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Complementarity of signature connectivity and docking-based scores (S1) 

The new approach for drug discovery, dubbed connectivity enhanced Structure Activity 

Relationship (ceSAR), combines drug and target transcriptional signature connectivity analysis 

with molecular docking. The method effectively combines two very different types of signals. The 

signature concordance analysis generates scores that indicate the level of similarity between 

downstream transcriptional responses induced by the loss of function of the target, either due to a 

chemical inhibitor or genetic knock-down. On the other hand, molecular docking simulations rank 

candidate molecules by predicted binding affinities or other scores (generated here by using 

Autodock or another suitable docking program) that capture their biophysical compatibility with 

the target protein structure. In this section, we assess the complementarity of these two signals by 

comparing ranking of true positives (ligands) and decoys for 20 DUD-E targets used also in the 

main manuscript. 

Supplemental Figure 1: ceSAR-S (X-axis ranks) vs. Autodock (Y-axis rank) ranking of true positives 

(ligands) for 20 DUD-E target libraries. Yellow: high density; Dark Blue: low density. 

In the simplest form of the method, which is target structure independent and referred to as 

ceSAR-S (for signature-based) throughout the main manuscript, candidate molecules are ranked 

based on the chemical similarity to their ‘concordant’ LINCS analogs. Namely, for a target gene 𝑡 



with at least one knock-down transcriptional signature available in LINCS, 𝑡 ∈ 𝐿, and for a library 

of small molecules, 𝑄, the following similarity score is computed for each 𝑞 ∈ 𝑄 as a basis for 

ceSAR-S ranking: 

𝑠(𝑞) = max
𝑘∈𝐿, 𝑐∗ (𝑘,𝑡)≥𝑐0

{𝜎 (𝑞, 𝑘)} 

where 𝜎 (𝑞, 𝑘) is the Tanimoto coefficient (Jaccard similarity measure) (21) between compounds 

𝑞 and 𝑘 ∈ 𝐿 represented as binary fingerprints, while  𝑐∗ (𝑘, 𝑡) is the signature concordance score

for 𝑘, defined as the maximum concordance (over all cell lines for 𝑡, and cell line, concentration, 

exposure time tuples for 𝑘) between the signatures of chemical perturbagen 𝑘 and genetic knock-

downs of 𝑡: 

𝑐∗(𝑘, 𝑡) = max
𝑘,𝑡∈𝐿

 {𝑐 (𝑘, 𝑡)}. 

Supplemental Figure 2: ceSAR-S (X-axis ranks) vs. Autodock (Y-axis rank) ranking of true negatives 

(decoys) for 20 DUD-E target libraries. Yellow: high density; Dark Blue: low density. 

Thus, ceSAR-S ranks candidate molecules by using a similarity score, 𝑠(𝑞), which is in fact 

the Tanimoto coefficient for the closest ‘concordant’ LINCS analog of 𝑞. By increasing the 



similarity threshold, 𝑠0 ∈ [0,1], one can reduce the initial library to a subset by taking only those 

compounds 𝑞 that receive a score larger than 𝑠0. When reducing the library to a small subset for 

further re-ranking and validation using S, increasingly close analogs are being considered. The 

value of the signature concordance score, transferred from the closest concordant analog in LINCS, 

is used to break ties, resulting in concordance-based ranking of direct analogs of candidate 

molecules with 𝑠(𝑞) = 1.   

Supplemental Figure 3: ceSAR-S* (X-axis ranks) vs. Autodock (Y-axis rank) ranking of true positives 

(ligands) for 20 DUD-E target libraries. Yellow: high density; Dark Blue: low density. 

The distributions of true ligands (Supplemental Figure 1) and decoys (Supplemental 

Figure 2) are shown using blue (low density) to yellow (high density) color scale. In general, there 

is little correlation between the two rankings. Even when the bulk of true positives ranks highly 

by both methods, i.e., achieve ranks close to 1 on both X and Y-axes, corresponding to yellow 

density peaks near the left bottom corner, which is observed for AHCY, COX2, CDK2, ESR1, 

FXa SRC and VGFR2, there are important differences remaining. For example, compared to 

Autodock, ceSAR-S does better for VGFR2 and worse for FXa in terms of median true positive 

rank. Differences between the two signals are even more pronounced for the remaining targets, 

with docking ranking the bulk of true positives higher for AR, GART, GCR, DHFR, HMGCR, 



PARP1, RXRA and Thrombin and signature connectivity for EGFR, HSP90, MK14. At the same 

time, different subsets of decoys are often pushed towards lower ranks, and thus separated from 

true positives, by either ceSAR-S or Autodock, highlighting the complementarity of both 

approaches. This is particularly pronounced in the case of AHCY, ESR1, GART1, HSP90 and 

VGFR2.  

We also consider an alternative form of the method, referred to as ceSAR-S*, that finds the 

closest concordant LINCS analog for each candidate compound 𝑞, and then ranks the compounds 

by using Fisher’s consensus to combine chemical similarity and signature concordance scores (see 

Methods section in the main manuscript). In this form of the target structure independent method, 

candidate compounds with more distant closest analogs can get elevated in ranking if their 

signature concordance with the target gene KD is high. The ranking of ligands and decoys using 

ceSAR-S* vs. Autodock is shown in Supplementary Figures 3 and 4. 

Supplemental Figure 4: ceSAR-S* (X-axis ranks) vs. Autodock (Y-axis rank) ranking of true negatives 

(decoys) for 20 DUD-E target libraries. Yellow: high density; Dark Blue: low density. 

While the overall results are qualitatively similar, we note several differences. Marked 

improvements over ceSAR-S in terms of ligand ranks are observed for several targets, including 



AR, DHFR, GCR and PNP. However, this accompanied by subsets of decoys also scoring near 

the top rank, making the discrimination within the top-ranking small library subsets challenging. 

Overall, ceSAR-S* improves somewhat the performance in terms of separation of true positives 

and decoys, while achieving a lower precision at the extreme library reduction, as compounds with 

strongly concordant distant analogs, including potential pathway inhibitors, are also retained in 

this form of the method. These differences further motivated using machine learning to combine 

concordance, chemical similarity, and docking-based scores into a consensus method. 

Fast exact chemical similarity search using minSim (S2) 

The LINCS library of drug-like molecules comprises over 40,000 compounds, of which a 

subset of over 15,000 transcriptionally profiled molecules are available through iLINCS. Likewise, 

the user defined library of small molecules 𝑄 to be ranked can comprise tens to hundreds of 

thousands of molecules in the context of virtual screening. Therefore, retrieval of closest LINCS 

analogs of candidate compounds, which requires that the chemical similarity measure, 𝜎 (𝑞, 𝑘), is 

computed for all pairs (𝑞, 𝑘) between candidate compounds, 𝑞 ∈ 𝑄, and LINCS compounds,  𝑘 ∈
𝐿, represented as binary fingerprints, can become computationally expensive. To address this 

computational bottleneck, an efficient solution for computing the Jaccard similarity measure 

(Tanimoto coefficient) and retrieving the closest matches for the case of sparse binary vectors 

(fingerprints) is introduced here.  

Binary fingerprints are widely used in cheminformatics for efficient chemical similarity 

search and SAR analyses (45–48). In this approximation, small molecules are represented as binary 

vectors indicating the presence of substructures (subgraphs), pharmacophores or chemical groups 

(45, 46). Here, we use the 1024-bit atom-pair fingerprint representation (45, 49), as generated by 

the ChemmineR package (38, 53).  This representation of a compound allows one to capitalize on 

the sparsity of the binary vector.   

Supplemental Figure 5 shows the distribution of ones for the LINCS compound database 

for each of the 1024 fingerprint features (columns of the fingerprint matrix). Note that most 

columns are indeed very sparse, with only few columns that have between 10,000 and 30,000 ones 

and therefore have a balanced split between the two classes (presence vs. absence of a substructure 

or atom-pairs). On the other hand, Supplemental Figure 6 shows the distribution of ones for 

compounds in the LINCS database.  As can be seen from the figure a majority of LINCS 

compounds have under 100 ones in their respective fingerprint which highlights the sparsity of the 

database fingerprint vectors used here. 

Consider now a search for a query compound 𝑞 ∈ 𝑄 against database compounds 𝑘 ∈ 𝐿 

using such defined binary fingerprint. Note that the formula for the Tanimoto coefficient, 𝜎(𝑞, 𝑘), 
which is defined for two binary fingerprints 𝑞 and 𝑘 as the ratio of the number of positions with 

ones in both 𝑞 and 𝑘 and the number of positions with ones in either 𝑞 or 𝑘, can be written in the 

following form: 

𝜎(𝑞, 𝑘) =
𝑠𝑖𝑚 (𝑞, 𝑘)

𝑚(𝑞) + 𝑚(𝑘) − 𝑠𝑖𝑚 (𝑞, 𝑘)



where 𝑚(𝑞) and 𝑚(𝑘) are the number of ones that can be pre-computed for all database molecules 

𝑘, while 𝑠𝑖𝑚 (𝑞, 𝑘) is the number of ones in common for 𝑞 and 𝑘. 

