dissolved in DMSO. As control, the parent compound was also solved in DMSO. A clear nuclear accumulation was only observed for derivatives 1, 2, 10 and 11. b Chemical structures of the parent compound (+)-usnic acid and its newly synthesized derivatives. The triketone moiety of the parent compound is highlighted in blue. The different modifications at positions 2, 7 and/or 9 are highlighted in red and indicated by an arrow.

Supplementary Fig. 4. Usnic acid treatment traps Bud20- and Tif6-GFP in the nucleus. Wildtype cells chromosomally expressing the GFP-tagged shuttling factors Bud20 or Tif6 were treated with usnic acid (40 μ M), diazaborine (10 μ g/ml) or both inhibitors, as indicated. The localization of the proteins was examined by fluorescence microscopy. Untreated cells served as control. Nic96-mCherry served as nuclear membrane marker, Hho1-mCherry as marker for the nucleoplasm. As reported previously², diazaborine treatment shifted Bud20-GFP and Tif6-GFP to the cytoplasm. In contrast, treatment with usnic acid led to an entrapment of these shuttling factors in the nucleus. Pretreatment with usnic acid blocked the shift of the GFP-signal to the cytoplasm upon diazaborine treatment.

Supplementary Fig. 5. Nop7-TAP, Nsa1-TAP and Noc2-TAP purifications contain mainly 27SB and little 27SA₂ pre-rRNA. Northern blots using the EC2 and A2A3 probes were exposed to show roughly the same intensities for 32S and 35S pre-rRNA. Detected (pre)-rRNA species are marked on the right, the probes used are indicated on the left. a Northern blot with RNAs isolated from Nop7-TAP purifications after two minutes of treatment with usnic acids. b Northern blots with RNAs isolated from Noc2-TAP and Nsa1-TAP purifications after 2 minutes and 15 minutes of usnic acid treatment. RNAs isolated from TAP-purifications from the untreated strains served as controls (0).

Supplementary Fig. 6. The assembly factors Nop53 (a) and Bud20 (b) cannot bind to the maturing pre-60S particle in the presence of usnic acid. Nop53-TAP and Bud20-TAP were isolated from untreated cells (-) or cells treated for 2 minutes with 60 μ M usnic acid (+). The protein content of the purified particles was analyzed via SDS-PAGE followed by Coomassie staining or Western blotting.

Supplementary Fig. 7. **Single-particle cryo-EM preprocessing workflow. a** Overview of the workflow. **b** Micrographs for 2 min usnic acid treated and untreated samples were combined for pre-processing. After particle picking using crYOLO, particles were extracted with a box size of 448 binned to 166. **c** 2D classification was followed by **d** ab initio modeling and further cleaning of the particle stack by iterative heterogeneous refinements, followed by local CTF refinement and homogeneous refinement. **e** For a first cryoDRGN analysis, downsampled particles (3.745 Å/pixel) were used for training of the network with a latent variable of 10 dimensions for 50 epochs. Ice-contaminated and outlier particles were filtered via thresholding of their latent space Eigenvektor values. Excluded particles are shown in orange. **f** Particles were reimported to cryoSPARC and refined. **g** Poorly resolving and aligning particles were excluded by excluding particles with a CryoSparc_cross_correlation value below 250. This was repeated twice while refining the including particles in each iteration. **h** The final particle stack was subjected to local CTF refinement and homogeneous refinement.

Supplementary Fig. 8. **CryoDRGN and clustering workflow. a** Overview of the final processing steps continuing the workflow shown in figure S7. **b** The final particle stack was subjected to local CTF refinement and homogeneous refinement. **c** Particles were randomly split into three stacks and refined in cryoSPARC and **d** used for another round of cryoDRGN analysis with a latent variable of 8 dimensions. Particles were clustered using a Gaussian-Mixture Model on the cryoDRGN latent space embeddings with a rand. **e** Clusters were refined in cryoSPARC. **f** Structurally identical clusters of each batch were combined and refined. Further, each combined cluster was separated into particles originating from the treated and untreated dataset and refined. Maps were post-processed using DeepEMhancer.

