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Methods 

Sex as a biological variable 

In this study, we used exclusively female mice for animal studies and publicly available data 

from BC that majorly affects women. We can draw any conclusion if our findings apply to male 

BC that compromise about <1% of all BC cases (1). 

PDX experiments 

Fresh primary breast tumor tissues were cut into 1-mm-thick pieces and orthotopically 

transplanted into cleared mammary fat pads of 4-week-old NOD-SCID gamma mice to generate 

novel PDX models (J53353, J2036, and J55454, Supplementary Table 1). Established PDX lines 

were kindly provided by M.T. Lewis (Baylor College of Medicine, Houston, USA) and A. Welm 

(University of Utah, Huntsman Cancer Institute, Salt Lake City, USA) and transplanted in the same 

way and as previously described (2–4). Once palpable, tumors were measured 2x/week using a 

caliper to monitor growth kinetics. Tumor volume was calculated using the following formula: 

 
𝜋

6
⋅ ℎ𝑒𝑖𝑔ℎ𝑡1.5 ⋅ 𝑤𝑖𝑑𝑡ℎ1.5. 

Unless otherwise noted, all PDX animals were euthanized at the endpoint, when the primary 

tumor reached 2.5 cm in diameter. In resection experiments involving HCI002, tumors were 

surgically removed at 1.0–2.0 cm in diameter. Metastases were allowed to grow in animals that 

underwent resection until the endpoint was reached (including 2.5 cm diameter of recurrent 

tumor). At the endpoint, the primary tumor and metastatic lungs were harvested, cut into small 

pieces and cryopreserved using Recovery Cell Culture Freezing Medium (Thermo Fisher 

#12648010) and stored in liquid nitrogen until further analysis.  



Histology and tissue staining 

For each PDX animal, after dissection, the middle and postcaval lobes of the right lung were fixed 

in 4% PFA overnight and processed for paraffin embedding. For immunohistochemistry, tissues 

were stained using the following antibodies: ER (abcam, ab1660, 1:200) using Ventana Discovery 

Ultra automated slide stainer and cell conditioning 1 and DAB, PR (Cell Signaling, 8757S, 

1:1000), ER (Cell Atlas; HPA000450; 1:1000) and HER2 (Cell Atlas, HPA001383; 1:200) were 

manually stained using AEC Chromogen (Sigma-Aldrich, AEC101) as a substrate following 

standard protocols (5). For histological analysis, tissue sections were stained with hematoxylin 

and eosin using standard protocols. Tissue slides were scanned (Zeiss Axio ScanZ.1, 3DHistech 

Pannoramic SCAN II Scanner) and images were analyzed using QuPath. Metastatic foci were 

easily identified by a larger nuclei/cytoplasm ratio. Micrometastases were defined as < 10 tumor 

cells, intermediate metastatic foci as 10-100 cells and macrometastases as >100 cells. The 

number and total area of metastatic foci and the total tissue area were determined.  

Lysis plate preparation 

Lysis plates were prepared by dispensing 0.4 μL lysis buffer (0.5 U Recombinant RNase Inhibitor 

(Takara Bio, 2313B), 0.0625% Triton™ X-100 (Sigma, 93443-100ML), 3.125 mM dNTP mix 

(Thermo Fisher, R0193), 3.125 μM oligo-dT30VN (IDT, 

5′AAGCAGTGGTATCAACGCAGAGTACT30VN-3′) and 1:600,000 ERCC RNA spike-in mix 

(Thermo Fisher, 4456740)) into 384-well hard-shell PCR plates (Bio-Rad HSP3901) using a 

Dragonfly liquid handler (STP Labtech). All plates were then spun down for 1 minute at 3220xg 

and snap-frozen on dry ice. Plates were stored at −80°C until FACS. 