Supplemental Figure 5: Histogram showing the distribution of ones for LINCS compounds of each 

fingerprint feature (column in the binary fingerprint). 

Note that the computation of 𝑠𝑖𝑚 (𝑞, 𝑘) can be limited to only those columns in the binary 

fingerprint where 𝑞 is in the minority state, which is assumed to be 1. Note also that a simple re-

coding of states for columns where this is not the case can be used to guarantee that ones 

correspond to minority states. Furthermore, by using pre-processing of the reference data set of 

compounds (here LINCS library) one can optimally exploit the sparsity in each column by pre-

computing indexes of database compounds in the minority state at each column, as illustrated in 

Supplemental Figure 7.  

To optimally exploit the sparse nature of binary fingerprints used to represent chemical 

moieties, the following list of database vectors 𝑘𝑖 is pre-computed for each column 𝑗 in the 

fingerprint: 



𝑜𝑛𝑒𝑠(𝑗) = {𝑘𝑖  | 𝑘𝑖 (𝑗) = 1}.

Supplemental Figure 6: Histogram portraying the distribution of ones in each row or compound for 

the LINCS library of compounds. Note that none of the compounds in the LINCS library has more than 

120 ones out of 1024 positions in the binary fingerprint used here. 

The minSim (for minority Sim) algorithm, computes all Tanimoto coefficients for a query 

molecule 𝑞 by updating integer counters 𝑠𝑖𝑚 (𝑞, 𝑘), which are set to zero for all 𝑘 at the beginning 

of the search, in a simple loop over minority columns in 𝑞 and minority lists in each minority 

column: 

for all minority columns 𝑗 in 𝑞 

for all 𝑘𝑖 in 𝑜𝑛𝑒𝑠(𝑗)

𝑠𝑖𝑚(𝑞, 𝑘𝑖) = 𝑠𝑖𝑚(𝑞, 𝑘𝑖) + 1



Supplemental Figure 7: The principle of the minSim algorithm for fast exact similarity search and 

retrieval of chemical analogs from a pre-processed dataset of small molecules represented as sparse 

binary fingerprints. Ones, or minority states, are represented by yellow boxes, whereas blue boxes 

represent zeros. The pre-computed lists of molecules in minority state at each column are shown in brackets 

below each fingerprint column. 

By combining such obtained integer counters (numbers of ones for each (𝑞, 𝑘) pair) with 

the precomputed numbers of minority states (ones) in each database vector, 𝑚 (𝑘), minSim 

efficiently computes the Tanimoto coefficient by only considering those pairs of columns 𝑗 in the 

fingerprint and rows 𝑘𝑖 in the database that are both in the minority state, and thus contribute to 

the Jaccard similarity. The implementation of the algorithm in R is included in Supplemental 

Figure 8. 

We posit that minSim optimally exploits the sparse nature of binary fingerprints by 

considering only those fingerprint columns (positions) where the query molecule 𝑞 is in the 

minority state, and by using precomputed lists of all database compounds 𝑘 that are in the minority 

states at these positions. Note also that minSim results in exact Jaccard similarity indexes for fast 

chemical similarity search, without using approximate techniques, such as those based on hashing 

(36, 37, 53).  



Supplemental Figure 8: An R implementation of the min-Sim algorithm. Note that the search is 

performed against the entire (pre-processed) LINCS dataset, rather than a subset concordant with the target 

KD. 

As can be seen from Supplemental Table 1, for the retrieval from the LINCS library for 

different DUD-E datasets, minSim provides between 60 and 150-fold speed-up compared to fpSim 

function, which represents current approaches for exact chemical similarity search (53). Note that 



these speed-ups are consistent with the observed levels of sparsity in the LINCS dataset, while 

also reflecting the varying degree of sparsity in DUD-E datasets of query molecules. 

Supplemental Table 1. A comparison of times to run similarity search for all compound for all DUD-

E targets.  fpSim, as a representative state-of-the-art method is compared with the minSim algorithm 

optimized for binary sparse vectors.  The final column shows the increase in speed of minSim vs. fpSim. 

Target Library Size fpSim (min) minSim (min) Increase in Speed 

AHCY 3673 46.059 0.335 137.39 

AR 15026 223.313 2.386 93.60 

CDK2 29126 414.321 4.568 90.70 

COX2 23936 323.638 3.870 83.64 

DHFR 17950 232.602 2.428 95.81 

EGFR 36274 541.216 7.034 76.95 

ESR1 21445 296.228 3.739 79.22 

FXa 21209 278.580 3.991 69.79 

GART 2926 35.932 0.462 77.76 

GCR 15748 225.486 3.062 73.64 

HMGCR 9183 122.989 1.892 65.00 

HSP90 5067 64.866 0.993 65.35 

MK14 37347 539.328 6.823 79.04 

PARP1 31171 438.801 4.440 98.83 

PNP 7249 95.761 0.640 149.62 

PPARG 26590 367.176 5.261 69.79 

RXRA 7869 99.169 1.629 60.89 

SRC 35790 523.830 7.123 73.54 

Thrombin 28182 404.822 4.941 81.93 

VGFR2 25900 408.805 4.655 87.82 

LINCS library of transcriptional signatures (S3) 

ceSAR makes use of the LINCS library of transcriptional signatures to identify candidate 

compounds that induce signatures concordant with the loss (or gain) of function of the target gene. 

The L1000 high-throughput gene expression assay that measures the mRNA transcript abundance 

of 978 “landmark” genes from human cells is used as the primary transcriptional readout in LINCS. 

Computational analysis of gene expression compendia by the Broad Institute’s CMap group 

indicated that these 978 genes capture a large fraction (~80%) of information of the transcriptome 

at a fraction of the cost (4, 12).  

For most genes, multiple shRNA knock-down signatures are generated to define consensus 

signatures and minimize off-target effects (12, 54). ceSAR uses L1000 signatures to identify small 

molecules that are ‘concordant’ with a target gene knock-down. Small molecules are considered 



concordant to a genetic perturbation if they have an extreme Pearson correlation-based 

concordance score adopted by iLINCS, of 0.162 or higher with a consensus shRNA signature for 

a gene target.  

Supplemental Figure 9: Tail distributions of iLINCS concordance values between LINCS target KD 

and small molecule signatures for 20 DUD-E targets. All LINCS compounds are considered, i.e., no 

similarity to DUD-E library compounds filter is applied, and the counts on the y axis are normalized by the 

number of available KDs per target (for most targets there are between 5 and 10 KD consensus signatures 

from different cell lines).  

Concordance scores are retrieved using API methods of iLINCS (54) and a library of 

LINCS signatures accessible therein that comprises 143,374 signatures of 15,193 small molecules 

(a subset of the entire LINCS library) and 37,275 consensus gene KD signatures of 4,348 genes in 

242 cell lines. The distributions of concordance scores retrieved from iLINCS for DUD-E datasets 

(discussed in the next section) are summarized in Supplemental Table 2 and Supplemental 

Figure 9. 

As can be seen from the figure, the maximum concordance score for three targets, i.e., 

AHCY, GART and thrombin is less than 0.35, indicating overall weak transcriptional signatures, 

or the lack of correlation between chemically vs. genetically induced loss of function. This does 

not bode well for the signature connectivity-based ranking of candidate compounds. Indeed, these 

three targets proved to be difficult for ceSAR, although the consensus approach works well for 

AHCY. The shape of the distribution of concordance values, and the maximum value observed, 

can serve as a measure of the likelihood of success for the signature connectivity-based and target 



structure-independent ceSAR-S, and has informed the choice of features for the machine learning-

based consensus approach.  

Supplemental Table 2. Summary of the concordance and chemical similarity distributions for all 

targets of the DUD-E library.  The target, library size, number of true positives (ligands) and number of 

true negatives (decoys) are shown in the first four columns with the concordance and chemical similarity 

with ‘concordant’ LINCS analogs distributions following.  The distributions are displayed with the range 

followed by the median in parenthesis for both true positives and true negatives. 