Supplementary Fig. 9. **Elbow analysis for Gaussian mixture modelling (GMM).** Latent variables for batches 1, 2 and 3 (**a**, **b** and **c** respectively) were clustered using GMM with 1 to 20 clusters and a randomly generated seed. This was repeated thrice. For each clustering the sum of squared errors (SSE) was calculated and averaged over all iterations. Error bars indicate respective standard deviations. Arrows indicate the "elbow" at 4 clusters in every batch.

Nsa1-TAP particle population

Supplementary Fig. 10. **cryoDRGN analysis of Nsa1-TAP batches 2 and 3.** (Batch 1 is shown in Fig. 5.) Early nucleolar 60S particles were isolated via Nsa1-TAP from untreated and 2 min usnic acid treated cells. For each sample, one single particle cryo-EM dataset was collected, and these datasets were merged for processing and quantitative analysis. (a detailed description of the data processing workflow is given in the method section and Supplementary Fig. S7 and S8). Structural heterogeneity was analyzed using cryoDRGN in three equally sized particle batches. Dimensionality reduction using UMAP and clustering using Gaussian Mixture Modelling (GMM) was performed to identify different pre-60S maturation states present in our datasets. Representative 2D UMAP projection: Of the particles' hexagonal binned 8-dimensional latent space embeddings (left). Kernel Density Estimate (kde) plot indicates particle embeddings from treated and untreated datasets (middle). Scatter plot, with each datapoint representing a single particles' embedding and kde-plots represent clusters identified using GMM (right). Numbers of binned particles are indicated in grey scale, 2 minutes usnic acid treatment in blue, untreated in yellow. The 4 clusters are represented in different shades of purple.

Supplementary Fig. 11. **Comparison of the total, treated and untreated clusters. a** The reconstructions of the cluster 1 to 4 originating from the combined datasets, the treated or untreated dataset. Shown are DeepEMhanced maps. **b** Cluster 4 reconstructions were rigid body fitted and colored with PDB-6EM5. Folded rRNA domains and the Erb1/Ytm1 module are indicated.

Supplementary Fig. 12. **Cryo-EM reconstructions of the combined clusters 1 to 4 (a to d).** Reconstructions colored by local resolution estimation as indicated by the color scheme. GSFSC curves for global resolution estimation are depicted and the viewing angle distribution as an Azimuth plot.

Cluster 1-4 reconstructions, treated datasets

Supplementary Fig. 13. **Cryo-EM reconstructions of the treated clusters 1 to 4 (a to d).** Reconstructions colored by local resolution estimation as indicated by the color scheme. Note that the color scale differs from **a**, **b** to **c**, **d**. GSFSC curves for global resolution estimation are depicted and the viewing angle distribution as an Azimuth plot.

Cluster 1-4 reconstructions, untreated datasets

Supplementary Fig. 14. **Cryo-EM reconstructions of the untreated clusters 1 to 4 (a to d).** Reconstructions colored by local resolution estimation as indicated by the color scheme. Note that the color scale differs from **a**, **c**, **d** to **c**. GSFSC curves for global resolution estimation are depicted and the viewing angle distribution as an Azimuth plot.