Sample preparation and FACS sorting 

Primary tumor and metastatic lung tissues derived from the different PDX models were 

processed, stained, MULTI-seq labeled and FACS sorted as previously described (6). In brief, 



tissues were thawed, and dissociated in digestion media containing 50 μg/ml Liberase TL (Sigma-

Aldrich) and 2 × 104 U/ml DNase I (Sigma-Aldrich) in DMEM/F12 (Gibco) using standard 

GentleMacs (37C_m_LDK_1, 37_m_TDK1) protocols. Washed and filtered single-cell 

suspensions were stained with viability dye (Zombie NIR, 1:500, BioLegend, no. 423105), blocked 

with Fc-block (1:200, Tonbo, 70-0161-U500), and with LIN (anti-mouse TER119-FITC, Thermo 

Fisher, 11-5921-82; anti-mouse CD31-FITC, Thermo Fisher, 11-0311-85; anti-mouse CD45-

BV450, Tonbo, 75-0451-U100; anti-mouse MHC-I-APC, eBioscience, 17-5999-82) and anti-

human CD298 (PE, BioLegend, 341704).  

For the Smart-Seq2 experiments, tissues derived from the different PDX models were processed 

as described above, and primary tumor and metastatic cells were sorted directly into cooled lysis 

plates and snap-frozen for library preparation. If multiple plates were sorted from one PDX model, 

each plate contained half primary tumor and half metastatic cells to avoid plate-specific batch 

effects. For the MULTI-seq experiments, MULTI-seq LMO barcode anchors and coanchors were 

used at a final concentration of 2.5 μM directly after antibody staining before FACS sorting as 

described previously(6). For one experiment (PDX1), we used sets of three unique MULTI-seq 

barcodes/sample. After sorting, enriched live, LIN-/hCD298+ cells were pooled and loaded into 

10x microfluidics lanes at an average loading concentration of approximately 30,000 cells/lane. 

cDNA synthesis and library preparation 

cDNA synthesis was performed using the Smart-seq2 protocol (7–9). Briefly, 384-well plates 

containing single-cell lysates were thawed on ice, followed by first-strand synthesis. Then, 0.6 μL 

of reaction mix (16.7 U/μl SMARTScribe Reverse Transcriptase (Takara Bio, 639538), 1.67 U/μl 

Recombinant RNase Inhibitor (Takara Bio, 2313B), 1.67X First-Strand Buffer (Takara Bio, 

639538), 1.67 μM TSO (Exiqon, 5′-AAGCAGTGGTATCAACGCAGACTACATrGrG+G-3′), 8.33 

mM DTT (Bioworld, 40420001-1), 1.67 M betaine (Sigma, B0300-5VL), and 10 mM MgCl2 (Sigma, 

M1028-10X1ML)) was added to each well using a Dragonfly liquid handler (STP Labtech). 



Reverse transcription was carried out by incubating the plates on a ProFlex 2x384 thermal-cycler 

(Thermo Fisher) at 42°C for 90 min and stopped by heating at 70°C for 5 min. 

Subsequently, 1.5 μL of PCR mix (1.67X KAPA HiFi HotStart ReadyMix (Kapa Biosystems, 

KK2602), 0.17 μM IS PCR primer (IDT, 5′-AAGCAGTGGTATCAACGCAGAGT-3′), and 0.038 

U/μl lambda exonuclease (NEB, M0262L)) was added to each well with a Dragonfly liquid handler 

(STP Labtech), and second strand synthesis was performed on a ProFlex 2x384 thermal cycler 

by using the following program: 1. 37°C for 30 minutes, 2. 95°C for 3 minutes, 3. 23 cycles of 

98°C for 20 s, 67°C for 15 s, and 72°C for 4 minutes, and 4. 72°C for 5 minutes. 

The amplified product was diluted 1:10 with 10 mM Tris-HCl (Thermo Fisher, 15568025). Then, 

0.6 μL of diluted product was transferred to a new 384-well plate using the Viaflow 384 channel 

pipette (Integra). Illumina sequencing libraries were prepared using a library preparation protocol 

modified from previously reported tagmentation-based protocols (9, 10). Briefly, tagmentation was 

carried out by mixing each well with 1 μL of 1.6x Homebrew Tn5 Tagmentation Buffer and 0.2 μL 

of Homebrew Tn5 enzyme, and then incubated at 55°C for 3 min. The reaction was stopped by 

adding 0.4 μL of 0.1% sodium dodecyl sulfate (Fisher Scientific, BP166-500) and centrifuging at 

room temperature at 3,220 g for 5 min. Indexing PCRs were performed by adding 0.4 μL of 5 μM 

i5 indexing primer, 0.4 μL of 5 μM i7 indexing primer, and 1.2 μL of Nextera NPM mix (Illumina). 