Target 

Library 

Size TP TN 

Max Concordance 

 (Tail Median) 

Tanimoto Range 

 (Median) 

TP TN TP TN 

AHCY 3673 190 3483 0.281 ( 0.178 ) 0.309 ( 0.191 ) 0.36  - 0.941 ( 0.619) 0.125  -  1 ( 0.591 ) 

AR 15025 523 14502 0.334 ( 0.216 ) 0.357 ( 0.219 ) 0.385  -  1 (0.694 ) 0.188  -  1 ( 0.727 ) 

CDK2 29119 798 28321 0.403 ( 0.268 ) 0.416 ( 0.261 ) 0.429  -  1 ( 0.764 ) 0.222  -  1 ( 0.705 ) 

COX2 23929 531 23398 0.349 ( 0.221 ) 0.41 ( 0.216 ) 0.417  -  1 ( 0.787 ) 0.143  -  1 ( 0.714 ) 

DHFR 17949 566 17383 0.338 ( 0.236 ) 0.38 ( 0.213 ) 0.472  -  1 ( 0.721 ) 0.2  -  1 ( 0.681 ) 

EGFR 36273 832 35441 0.393 ( 0.282 ) 0.459 ( 0.253 ) 0.619  -  1 ( 0.789 ) 0.125 -  1 ( 0.714 ) 

ESR1 21444 626 20818 0.414 ( 0.246 ) 0.434 ( 0.216 ) 0.541  -  1 ( 0.772 ) 0.25 -  1 ( 0.722 ) 

FXa 21209 792 20417 0.444 ( 0.252 ) 0.438 ( 0.271 ) 0.532  -  1 ( 0.754 ) 0.286  -  1 ( 0.708 ) 

GART 2926 201 2725 0.26 ( 0.164 ) 0.3 ( 0.185 ) 0.537  -  0.852 ( 0.627 ) 0.24 -  1 ( 0.634 ) 

GCR 15746 563 15183 0.385 ( 0.254 ) 0.388 ( 0.237 ) 0.465  -  1 ( 0.75 ) 0.3  -  1 ( 0.75 ) 

HMGCR 9183 299 8884 0.399 ( 0.224 ) 0.406 ( 0.234 ) 0.286  -  1 ( 0.705 ) 0.25  -  1 ( 0.736 ) 

HSP90 5067 125 4942 0.301 ( 0.227 ) 0.392 ( 0.204 ) 0.536  -  1 ( 0.746 ) 0.364  -  1 ( 0.706 ) 

MK14 37345 915 36430 0.379 ( 0.241 ) 0.401 ( 0.228 ) 0.553  -  1 ( 0.815 ) 0.111  -  1 ( 0.719 ) 

PARP1 31151 742 30409 0.365 ( 0.238 ) 0.374 ( 0.233 ) 0.515  -  1 ( 0.744 ) 0.111  -  1 ( 0.688 ) 

PNP 7245 233 7012 0.388 ( 0.267 ) 0.452 ( 0.238 ) 0.364  -  1 ( 0.714 ) 0.2  -  1 ( 0.68 ) 

PPARG 26590 723 25867 0.421 ( 0.26 ) 0.474 ( 0.277 ) 0.568  -  1 ( 0.74 ) 0.318  -  1 ( 0.745 ) 

RXRA 7869 162 7707 0.407 ( 0.22) 0.515 ( 0.22 ) 0.489  -  1 ( 0.711 ) 0.3  -  1 ( 0.78 ) 

SRC 35790 831 34959 0.446 ( 0.288 ) 0.446 ( 0.246 ) 0.583  -  1 ( 0.793 ) 0.25  -  1 ( 0.725 ) 

Thrombin 28181 861 27320 0.324 ( 0.191 ) 0.349 ( 0.195 ) 0.456 -  0.942 ( 0.65 ) 0.67  -  1 ( 0.655 ) 

VGFR2 25900 620 25280 0.394 ( 0.275 ) 0.419 ( 0.231 ) 0.45  -  1 ( 0.817 ) 0.292  -  1 ( 0.706 ) 

On the other hand, of those targets that are characterized by long tails of the distribution 

(the maximum concordance greater than 0.6), only PNP results in no enrichment by ceSAR, as 

discussed in the main paper and in the next section. However, as can be seen from Figure 8 and 

Supplemental Table 2, PNP binders are not well represented in the LINCS database of 

transcriptionally profiled compounds, pointing out the reason for failure in this case. Note that this 

is also true for AHCY and thrombin.  

As shown in Supplemental Figure 5, these two targets have no true binders (TP) included 

in LINCS (no LINCS analogs with Tanimoto coefficient of 1), while PNP has just several, making 

these 3 targets challenging in this regard. However, ceSAR effectively transfers signature 

connectivity-based signal from LINCS analogs via chemical similarity mapping, thus expanding 

the application of the method. This is further illustrated in in terms of distributions of concordance 

values for true positives vs. true negatives while identifying LINCS analogs with decreasing 

Tanimoto coefficients from 1.0 (direct counterparts in LINCS, Figure 8, panel B), 0.9 (very close 

analogs, Supplemental Figure 10), and 0.8 (close analogs, Figure 8, panel C).  



Supplemental Figure 10: Distributions of concordance scores for true positives (red) vs. true 

negatives (blue) with concordant LINCS analogs mapped using Tanimoto coefficient of 0.9. Note 

generally higher concordance values for true positives, except for 2 targets (GART and PNP) for which the 

number of true positives with concordant LINCS analogs at Tanimoto of 0.9 is less than 3; this can be 

contrasted with Tanimoto of 0.8 (Figure 8, panel C), which allows for robust analysis of the performance 

for all targets as the number of analogs to be considered increases.   

DUD-E Benchmark (S4) 

Twenty target structures from the Database of Useful Decoys Enhanced (DUD-E) were 

downloaded from Protein Data Bank (PDB). Each structure was prepared by using AutodockTools 

v.1.5.6. The PDBQT file was generated after removing the bound ligand from the binding pocket,

removing water molecules, and adding hydrogens as a pre-processing step. The grid box center

was identified as the center of the bound ligand with the dimension of 20x20x20Å. Details for 20



targets with grid box centers are provided in Supplemental Table 3. Active ligands and drug-

liked decoys for each target were downloaded from the DUD-E library in the SDF format, which 

were then converted to the PDBQT format before screening.  

Supplemental Table 3. DUD-E targets and grid centers used for AutoDock simulation. 

Target Protein name PDB ID Grid center 

AHCY Adenosylhomocysteinase 1li4 47, -20, 103 

AR Androgen receptor 2am9 27, 2, 5 

CDK2 Cyclin-dependent kinase 2 1h00 2, 28, 9 

COX2 Cyclooxygenase-2 3ln1 31, -22, -17 

DHFR Dihydrofolate reductase 3nxo 15, 6, 0 

EGFR Epidermal growth factor receptor erbB1 2rgp 16, 35, 92 

ESR1 Estrogen receptor alpha 1sj0 31, -2, 25 

FXa Coagulation factor X 3kl6 2, -8, -13 

GART GAR transformylase 1njs 75, 23, 32 

GCR Glucocorticoid receptor 3bqd 40, 30, 9 

HMGCR HMG-CoA reductase 3ccw -7, -1, 32

HSP90 Heat shock protein HSP 90-alpha 1uyg 3, 12, 25 

MK14 MAP kinase p38 alpha 2qd9 -3, -1, 24

PARP1 Poly ADP-ribose polymerase-1 3l3m 26, 11, 27 

PNP Purine nucleoside phosphorylase 3bgs 15, 11, 58 

PPARG Peroxisome proliferator-activated receptor gamma 2gtk 4, 25, 17 

RXRA Retinoid X receptor alpha 1mv9 61, 46, 31 

SRC Tyrosine-protein kinase SRC 3el8 2, 5, 8 

Thrombin Thrombin 1ype 17, -12, 22 

VGFR2 Vascular endothelial growth factor receptor 2 2p2i 38, 36, 12 

Virtual screening with docking was performed using Autodock v. 4.2.6 on a Linux-based 

computational cluster, consisting mostly of 16 Intel (R) Xeon (R) CPU E5-2667 v3 @ 3.20GHz 

core nodes (simulations for each target were performed distributing the computation over 50 

nodes). Genetic algorithm was applied to search the optimal ligand binding conformation using 

the number of energy evaluations of 1,000,000, the population size of 150, and the number of 

repeated docking runs of 50, which represents a relatively deep level of sampling (55).   

In order to test the effect of using a different docking method, virtual screening using 

MTiOpenScreen, a web-based implementation of Autodock Vina, was performed on eight out of 

20 targets, including 5 kinases (CDK2, EGFR, MK14, SRC, VGFR2), 2 nuclear receptors (ESR1, 

PPARG) and 1 enzyme (FXa). Since MTiOpenScreen accepts the protein structure in the PDB 

format, each structure was prepared by removing the bound ligand from the binding pocket. Active 

ligands and drug-liked decoys for each target were downloaded from the DUD-E library in the 

SDF format.  