Supplementary Table 1: usnic acid derivatives

Name	Name UPAC	MW
Usnic_01	(R)-1,1'-(3,9-dihydroxy-7-methoxy-8,9b-dimethyl-1-oxo-1,9b-	358.38 g/mol
	dihydrodibenzo[b,d]furan-2,6-diyl)bis(ethan-1-one)	
Usnic_02	(R)-1,1'-(3,7-dihydroxy-9-methoxy-8,9b-dimethyl-1-oxo-1,9b-	358.38 g/mol
	dihydrodibenzo[b,d]furan-2,6-diyl)bis(ethan-1-one)	
Usnic_03	(R)-1,1'-(7-benzyloxy)-3,9-dihydroxy-8,9b-dimethyl-1-oxo-1,9b-	434.44 g/mol
	dihydrodibenzo[b,d]furan-2,6-diyl)bis(ethan-1-one)	
Usnic_04	(R)-1,1'-(7-benzyloxy)-3-hydroxy-9-methoxy-8,9b-dimethyl-1-oxo-	448.47 g/mol
	1,9b-dihydrodibenzo[b,d]furan-2,6-diyl)bis(ethan-1-one)	
Usnic_05	(R)-1,1'-(7,9-bis-(benzyloxy)-3-hydroxy-8,9b-dimethyl-1-oxo-1,9b-	524.57 g/mol
	dihydrodibenzo[b,d]furan-2,6-diyl)bis(ethan-1-one)	
Usnic_06	(R)-4,8'-diacetyl-7-hydroxy-2,9a-dimethyl-9-oxo-9,9a-	428.39 g/mol
	dihydrodibenzo[b,d]furan-1,3-diyl-diacetate	
Usnic_07	(R,E)-6-acetyl-7,9-dihydroxy-8,9b-dimethyl-2-(1-	385.42 g/mol
	(propylamino)ethylidene)dibenzo[b,d]furan-1,3-(2H,9bH)-dione	
Usnic_08	(R,E)-6-acetyl-2-(1-(benzylamino)ethylidene)-7,9-dihydroxy-8,9b-	433.46 g/mol
	dimethyldibenzo[b,d]furan-1,3(2H,9bH)-dione	
Usnic_09	(R,E)-6-acetyl-3,7,9-trihydroxy-8,9b-dimethyl-2-(1-	419.43 g/mol
	(phenylimino)ethyl)dibenzo[b,d]furan-1(9bH)-one	
Usnic_10	(R)-1,1'-(7-butoxy-3,9-dihydroxy-8,9b-dimethyl-1-oxo-1,9b-	400.43 g/mol
	dihydrodibenzo[b,d]furan-2,6-diyl)bis(ethan-1-one)	
Usnic_11	(R)-1,1'-(9-butoxy-3,9-dihydroxy-8,9b-dimethyl-1-oxo-1,9b-	400.43 g/mol
	dihydrodibenzo[b,d]furan-2,6-diyl)bis(ethan-1-one)	
Usnic_12 *	(R,Z)-6-acetyl-2-(1-aminoethylidene)-7,9-dihydroxy-8,9b-	343.34 g/mol
	dimethyldibenzo[b,d]furan-1,3(2H,9bH)-dione	
Usnic_13	7-(Biotin-triazol-PEG ₄)-usnic acid	826.92 g/mol

* Usnic_12 represents usenamine A from Yu et al. ³.

Supplementary Table 2: cryo-EM data table

	<u>Class 1</u>	<u>Class 2</u>	<u>Class 3</u>	<u>Class 5</u>	
Microscope		Titan	Krios G3i		
Voltage [keV]			300		
Camera		Gatan K3	BioQuantum		
Magnification		8	1,000		
Pixel size at detector [Å/px2]			1.07		
Total electron exposure [e-/Å2]			60		
Number of collected frames [No.]			54		
Defocus range [µm]		-0.5	to -2.5		
Energy filter slit width [eV]			20		
Automation software		Thermo	Fisher EPU		
Micrographs collected [No.]		7	,595		
Usnic acid [No.]		3	608		
Untreated [No.]	3,987				
Total extracted particles [No.]	1,120,165				
Final particle images [No.]	79,656	144,717	183,665	99,866	
Treated particles [No.]	55,651	138,233	16,408	5,626	
Untreated particles [No.]	24,005	6,484	167,257	94,240	
Point-group symmetry	C1				
Resolution global [Å]	3.0	2.9	2.7	2.9	
Treated reconstruction [Å]	3.0	3.0	3.7	3.7	
Untreated reconstruction [Å]	3.0	3.4	2.6	2.7	
FSC-threshold		C	.143		
Resolution range [Å]	2.6 to 7.3	2.5 to 7.2	2.4 to 6.4	2.4 to 6.6	
Treated [Å]	2.7 to 8	2.6 to 7.6	3.2 to 10.4	3.3 to 11.0	
Untreated [Å]	2.7 to 9.3	3.1 to 11.9	2.4 to 6.5	2.4 to 6.6	
Plunging	Leica GP1 autofunction				
Grid type	3.5/1 prefloated 2 nm carbon				
Adsorption time	30 s				
Temperature and humidity	4 °C, 75 %				
Blotting time	2 s				
Volume	4 μl				
Plotting			ontside		