Since the MTiOpenScreen only accepts up to 5,000 compounds per run, multiple subsets 

of compounds were used for each compound database. In each run, a subset consisting of 100 

active ligands and 3,900 decoys (or less than 100 and 3,900, respectively, in the last subset), was 

uploaded as the SDF file to the server. The default parameters were applied for each analysis 

except the grid box calculation was set to the custom mode. The grid box center was identified as 

the center of the bound ligand and the dimension of 20x20x20Å. Details for these targets with 

PDB ID and grid box centers were provided in Supplemental Table 4. We have also used the 

predecessor of DUD-E, i.e., the original DUD benchmark for further benchmarking observing 

similar overall trends. 

Supplemental Table 4. Subset of DUD-E targets and grid centers used for MTiOpenScreen 

simulations. 

Target Protein name PDB ID Grid center 

CDK2 Cyclin-dependent kinase 2 3ezr -2, 38, 3

EGFR Epidermal growth factor receptor erbB1 2rgp 16, 35, 92 

ESR1 Estrogen receptor alpha 1sj0 31, -2, 25 

FXa Coagulation factor X 3kl6 2, -8, -13 

MK14 MAP kinase p38 alpha 2qd9 -3, -1, 24

PPARG Peroxisome proliferator-activated receptor gamma 2gtk 4, 25, 17 

SRC Tyrosine-protein kinase SRC 2oiq -3, -33, 8

VGFR2 Vascular endothelial growth factor receptor 2 2p2i 38, 36, 12 

Machine Learning-based Consensus Approach (S5) 

The simple consensus-based ceSAR approaches, referred to as ceSAR-C100, ceSAR-C5 or 

ceSAR-C1 in the main manuscript, combine initial filtering and ranking using similarity to 

‘concordant’ LINCS analogs with subsequent consensus re-ranking based on docking results. The 

method is very simple and takes the form of a ranking-based filter, with just 2 meta-parameters, 

namely the concordance threshold (see Section S1) and the fraction of the library initially selected 

by using the signature connectivity-based ceSAR-S ranking to be subsequently re-ranked using the 

consensus with docking results (A).  

The success of such a simple method led us to explore if machine learning techniques could 

be used to learn a more complex model that improves upon the simple consensus.  We 

hypothesized that by learning from data, concordance, chemical similarity, and docking-based 

features can be optimally combined into an accurate and robust classification model to discriminate 

true positives from true negatives and provide improved consensus ranking of candidate 

molecules. 

To test that hypothesis, several random forest (RF) and neural network (NN) classifiers 

were trained, combined into an ensemble classifier, and tested using the set of 20 DUD-E target 

compound libraries. Leave-one-out target cross-validation was employed to successively train the 



model on 19 targets and test on the remaining target, using R packages RandomForest (56) and 

neuralnet (57), respectively.  

Multiple sets of features were evaluated, and the final models included in the consensus 

were trained either with the set of 11 or 13 features listed in Supplemental Table 5 that are 

designed to capture the complementary signals from signature connectivity analysis and docking 

simulations.  These features include: the Tanimoto similarity of the DUD-E compound to its 

LINCS analog, the (scaled) docking energy of compound and target, concordance of the LINCS 

analog, as well as these values normalized to the median, plus rank-based features encoded as ratio 

of the compound rank and the total number of compounds for ceSAR-S, Autodock, and concordance 

separately, followed by the 2- and 3-feature consensus ranks (Fisher_2 and Fisher_3).  For 

docking-based features, the median of the docking energy of compound and target across 50 runs 

were used.  The fractional rank-based features were motivated by the Fisher method for combining 

probabilities or p-values derived from individual models or statistical tests that sums logs of 

probabilities to obtain the consensus score: 

 𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠_𝑠𝑐𝑜𝑟𝑒 ~ ∑ log  (𝑝𝑖)
𝑘
𝑖=1

Two additional features, which are highlighted in yellow and expand the set of features 

from 11 to 13, were included to allow for discrimination of the strong concordance-on-strong 

distribution vs. weak concordance-on-strong distribution of concordances between the signature 

of the candidate compound and the target knockdown. These features are defined as (1) the 

maximum concordance value of all LINCS analogs and the gene knockdown target (cmax) over 1 

minus the concordance 𝑐∗(𝑘, 𝑡) of the compound and gene knockdown target and (2) the maximum

concordance value of all LINCS analogs and the gene knockdown target (cmax) minus the 

concordance 𝑐∗(𝑘, 𝑡) of the compound and gene knockdown target divided by the maximum

concordance of all LINCS analogs and the gene knockdown target (cmax). An example of 

distributions of individual feature values for true positives (ligand) and negatives (decoys) for 

EGFR are shown in Supplemental Figure 11. 

The training was performed with a balanced approach in which all true positives were 

utilized for each DUD-E library, while the negative examples were sampled from two subsets of 

true negatives: one from the top 5 % (ceSAR-S ranking) and the other from the remaining 95% of 

the library.  For NNs, 2 hidden layers with 5 neurons each were used for both 11 and 13 feature 

models.  The sigmoid activation function, sum-of-squares error function, and rprop+ resilient back-

propagation algorithm was used for the training.  The threshold for convergence was determined 

by assessing the error function using threshold values of 0.1 to 0.5.  The error did not vary 

substantially using these thresholds, and the threshold of 0.5 was used for further analysis to 

facilitate speed of convergence with little loss in error. 

To assess the contribution of the individual features to the RF classifiers, the importance 

of individual features was assessed using the median decrease in the Gini Index for 20 models 

optimized using Leave-one-out target cross-validation.  For both 11 and 13 feature models, the 

fraction of the library of ceSAR-S and the fraction of the library of Autodock were found to be the 

most dominant features. Thus, ceSAR-S and Autodock scores both play an important role and 



complement each other, underlying the success of the ML-based consensus of the signature 

connectivity and docking-based scores.  

Supplemental Table 5. Definition of features employed to train machine learning models. 

Feature Definition 

Tanimoto Chemical similarity to closest LINCS analog 

Concordance Concordance of closest LINCS analog 

neg_log10_Autodock -LOG10 (docking binding energy)

median_normalized_concordance Concordance of closest LINCS analog normalized to 

the median of the concordance distribution 

median_normalized_tanimoto Chemical similarity to closest LINCS analog 

normalized to the median of the distribution 

median_normalized_Autodock Docking binding energy normalized to the median of 

the distribution 

Fraction_Rank_ ceSAR-S Rank of ceSAR-S adjusted by the number of 

compounds in the library (also referred to as 

Fraction_Rank_S2L) 

Fraction_Rank_Autodock Rank of Autodock adjusted by the number of 

compounds in the library 

Fraction_Rank_Concordance Rank of concordance adjusted by number of 

compounds in library 

Fisher_3 Fisher’s consensus of ceSAR-S, Autodock, and 

Concordance 

Fisher_2 Fisher’s consensus of ceSAR-S and Autodock 

max conc over / 1-  Conc Maximum Concordance of the distribution divided by 

1 minus the concordance of the closest LINCS analog 

max_conc_minus_conc / 

max_conc 

Maximum Concordance of the distribution minus the 

Concordance of the closest LINCS analog divided by the 

Maximum Concordance of the distribution 

In order to further compare the performance of different machine learning methods, several 

ensemble support vector machine classifiers, using both Gaussian and linear kernels, as well as 

logistic regression baseline classifiers were trained using the same leave-one-out target cross-

validation approach, and the R caret package (58), yielding results worse than the NN and RF 

ensemble model and therefore not included in the final consensus. 



Supplemental Figure 11: An example of distributions of individual feature values for true positives 

(ligand) and negatives (decoys) for EGFR.  

While further feature selection, aggregation and optimization of the model could well 

improve the results of machine learning-based predictors, the risk of overfitting on a limited set of 

targets and the success of simple, filter-based approaches argue against using more complex 

models without further extensive benchmarking on independent data sets. 

Supplemental Results (S6) 

The performance of docking simulation, referred to as A, the simple signature connectivity-

based and target structure-independent ceSAR-S search, consensus methods referred to as C or 

cML for machine learning based consensus, and a simple baseline approach (B) that ignores 

signature connectivity while retrieving the closest LINCS analogs using the chemical similarity 

search, was compared on a set of 20 DUD-E targets. These targets spanned several classes of 



proteins, including kinases (CDK2, EGFR, MK14, SRC, VGFR2), other enzymes (AHCY, COX2, 

DHFR, FXa, GART, HMGCR, PARP1, PNP, Thrombin), a chaperone (HSP90), nuclear receptors 

and transcription factors (AR, ESR1, GCR, PPARG, RXRA).  

As discussed in the main paper, precision curves for the active ligand prediction over a 

range of library size of 0.1% to 100% were used to evaluate and compare the performance of both 

docking and connectivity enhanced approaches, providing a direct assessment of the fraction of 

true positives selected as the library is reduced in size by either signature connectivity analysis, 

docking binding affinity, or consensus ranking. In addition, boxplots representing the distributions 

of precision values at different library sizes were used to better assess the robustness and likelihood 

of failure for a specific target for each method tested here, as shown in Supplemental Figure 12. 

Supplemental Figure 12: Distribution of precision values over 20 DUD-E targets at different 

library sizes. Autodock (A), baseline (B), ceSAR-S, and consensus approaches ceSAR-c[] with p-

values obtained using pairwise Wilcoxon signed rank test shown on top to assess statistical 

significance. 

As can be seen from the figure, the performance of both docking and ceSAR approaches 

varies considerably over 20 targets. Importantly, all methods tested here significantly outperform 

the baseline (Baseline) at all three library reduction levels. The performance of ceSAR-S, which 

has a negligible computational cost compared to docking (Autodock), is better than that of docking 

at the furthest library reduction, yielding median precision of about 20% compared to about 10% 

for docking, although that shift is deemed statistically insignificant due to wide distributions of 

precision values (Wilcoxon signed rank test p-value of 0.56).  

The consensus approaches improve upon both ceSAR-S and Autodock at 0.1% library size, 

achieving statistical significance or near significance with respect to docking (Wilcoxon test p-



values of 0.02 to 0.07), while performing on par with docking at 0.5%. Note that ceSAR-C100, -C5 

(-cML5), and -C1 (-cML1) use the consensus of the ceSAR-S and AutoDock ranking for the 100%, 

top 5% and top 1% of the library selected initially by ceSAR-S. 

The distribution of precision values for the methods considered here at the furthest library 

reduction is dissected in detail in Supplemental Figures 13 and 14. As can be seen from the figure, 

the baseline method (B) fails to achieve precision of more 25% for any target, yielding less than 

5% of true positives for 9 targets. The median precision of the baseline method over all targets is 

equal to 7.5% and this value is subsequently used as a reference to measure improvements on B. 

While both Autodock and ceSAR-S perform better than B, it should be noted that they still fail to 

yield more than 7.5% of true positives for 10 and 7 targets, respectively.  

On the other hand, consensus methods improve upon both Autodock and ceSAR-S. In 

particular, ceSAR-C1 and ceSAR-cML1 consensus methods yield precision better than baseline 

median precision of 7.5% for 17 and 16 targets, respectively, compared with 10 for Autodock, 

resulting in chi-square p-values of less than 0.02 and 0.05, respectively. Thus, the distributions of 

precision values at the furthest library reduction are statistically significantly different for ceSAR-

C1  and ceSAR-cML1 consensus methods compared to Autodock. 

Supplemental Figure 13: Distribution of precision values over 20 DUD-E targets at the 

furthest library reduction for Autodock (A), baseline (B), ceSAR-S (S), and consensus 

approaches (c/C). 



These two consensus methods, which combine signature connectivity analysis with 

docking for the top 1% of the library ranked by ceSAR-S, also have the most significantly different 

distributions over 20 targets with respect to the baseline (B), and individual Autodock (A) and 

ceSAR-S (S) methods, as measured by the Kullback-Leibler divergence measure, which is shown 

in Supplemental Figure 14. These observations led to the conclusion that ceSAR-C1 and ceSAR-

cML1 consensus methods provide the best trade-off between speed and accuracy. 

Supplemental Figure 14: Clustering of ceSAR consensus approaches (c/C) based on their 

Kullback-Leibler divergence from the distributions of precision values over 20 DUD-E 

targets at the furthest library reduction. Autodock (A), baseline (B), ceSAR-S (S). High vs. low 

Kullback-Leibler divergence measure values are indicated in red vs. blue scale. 

Individual precision curves for 20 DUD-E targets and separately for three targets that are 

illustrative of varying degree of success of ceSAR, are included in Supplemental Figures 15 and 

16. In a highly successful case (VGFR2), the ceSAR-S and consensus approaches show a better

performance than Autodock even at the large library sizes (10%, 5%). In a moderately successful

case (ESR1), ceSAR-S and/or consensus approaches provide a comparable performance to that of

docking at small library sizes, while having an advantage of faster computational time. These two

scenarios are observed for the majority of DUD-E datasets.



Supplemental Figure 15: The performance of ceSAR-S and consensus methods ceSAR-c/cML 

relative to Autodock and a simple baseline method (B). Results shown using the precision curve 

as the function of the library size for 20 DUD-E targets. This is the same as Figure 5B, included 

here for direct comparison with the results in the next 7 figures. 

Supplemental Figure 16: The performance of ceSAR-S and consensus methods ceSAR-c/cML 

relative to Autodock and a simple baseline method (B). Results shown using the precision curve 

as the function of the library size for three targets representing kinases, nuclear receptors, and 

miscellaneous DUD-E classes of targets. 

However, in a few cases, including HMGCR shown here, ceSAR performs poorly 

compared to docking, even if some degree of enrichment over the baseline is observed, except for 

the furthest library reduction. Note that the failure on HMGCR, which encodes a 3-Hydroxy-3-

Methylglutaryl-CoA Reductase, cannot be rationalized by pointing out a short tail of the 

distribution of concordances in Supplemental Figure 9, or the total lack of close analogs in 

LINCS, even if their number is relatively low, as highlighted in Figure 8 and Supplemental Table 

2. Rather, it is the strength of concordance for the true negatives (decoys) relative to true positives

(active compounds) – see Supplemental Table 2.



As discussed in the main manuscript, and in Supplemental Section S3, ceSAR is dependent 

on the availability of a representative set of transcriptionally profiled molecules that broadly cover 

the drug-like universe. While this is largely true about the overall LINCS library that comprises 

over 40,000 compounds (not all of which have been profiled transcriptionally), not all classes of 

drugs are well represented, or may not induce sufficiently strong signatures to be considered for 

the connectivity analysis.  

Supplemental Figure 17: Performance on kinases using boxplots to compare the 

distributions of precision values at different library sizes. 

On the other hand, some classes of targets and their antagonists, including kinase inhibitors, are 

well represented in LINCS, contributing to the high accuracy of ceSAR on the 5 kinases included 

in our evaluation. For these kinases, ceSAR-S and all forms of consensus yield improvements over 

docking already at 1% library size, and for the most reduced library size even the simplest form of 

the method, i.e., ceSAR-S) yields 2-fold increase in median precision compared to Autodock, even 

though docking performs well on these targets achieving over 20% precision at 0.1% library size 

(see Supplemental Figure 17). 

Similar trends are also observed in terms of ROC and precision-recall curves 

(Supplemental Figure 18). that demonstrate the success of ceSAR-S and consensus methods 

relative to docking on kinases (except for CDK2), generally better performance of consensus 

methods and docking relative to ceSAR-S on nuclear receptors (except for PPARG), and better 

performance of Autodock on GART, PNP, Thrombin, and HMGCR, on which ceSAR methods fail 

for reasons discussed before.  

As emphasized before, for successful identification of true binders while nominating top 

candidates for validation, achieving high recall with a relatively large subset of the library is less 

important than higher precision at the low recall values corresponding to a small subset of the 



library amenable to experimental validation. Note that to emphasize this point, the recall values 

and false positive rates (% decoys selected) are shown in log scale in Supplemental Figure 18. 

A 

B 

Supplemental Figure 18: The performance of ceSAR-S and consensus methods ceSAR-C 

relative to Autodock, using the ROC (panel A) and precision-recall curves (panel B) for 20 

DUD-E targets. 



The results for EGFR, which represents an important class of tyrosine kinase growth factor 

receptors, commonly targeted in cancer, are analyzed in detail in Supplemental Table 6. The 

compounds in top 0.1% of the DUD-E library for EGFR, ordered by using the consensus ceSAR-

cML1 method ranking, with true positives and true negatives (decoys) denoted using CHEMBL 

and ZINC identifiers, respectively. Note that 36 corresponds to the top 0.1% of the EGFR DUD-

E library.  

As can be seen from MoA annotations that are either obtained from LINCS for the closest 

analogs used for scoring, or directly from PubChem for the actual molecule in the DUD-E data 

set, essentially all DUD-E true positives are in fact annotated as EGFR inhibitors. There are 8 

decoys predicted as ligands, for which there are no directly transferable annotations and thus are 

nominated here as potential inhibitors to be tested. Note that this is consistent with the precision 

of about 78% for the ceSAR-cML1 method on the EGFR dataset at 0.1% library size reported in 

Figure 3.  

All results of ceSAR reported in the main manuscript were obtained using the concordance 

threshold of 0.162 to identify significantly ‘concordant’ LINCS small molecules. This value 

corresponds to Bonferroni corrected p-value of 0.05 to adjust for multiple testing given the size of 

LINCS signature libraries. The sensitivity to this arbitrary threshold (even if guided by the analysis 

of distribution of concordance scores used by iLINCS) was assessed by systematically comparing 

results obtained using different thresholds, indicating that the results are robust. For example, the 

performance of ceSAR performance had no statistically significant differences between the 

threshold of 0.162 and 0.2, as shown by the box plots of precision values over 20 targets at different 

library sizes (Supplemental Figure 19).  