				cluster			
	Description	UniProt	1	2	3	4	
RNAs							
25S	25S ribosomal RNA	n.a	+	+	+	+	
5.8S	5.8S ribosomal RNA	n.a	+	+	+	+	
ITS2	Internal Transcribed Spacer 2	n.a.	+	+	+	+	
nroteins		•					
Mak16	Protein MAK16	MAK16 VEAST	+	+	+	+	
Rrn1	Ribosomal RNA-processing protein 1	RRP1 VEAST	+	+	+	+	
Neal	Ribosome biogenesis protein NSA1	NSA1 VEAST	+	+	+	+	
Rof1	Ribosome production factor 1	RPE1 VEAST	+	+	+	+	
Prp1/	Ribosomal RNA processing protein 14	DDD14 VEAST					
Rip14 Rol3	60S ribosomal protein 13	RIS VEAST	T	+	+	+	
Rpl4A	60S ribosomal protein L4-A	RIAA VEAST	+	+	+	+	
Rpl4A Rpl6A	60S ribosomal protein L6-A	RIGA VEAST	+	+	+	+	
RpI0A RpI7A	60S ribosomal protein L7-A	RLOA_TEAST	+	+	+	+	
Rp18A	60S ribosomal protein L8-A	RLA VEAST	+	+	+	+	
- Rpi0A	60S ribosomal protein L0-A	DIGA VEAST	•				
Ebp2	rPNA processing protein EBP2	EBD2 VEAST	-	 -	 -	- T	
	Protococomo interacting protoin CIC1	CIC1 VEAST	- T	- T	- T	- T	
	60S ribosomol protoin L12 A	DI 12A VEAST	- T	- T	- T	- T	
	60S ribosomal protein L14 A	RLIJA_TEAST	- T	- T	- T	- T	
Rpi 14A	60S ribosomal protein L15 A	RLI4A_TEAST	- T	- T	- T	- T	
	605 ribosomal protein L15-A	RLIJA_TEAST	- T	- T	- T	- T	
Rpi 16A	60S ribosomal protein L16-A	RLIDA YEAST	+	+	+	+	
	60S ribosomal protein L17-A	RLITA YEAST	+	+	+	+	
Rpi 18A	60S ribosomal protein L18-A	RLINA YEAST	+	+	+	+	
Rpi20A	60S ribosomal protein L20-A	RLZUA_YEAST	+	+	+	+	
	60S ribosomal protein L21-A	RLZIA_YEAST	-	-	-	+	
Rpi23A	Bit was a second by factor MDT4	RLZJA_YEAST	-	+	+	+	
MIT4	Ribosome assembly factor MR14	MR14_YEAST	-	-	-	+	
Rpi26A	60S ribosomal protein L26-A	RL26A_YEAST	+	+	+	+	
Brx1	Ribosome biogenesis protein BRX1	BRX1_YEAST	+	+	+	+	
	Nucleolar GTP-binding protein 1	NUGI_YEAST	-	+	+	+	
Rpi31A	60S ribosomal protein L31-A	RL3TA_YEAST	-	-	-	+	
	60S ribosomal protein L32	RL32_YEAST	+	+	+	+	
Rpi33A	60S ribosomal protein L33-A	RL33A_YEAST	+	+	+		
Rpl35A	60S ribosomal protein L35-A	RL35A_YEAST	+	+	+	+	
Rpl36B	60S ribosomal protein L36-B	RL36B_YEAST	+	+	+	+	
Rpi37A	60S ribosomal protein L37-A	RL3/A_YEAST	+	+	+	+	
	60S ribosome subunit biogenesis protein NIP7	NIP7_YEAST	-	-	-	+	
Nop7	Pescadillo homolog (Nop7)	PESC_YEAST	+	+	+	+	
Nop15	Ribosome biogenesis protein 15	NOP15_YEAST	+	+	+	+	
Has1	ATP-dependent RNA helicase HAS1	HAS1_YEAST	+	+	+	+	
Nop2	25S rRNA (cytosine(2870)-C(5))-methyltransferase	NOP2_YEAST	-	-	-	+	
Nsa2	Ribosome biogenesis protein NSA2	NSA2_YEAST	-	-	-	+	
Nug1	Nuclear GTP-binding protein NUG1	NUG1_YEAST	-	-	-	+	
Rlp7	Ribosome biogenesis protein RLP7	RLP7_YEAST	+	+	+	+	
Rlp24	Ribosome biogenesis protein RLP24	RLP24_YEAST	-	+	+	+	
Nop16	Nucleolar protein 16	NOP16_YEAST	+	+	+	+	
Erb1	Ribosome biogenesis protein ERB1	ERB1_YEAST	+	+	+	+	
Tif6	Eukaryotic translation initiation factor 6	IF6_YEAST	-	+	+	+	
Ssf1	Ribosome biogenesis protein SSF1	SSF1_YEAST	-	-	+	-	
Rrp15	Ribosomal RNA-processing protein 15	RRP15_YEAST	-	-	+	-	
Spb1	27S pre-rRNA (guanosine(2922)-2'-O)-methyltransferase	SBP1_YEAST	-	-	-	+	
Rpl1A	Large ribosomal subunit protein uL1A	RL1A_YEAST	-	-	-	+	
Dbp10	ATP-dependent RNA helicase DBP10	DBP10_YEAST	-	-		+	
Loc1	60S ribosomal subunit assembly/export protein LOC1	LOC1_YEAST	-	-	-	+	
YBL028C	Uncharacterized "UPF0642 protein YBL028C"	YBL028C YEAST	-	- 1	- 1	+	