Supplemental Figure 19: Comparing the performance of ceSAR-S over 20 targets when using 

the primary filter of concordance thresholds of 0.162 and 0.2.  



Supplemental Table 6.  The top 36 candidate EGFR inhibitors were selected by using the 

machine-learning-based consensus ceSAR-cML1 approach. DUD-E true positives (known 

active compounds) are indicated using green background, whereas DUD-E true negatives (decoys) 

are indicated using yellow background. Mode of Action (MoA) annotations from LINCS and 

PubChem are shown in the second and third columns, respectively.  

Top Compounds LINCS_MoA PubChem_MoA 

CHEMBL1421 KIT, SRC, BCR-ABL, 

Ephrin, PDGFR 

Cell Growth Inhibition, ABL1, EPH, BCR, Lck, MAP4K4, FYN, SIK1, PKMYT1, 

FGFR2, FGFR1, MAP2K2, SRMS, MAP3K20, MAPK14, STK26, CDC42BPG, RET 

ZINC03984008 NA NA 

CHEMBL1421.1 KIT, SRC, BCR-ABL, 
Ephrin, PDGFR 

Cell Growth Inhibition, ABL1, EPH, BCR, Lck, MAP4K4, FYN, SIK1, PKMYT1, 
FGFR2, FGFR1, MAP2K2, SRMS, MAP3K20, MAPK14, STK26, CDC42BPG, RET 

CHEMBL1173655.1 EGFR EGFR, ERBB2 

CHEMBL1173655 EGFR EGFR, ERBB3 

CHEMBL1421.2 KIT, SRC, BCR-ABL, 

Ephrin, PDGFR 

Cell Growth Inhibition, ABL1, EPH, BCR, Lck, MAP4K4, FYN, SIK1, PKMYT1, 

FGFR2, FGFR1, MAP2K2, SRMS, MAP3K20, MAPK14, STK26, CDC42BPG, RET 

ZINC04047855 NA NA 

CHEMBL56543 EGFR, ErbB2, JAK EGFR, GLS, JAK1, HIF1A, GMNN, CBX1 

CHEMBL554 EGFR, ErbB2 EGFR, ErbB2, Erk-1, Erk-2, AKT 

ZINC04047854 NA NA 

CHEMBL1421.3 KIT, SRC, BCR-ABL, 

Ephrin, PDGFR 

Cell Growth Inhibition, ABL1, EPH, BCR, Lck, MAP4K4, FYN, SIK1, PKMYT1, 

FGFR2, FGFR1, MAP2K2, SRMS, MAP3K20, MAPK14, STK26, CDC42BPG, RET 

CHEMBL483321 Tyrosine Kinase, EGFR CDK19, MKNK2, ERBB2, ERBB4, CDK8, EGFR 

CHEMBL1421.4 KIT, SRC, BCR-ABL, 

Ephrin, PDGFR 

Cell Growth Inhibition, ABL1, EPH, BCR, Lck, MAP4K4, FYN, SIK1, PKMYT1, 

FGFR2, FGFR1, MAP2K2, SRMS, MAP3K20, MAPK14, STK26, CDC42BPG, RET 

CHEMBL939 EGFR EGFR 

CHEMBL939.1 EGFR EGFR 

CHEMBL180022 EGFR HER-2, EGFR 

CHEMBL180022.1 EGFR HER-2, EGFR 

CHEMBL572881 KIT, PDGFR, VEGFR VEGFR, PDGFR 

CHEMBL180227 NA ERBB2, EGFR 

CHEMBL337026 NA PRKD3, PRKCG, PRKCB, EGFR, SRC 

CHEMBL180227.1 NA ERBB2, EGFR 

CHEMBL337026.1 NA PRKD3, PRKCG, PRKCB, EGFR, SRC 

CHEMBL472581 NA EGFR 

ZINC03234670 NA NA 

CHEMBL472581.1 NA EGFR 

ZINC63627870 NA NA 

CHEMBL515082 NA EGFR 

CHEMBL515082.1 NA EGFR 

ZINC00631023 NA NA 

CHEMBL168915 NA EGFR 

ZINC05276009 NA NA 

ZINC01822324 NA NA 

CHEMBL1090357 NA EGFR, ERBB2, ERBB3, ERBB4, IGF1R 

CHEMBL179652 NA ERBB2, EGFR 

CHEMBL56142 NA EGFR 

CHEMBL179652.1 NA ERBB2, EGFR 

CHEMBL291514 NA EGFR 

To assess the dependence on the concordance threshold further, precision curves for three 

different targets with the concordance threshold of 0.2 are included in Supplemental Figure 20, 

showing very similar performance to that obtained using the threshold of 0.162 in Supplemental 

Figure 15. This result implies that the performance of ceSAR is largely insensitive to the changes 

of the concordance threshold, which is used to filter out compounds without signatures concordant 

to a target KD signature. 



Supplemental Figure 20: Examples of three representative targets using ceSAR-S, -C100, -C5 

and -C1 while applying the primary filter at the concordance threshold of 0.2 (as opposed to 

the default value of 0.162). For comparison: Autodock (A) and a simple baseline method (B). 

Supplemental Figure 21: Comparing ceSAR-S median precision curves over 20 targets for 

legacy vs. new version of iLINCS, using the primary filter of concordance thresholds of 0.162 

and 0.2.  

To further assess the robustness of the method, while evaluating the importance of careful 

signature library curation and the choice of concordance measures, we also compared the results 

with those obtained using the iLINCS 2018 legacy version. Precision curves at two different values 

of the concordance threshold for the new iLINCS library used for this contribution are compared 

with those of the legacy iLINCS version (54).  

As can be seen from Supplemental Figure 21, while the precision curves are overall very 

similar, there is a substantial improvement in the median precision at the furthest library reduction. 

Thus, filtering out spurious concordances due to additional curation in the new version of iLINCS 



library to remove low quality signatures leads to further reduction of false positive rates and higher 

chances of success when nominating leads for further validation. The results are very similar when 

using e.g., a threshold of 0.321, which corresponds to the highest 0.5% of all concordance values 

between chemical and genetic perturbation signatures in the legacy iLINCS version.  

We next analyze potential biases due to uneven coverage of different classes of compounds 

in LINCS. ceSAR-S ranks candidate compounds based on the Jaccard similarity to the closest 

LINCS analog. In the case of ties, the compounds with the equal similarity are re-ranked by the 

concordance score. The degeneracy of similarity scores is becoming more pronounced as the 

library is reduced to a small subset, with all or nearly all candidate compounds included at that 

stage having direct counterparts in the LINCS library with Tanimoto coefficient of 1.  

Supplemental Figure 22: The average Tanimoto coefficient at various library sizes over 20 

targets. Upper, middle, and lower panels show the distribution of Tanimoto similarity for various 

library sizes of all compounds, only true ligands, and only decoys, respectively. The black line 

represents the median over 20 targets.  

This could potentially lead to biases in the selection of compounds based on their inclusion 

in the LINCS library. As shown in Supplemental Figure 22, however, the distributions of 

Tanimoto coefficients over 20 targets are very similar for both active ligands and decoys at the 

small library sizes of 0.1%-1%, with average Tanimoto coefficients in the range of [0.95, 1]. 

Moreover, as shown in the main manuscript and Supplemental Figures 12 through 17, the 

baseline approach (B) that ignores signature connectivity performs consistently poorly and 

significantly worse than any other method discussed.  Taken together with the results for 

compounds that have direct counterparts in LINCS shown in Figure 8, one can conclude that in 

fact the concordance filter is required to achieve enrichment into true positives.  
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Next, we evaluate the choice of the docking method to be combined into a consensus ceSAR 

approach. While we primarily used Autodock because of its well benchmarked performance and 

wide adoption in the field, there are certainly multiple other docking methods that could be used. 

In Supplemental Table 7, we compare Autodock and Autodock-based ceSAR consensus methods 

with two widely used docking programs, namely DOCK 3.7 and Autodock Vina.  

Supplemental Table 7: Comparison of ceSAR and docking methods on DUD-E benchmark. 

Results for individual targets and median values from this work for Autodock (A), ceSAR-S (S), 

ceSAR-C100 (C100), ceSAR-C5 (C5) and ceSAR-C1 (C1) are compared with those of DOCK 3.7 

(Dock), and Autodock Vina (Vina) from a recent benchmark of docking methods (23), using 

adjusted log AUC that captures overall performance in terms of area under the ROC curve relative 

to a random classifier (see Supplemental Figure 18), and Enrichment Factor at 1% and 0.1% library 

size, denoted as EF1 and EF.1, respectively. 