Supplementary Table 3: Composition of the 4 Nsa1-TAP cryo-DRGN clusters (1-4).

Supp	lementary	Table 4:	Saccharom	yces cer	evisiae	strains

S. cerevisiae strain	genotype	source
C303a	MATa, ADE2, his3, leu2, trp1, ura3, can1-100	Awad et al. ¹
C303a Rpl7a-GFP	MATa RPL7A-GFP::HIS3MX6, ADE2, his3, leu2, trp1, ura3, can1-100	Awad et al. ¹
C303a Rps9a-GFP	MATa, RPS9A-GFP::HIS3MX, ADE2, his3, leu2, trp1, ura3, can1-100	Awad et al. ¹
Nog1-GFP Nop58- mCherry	MATa, leu2 ura3 his3 met15 NOG1- GFP::HIS3 NOP58-mCherry::hphNT1	This study
Nog1-GFP Rpl7a- mCherry	MATa; leu2; ura3; his3; trp1; RPL7A- mCherry::hphNT1; NOG1-GFP::HISMX	This study
Tif6-GFP Hho1- mCherry	MATα, leu2 ura3 his3 ade2 trp1 TIF6- GFP::HIS3 HHO1-mCherry::hphNT1	This study
Bud20-GFP Nic96- mCherry	MATa, leu2 ura3 his3 met15 BUD20- GFP::HIS3 NIC96-mCherry::hphNT1	This study
Nop7-TAP	MATα, leu2, ura3, his3, trp1, Nop7- TAP::TRP1	Nissan et al. ⁴
Nsa1-TAP	MATα his3 leu2 ura3 trp1 Nsa1-TAP::TRP	Ed Hurt
Noc2-TAP	MATa his3 leu2 ura3 lys2 Noc2-TAP::URA3	P. Milkereit
Bud20-GFP	MATa ura3 leu2 his3 trp1 BUD20-TAP::HIS3	This study
Nop53-GFP	MATa leu2 ura3 his3 trp1 Nop53-TAP::HISMX	This study