Target 
A 

AUC 
S 

AUC 
C100 
AUC 

Dock 
AUC 

Vina 
AUC 

A 
EF1 

S 
EF1 

C100 
EF1 

Dock 
EF1 

Vina 
EF1 

A 
EF.1 

S 
EF.1 

C100 
EF.1 

C5 
EF.1 

C1 
EF.1 

SRC 11.29 13.42 17.39 10.77 10.12 3.98 7.36 7.96 4.02 5.36 0 34.45 9.84 9.84 13.54 

MK14 5.3 16.69 15.03 10.92 17.18 1.75 5.14 5.8 6.59 9.19 0 18.75 3.31 9.93 14.34 

VGFR2 13.85 21.79 26.36 24.35 23.6 5.81 12.42 14.68 15.18 17.14 10.03 21.72 25.06 25.06 26.74 

EGFR 8.35 17.94 18.95 33.82 8.81 5.42 11.68 10.24 27.17 5.36 12.11 24.22 24.22 20.59 18.17 

CDK2 24.5 8.02 23.85 15.52 17.56 14.67 3.89 12.92 4.85 10.76 21.39 7.55 20.13 21.39 11.32 

PPARG 4.63 1.29 3.51 9.19 19.35 0 2.64 1.11 4.97 6.62 0 11.32 2.83 2.83 7.07 

GCR 27.76 3.55 21.13 -2.44 16.94 12.65 3.56 13 2.72 13.61 13.05 16.78 18.65 24.24 24.24 

AR 29.41 1.64 21.64 2.78 21.78 17.62 5.17 11.68 4.84 21.58 17.24 5.75 26.81 26.81 28.73 

RXRA 37.55 -1.7 23.74 1.39 38.08 19.93 4.98 11.83 5.39 32.36 20.82 0 20.82 13.88 13.88 

ESR1 50.05 10.22 39.73 10.41 28.89 32.33 5.12 23.53 8.9 19.36 34.26 17.94 34.26 34.26 32.62 

DHFR 5.47 3.97 6.05 18.4 16.48 1.06 1.24 2.13 19.05 5.2 0 9.33 1.87 5.6 5.6 

AHCY 48.17 14.63 41.59 43.82 34.78 12.89 4.3 14.5 36.64 23.9 0 0 6.44 12.89 12.89 

COX2 18.59 13.09 22.64 11.66 27.43 7.35 5.85 10.94 12.68 19.83 1.96 7.84 5.88 7.84 7.84 

PARP1 26.98 6.52 23.3 20.57 24.96 6.61 1.08 7.15 16.56 12.42 2.71 1.35 5.42 6.77 5.42 

HMGCR 4.44 -2.06 2.33 28.78 15.74 5.4 2.02 2.7 25.92 5.3 17.06 3.41 3.41 0 3.41 

HSP90 -7.13 12.37 3.62 16.22 -9.5 0 8.11 2.43 10.3 0 0 24.32 8.11 16.21 16.21 

GART 16.1 -5.62 5.85 10.21 32.85 4.52 0.5 0.5 2.03 6.1 0 0 0 0 0 

PNP 29.64 0.98 20.01 46.38 28.46 8.21 0 3.45 44.02 13.7 0 0 0 0 0 

Thrombin 17.54 -1.84 9.69 20.1 16.74 5.47 0.23 2.21 15.62 4.2 4.68 0 2.34 0 0 

FXa 31.87 9.75 28.94 37.14 28.68 18.32 4.04 15.92 27.27 20.54 24.23 0 24.23 19.13 14.03 

Median 18.06 7.27 20.57 15.87 20.56 6.21 4.17 9.1 11.49 11.59 3.69 7.69 7.27 11.41 13.21 

Results from a recent benchmark of these docking methods (23), indicate that Autodock 

Vina performs somewhat better than Autodock in terms of adjusted logAUC, with median values 

of about 20 vs. 18. On the other hand, while the results at 0.1% library reduction are not available, 

the Enrichment Factor at 1% (EF1) is substantially higher for both DOCK and Autodock Vina 

relative to Autodock on the set of targets used here. Based on these observations, Autodock Vina 

could potentially provide additional boost in performance if used instead of Autodock for ceSAR 

consensus methods, which is investigated next. 



Supplemental Figure 23: Precision curves on a subset of targets from the DUD-E benchmark 

using MTiOpenScreen docking server. 

To test the impact of using Autodock Vina, we investigated the performance of ceSAR in 

combination with MTiOpenScreen, the Autodock Vina-based web server for docking and virtual 

screening (Supplemental Figure 23). ceSAR-S, -C100, -C5 or -C1 yielded better performance in 

five out of eight targets screened, which were kinases (CDK2, EGFR, MK14, SRC, and VGFR2). 

MTiOpenScreen provided better results on FXa and two nuclear receptors, ESR1 and PPARG, on 

the latter also notably better than Autodock, although ceSAR achieved a relatively high enrichment 

over baseline in the latter two cases as well. Overall, the results are qualitatively similar to those 

obtained using Autodock, indicating that ceSAR consensus rescoring of a small library subset 

obtained after applying the initial ceSAR-S filter is insensitive to the choice of the docking method 

used at this stage. 

Identification, ceSAR rescoring and Validation of Putative BCL2A1 Inhibitors (S7) 

BCL2A1 has been implicated in a wide array of diseases, ranging from autoimmunity 

resulting in pre-term birth to chemotherapeutic resistance in cancer. The BCL2-family of proteins 

interact with BH3 peptides to produce either a pro-apoptotic or anti-apoptotic response. Due to the 

similarity across the family, this has been a difficult target with which to achieve specificity. To 

that end, an inhibitor virtual screen was performed using an NCI compound library of 90,087 drug-

like small molecules and Autodock v. 4.2.6.  

The top 300 compounds by Autodock were clustered and representatives of each cluster 

were tested in vitro using differential scanning fluorimetry thermal shift and fluorescence 

polarization competition assays described in detail below. Compounds with substantial reduction 

in polarization through high dose experiments were additionally tested for a dose response via FP. 

High dose FP was normalized using unbound Noxa as the 0% bound baseline and A1 with Noxa 

but no compound as the 100% value.  



ceSAR-S was applied retroactively to re-score the tested compounds and test the hypothesis 

that a set of putative weak binders identified experimentally (guided by the initial virtual 

screening) can be successfully used to seed ceSAR search, enrich the top ranked compounds by 

using ceSAR-S rescoring in conjunction with docking, and thus reduce the number of compounds 

for further validation, as shown in Supplemental Figure 24 and discussed in the main manuscript. 

Supplemental Figure 24: ceSAR re-scoring of candidate BCLA1 inhibitors identified using a 

drug-discovery pipeline that combined docking simulation using Autodock, SAR analysis and 

multiple experimental validation methods. Note that ceSAR-S (Red) and consensus ceSAR-C 

(Yellow), which combines Autodock with ceSAR-S using geometric mean of individual ranks, 

yield a higher enrichment into experimentally validated inhibitors relative to Autodock alone 

(Blue).  

In this section, experimental validation of such identified candidate molecules is discussed 

further and summarized in Supplemental Tables 8 and 9, as well as Supplemental Figures 25 

and 26, with detailed results at each stage of validation included below. 



Supplemental Table 8. Summary of differential scanning fluorimetry and fluorescence 

polarization results of top tested compounds. Compounds highlighted in blue have dose 

responses shown in Supplemental Figure 26. 

ZINC ID Average Tm Shift (℃) High Dose FP %Bound Noxa 

ZINC263599489 1.92 0 

ZINC04974300 -30.75 1.2 

ZINC05930871 38.82 4.5 

ZINC04822049 0.17 23.84 

ZINC04803984 -1.5 36.11 

NSC114566 0.33 36.67 

ZINC01717014 38.83 37.77 

ZINC01650974 1.37 39.73 

ZINC03954010 14.75 39.74 

ZINC04934733 33.32 40.1 

ZINC05840007 0.49 41.48 

ZINC03194765 -1.42 42.04 

ZINC04896374 11.41 42.72 

ZINC01600320 -2.11 43.15 

ZINC04804129 29.16 43.51 

ZINC04217277 -33.6 45.98 

ZINC04523161 -0.59 46.69 

ZINC05839997 8.49 48.34 

ZINC04366919 -1.43 51.13 

ZINC04758328 11.62 56.8 

ZINC03953829 1.16 60.6 

ZINC04804154 35.86 62.06 

ZINC01673413 -12.92 62.06 

ZINC01872824 0.24 62.31 

ZINC01569504 -0.89 66.56 

ZINC04803990 0.43 68.17 

ZINC01593456 19.25 70.39 

ZINC03953823 37.41 70.74 

ZINC01040738 0.33 70.86 

ZINC01592019 19.82 73.95 

ZINC16968863 -0.41 75.56 

ZINC03953869 -2.26 77.7 

ZINC16957598 -0.38 77.83 

ZINC04212058 -0.85 100.64 



Thermal Shift Assay. Compounds were first tested for impacting thermal stability of BCL2A1 as 

a test for binding. 100 μM compounds were applied to purified A1 at 4.4 μM in triplicate. Sypro 

Orange dye was added at a final dilution of 1:1000 to protein- and compound- containing wells. 

An Applied Biosystems StepOnePlus was used to perform Differential Scanning Fluorimetry 

(DSF). DSF was performed with 100 µM of each compound for binding or Noxa binding 

inhibition. By DSF, all compounds that drove an increase in Tm that corresponded to at least three 

standard deviations from the mean were included in further assays (see Supplemental Figure 25). 

Supplemental Figure 25: High Dose DSF experiments were performed to further reduce the 

overall number of compounds to be tested. 

Fluorescence Polarization Assay. Compounds were additionally tested for specificity of binding 

by displacement of FITC-labeled mouse Noxa (mNoxa) (Peptide2.0) peptide via Fluorescence 

Polarization (FP). FP was performed as a two-step process, first identifying any compounds with 

polarization shifts at a single, high-dose, followed by a dose-response of any compounds that 

showed a substantial shift in polarization, or shift in thermal stability had a dose response measured 

via FP (Supplementary Figure 26).  

Dose response curves. Compounds that displayed decreased polarization or increased Tm values 

at least three standard deviations from the control were tested in a dose response FP experiment 

and their IC50s were determined. Dose response curves were measured by adding 3 μM BCL2A1 

to a serial two-fold dilution series of each compound ranging from 400 μM to 781 nM in 20 mM 

Tris pH 7, 500 mM NaCl, 0.005% Tween-20 buffer. All dose responses were performed in 

triplicate.  

Cell Death Assay. Compounds that demonstrated effective inhibition of BCL2A1-Noxa binding 

through FP were further tested in an activated T-cell death assay. Single cell suspensions from 

spleen were generated by maceration through a 100 µm nylon mesh followed by LympholyteM 

ficoll gradient separation (Cedarlane Labs, Burlington, NC). Purified cells were then cultured on 

anti-CD3 coated (3 µg/mL, coated overnight, Biolegend, San Diego, CA) six-well plates in the 

presence of soluble anti-CD28 (2 µg/mL, Bio X Cell, West Lebanon, NH) and IL-2 (10 ng/mL, 

R&D Systems, Inc., Minneapolis, MN) in RPMI media (Life Technologies, Carlsbad, CA) for 24 

hours at 37℃.  



Supplemental Figure 26: Fluorescence Polarization-based identification of compounds that 

inhibit Noxa binding. Representatives of the tested compounds with fitted inhibition curves are 

displayed in groups of 4 in panels A and B, respectively. 



Supplemental Figure 27: Chemical structures of compounds structurally related to initial 

hits grouped by compound family.   



Supplemental Table 9. List of compounds included in SAR-like study for identification of 

important functional groups on lead compounds. The compound column corresponds to the 

structures displayed in Supplemental Figure 27 above. Bolded compound names are initial hits 

with their analogs listed below. IC50 from FP dose response curves and Ki values are displayed. 

Compound 

FP IC50 

(μM) 

Ki 

(μM) 

A ZINC04974300 27.3 1.38 

B ZINC03861456 >400 >20.3

C ZINC04409853 387 19.6 

D ZINC03953869 211 10.7 

E ZINC100080130 13.8 0.70 

F  ZINC01600336 397 20.1 

G  ZINC01678715 >400 >20.3

H  ZINC08642221 >400 >20.3

I  ZINC00977796 389.5 19.7 

J  ZINC90751664 >400 >20.3

K  ZINC05839997 >400 >20.3

L  ZINC03831012 299.6 15.2 

M  ZINC04212058 333.6 16.9 

N  ZINC05840007 49.1 2.49 

O  ZINC04366916 >400 >20.3

P  ZINC04803984 31.8 1.61 

Q  ZINC04707580 >400 >20.3

R  ZINC04822049 15.8 0.80 

S  ZINC04523128 234.9 11.9 

T  ZINC04804120 >400 >20.3

U ZINC150367617 234.9 11.9 

V ZINC263599489 19.4 0.98 

W  ZINC04523161 104.5 5.29 

X  ZINC03882219 79.8 4.04 

Y  ZINC04896374 100 5.06 

Z  ZINC04804151 >400 >20.3

AA  ZINC04758328 68.9 3.49 

AB  ZINC04217277 45.8 2.32 

AC  ZINC03953829 119.6 6.06 

AD  ZINC04803990 >400 >20.3

AE  ZINC04804142 >400 >20.3

AF  ZINC03953823 320 16.2 

AG  ZINC04804129 59.2 3.00 

AH  ZINC04523127 >400 >20.3

AI  ZINC04528652 55 2.78 

AJ  ZINC04705990 189.3 9.58 

AK  ZINC03954010 32 1.62 



Cells were then washed and cultured again in IL-2 (10 ng/mL) for 24 hours at 37℃. Cells 

were harvested and cultured for 24 hours on anti-CD3 coated 96-well plates at 500,000 cells per 

well with 2 µg/mL soluble anti-CD28, 10 ng/mL IL-2, 0.125 µg purified anti-mouse FasL 

(Biolegend, San Diego, CA), and varying concentrations of BCL2A1 inhibitor compounds +/- 

polybrene (2 µg/mL, EMD Millipore, Burlington, MA). Cells were then harvested, and live and 

dead cells enumerated by trypan blue staining using the TC20 automated cell counter (Bio-Rad 

Laboratories, Des Plaines, IL). 

Putative inhibitors identified in the initial screening by FP and DSF were expanded to 

include close structural analogs that may increase effectiveness of this inhibition, see 

Supplemental Figure 27, Supplemental Table 9. Analogs to initial hits from early screens were 

ordered for further testing. Some of these compounds show close similarity in structure, but deviate 

in IC50 value, illustrating the importance of distinct functional groups. ZINC4974300 Family 

(purple) and ZINC593997 Family (brown) represent the structural analogs from Figure 7 of the 

manuscript. ZINC5840007 was initially an analog of a molecule that showed initial promise 

through thermal shift and differs only by a single -Cl in the chemical structure. 

Sig2Lead workflows and implementation details (S8) 

The transcriptional signature concordance-based and target structure-independent ceSAR-

S search has been implemented as an R Shiny package, dubbed Sig2Lead, which is available as a 

docker container and can be also accessed as a web server at http://sig2lead.net.  Sig2Lead 

workflow starts with a target of interest, specified by the user by its gene name. The iLINCS web 

server and its APIs (54) are used by Sig2Lead for retrieval of chemical perturbagens that have a 

similar (positively correlated) or dissimilar (negatively correlated) signatures with those of a 

targeted gene knockdown.  

As an alternative, a user provided loss of function signature for a target of interest, which 

can be readily generated using standard pipelines for the identification of differentially expressed 

genes, can be used. The search against LINCS KD or user provided loss of function signature 

generates an initial list of candidate compounds that comprises ‘concordant’ LINCS drug-like 

molecules. These LINCS molecules have concordant signatures to the genetic knockdowns as a 

set of potential inhibitors of the target pathway. 

Sig2Lead can also be run with an arbitrary (non-LINCS) library of user defined compounds 

to be ranked, supplied as canonical SMILES or SDF. User defined libraries of candidate molecules 

are screened out based on similarity to concordant LINCS molecules. APFP fingerprint library 

(45, 49) of ChemmineR (53, 59, 60) is used to convert small molecules in SMILES or SDF format 

to binary fingerprints. Chemical similarity is measured using the Tanimoto coefficient (Jaccard 

similarity) which is computed using the minSim algorithm optimized for sparse binary fingerprints 

(see Section S2).  



Sig2Lead can also perform hierarchical clustering of candidate molecules by chemical 

similarity to determine clusters of chemically similar compounds that also have substantial 

concordance. These data are depicted as a heatmap of the dissimilarity matrix, along with an MDS 

plot with pie charts demonstrating the contribution by user provided vs. LINCS candidates. These 

clusters can be further submitted to a STITCH network analysis pipeline that will identify literature 

reported associations with any compounds identified via Sig2Lead. Users can download top 

ranking molecules in the form of canonical SMILES or SDF for further analyses, including 

docking simulations or experimental validation.   

Sig2Lead is a public domain package available at https://github.com/sig2lead, including a 

set of scripts to combine ranking by docking with those by ceSAR-S using machine learning-based 

consensus with an ensemble of classifiers developed as a part of this contribution. Sig2Lead is also 

available as a web server at http://sig2lead.net. 

https://github.com/sig2lead
http://sig2lead.net/
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