primary antibody	dilution	source
α-Arx1	1:5 000	M. Fromont-Racine
α-Cbp	1:5 000	Merck (cat-# 07-482)
α-Cic1	1:5 000	University of Stuttgart
α-Crm1	1:10 000	C. Yam
α-Ebp2	1:5 000	M.A. McAlear
α-Erb1	1:5 000	J. d. l. Cruz
α-Has1	1:5 000	J. d. l. Cruz
α-Hrr25	1:5 000	W. Zachariae
α-Mex67	1:10 000	E. Hurt
α-Mtr4	1:1 000	E. Hurt
α-Nmd3	1:4 000	A. W. Johnson
α-Noc1	1:5 000	P. Milkereit
α-Noc2	1:5 000	P. Milkereit
α-Noc3	1:5 000	P. Milkereit
α-Nog1	1:5 000	M. Fromont-Racine
α-Nog2	1:5 000	M. Fromont-Racine
α-Nop2	1:2 000	Invitrogen (cat-# 10435964)
α-Nsa2	1:5 000	M. Fromont-Racine
α-Nug1	1:10 000	E. Hurt
α-Prp43	1:4 000	E. Hurt
α-Rlp24	1:5 000	M. Fromont-Racine
a-Rok1	1:5 000	K. Karbstein
α-Rpp0	1:2 000	J. Ballesta
α-Rpl16	1:40 000	S. Rospert
α-Rrp12	1:5 000	M. Dosil
α-Rsa4	1:10 000	M. Remacha
α-Sof1	1:300	E. Hurt
α-Ytm1 (Nop7)	1:5 000	J. d. l. Cruz
secondary antibody	dilution	source
a-rabbit	1:15.000	Sigma - Aldrich
		(cat-# A0545-1ML)

Supplementary Table 5: Antibodies used in this study.

Supplementary Table 6: Northern blot probes

name	sequence (5´-3´)	binding site
18S	CATGGCTTAATCTTTGAGAC	Mature 18S
255	CTCCGCTTATTGATATGC	Mature 25S
5.8S	GCGTTCTTCATCGATGC	Mature 5.8S
5S	GGTCACCCACTACACTACTCGG	Mature 5S
A2A3	TGTTACCTCTGGGCCC	Between A ₂ and A ₃ cleavage site
EC2	GGCCAGCAATTTCAAGTTA	Between E and C ₂ cleavage site
DA2	GACTCTCCATCTCTTGTCTTCTTG	Between D and A ₂ cleavage site

Supplementary Table 7: Absolute numbers of particles found in the 4 clusters of our cryoDRGN analysis in the combined, treated and untreated dataset. These numbers were used to calculate the percentage of total, which are depicted in Figure 5B.

		Cluster 1/No. particles		Cluster 2/No. particles			
		Combined	Treated	Untreated	Combined	Treated	Untreated
Ч	1	26,705	19,117	7,588	47,973	45,811	2,162
atc	2	26,559	18,342	8,217	48,955	46,781	2,174
q	3	26,392	18,192	8,200	47,789	45,641	2,148

		Cluster 3/No. particles			Cluster 4/No. particle		rticles
_		Combined	Treated	Untreated	Combined	Treated	Untreated
ч	1	60,998	5,361	55,637	33,625	1,927	31,698
atc	2	61,284	5,071	56,213	32,504	1,890	30,614
q	3	61,383	5,976	55,407	33,737	1,809	31,928

References Supplemental Information

- 1. Awad, D. *et al.* Inhibiting eukaryotic ribosome biogenesis. *BMC biology* **17**, 46; 10.1186/s12915-019-0664-2 (2019).
- 2. Zisser, G. *et al.* Viewing pre-60S maturation at a minute's timescale. *Nucleic acids research* **46**, 3140–3151; 10.1093/nar/gkx1293 (2018).
- 3. Yu, X. *et al.* Usnic Acid Derivatives with Cytotoxic and Antifungal Activities from the Lichen Usnea longissima. *Journal of natural products* **79**, 1373–1380; 10.1021/acs.jnatprod.6b00109 (2016).
- 4. Nissan, T. A., Bassler, J., Petfalski, E., Tollervey, D. & Hurt, E. 60S pre-ribosome formation viewed from assembly in the nucleolus until export to the cytoplasm. *The EMBO journal* **21**, 5539–5547; 10.1093/emboj/cdf547 (2002).