All reagents were dispensed with Mosquito liquid handlers (STP Labtech). PCR amplification was 

carried out on a ProFlex 2x384 thermal cycler using the following program: 1. 72°C for 3 minutes, 

2. 95°C for 30 s, 3. 12 cycles of 98°C for 10 s, 67°C for 30 s, and 72°C for 1 minute, and 4. 72°C 

for 5 minutes. 

Library sequencing 

Following library preparation, the wells of each library plate were pooled using a Mosquito liquid 

handler (STP Labtech). The pooling was followed by two rounds of purifications using 0.7x 

AMPure beads (Fisher, A63881). Library quality was assessed using high-sensitivity capillary 



electrophoresis on a TapeStation (Agilent), and libraries were quantified by qPCR (Kapa 

Biosystems, KK4923) on a CFX96 Touch Real-Time PCR Detection System (Bio-Rad). Plate 

pools were normalized to 2 nM and equal volumes from the library plates were mixed to generate 

the sequencing sample pool. 

Sequencing libraries from 384-well plates 

Libraries were sequenced on the NextSeq or NovaSeq 6000 Sequencing System (Illumina) using 

2 × 100 bp paired-end reads and 2 × 12 bp index reads. NextSeq runs used high output kits, 

whereas NovaSeq runs used a 300-cycle kit (Illumina, 20012860). The PhiX control library was 

spiked in at ∼1%. 

Sequencing libraries for MULTI-seq 

For the MULTI-seq dataset, gene expression library preparation was performed using the v2 10x 

library kit with modifications as described previously to generate MULTI-seq libraries(6).  

Data analysis 

Data extraction 

For Smart-Seq2, sequences from the NovaSeq or NextSeq were demultiplexed using bcl2fastq 

v.2.19.0.316. Reads were aligned to the GENCODE V30 genome using STAR v.2.5.2b with 

parameters TK. Gene counts were calculated using HTSEQ v.0.6.1p1 with default parameters, 

except that ‘stranded’ was set to ‘false’, and ‘mode’ was set to ‘intersection-nonempty’. For 

MULTI-seq, sequences from the microfluidic droplet platform were demultiplexed and aligned 

using CellRanger v.5.0.1, available from 10x Genomics with default parameters.  

MULTI-seq demultiplexing 

MULTI-seq barcode FASTQs were converted to barcode unique molecular modifier (UMI) count 

matrices using the ‘MULTIseq.preProcess’ and ‘MULTIseq.align’ functions in the deMULTIplex R 



package (6) with default parameters. Notably, ‘PDX3’ FASTQs were randomly downsampled to 

1x108 total reads before UMI count matrix conversion to minimize computation time. Next, since 

cells labeled with the same MULTI-seq barcodes were split across multiple 10x Genomics 

microfluidics lanes in each experiment, MULTI-seq UMI count matrices from each lane were 

concatenated (note for clarity: PDX1 and PDX3 matrices were concatenated separately) to 

maximize classification performance. Using these concatenated matrices, samples were then 

classified into sample groups using the deMULTIplex workflow described previously (with 

semisupervised negative-cell reclassification) (6). Notably, since samples in the PDX1 experiment 

were encoded by sets of three unique MULTI-seq barcodes, classification was performed on the 

median cell barcode count for each set. Moreover, cells with the top and bottom 5% of MULTI-

seq barcode counts were masked during the initial classification workflow in the PDX1 dataset, 

and were reintroduced as ’negatives' during semisupervised negative cell reclassification. 

Analogous barcode count merging and outlier masking were not necessary for the PDX3 data, 

which were classified successfully using the default deMULTIplex workflow.  

Data preprocessing 

For Smart-seq 2 data, gene count tables were combined with the metadata variables using the 

Scanpy Python package version 1.8.1 (11). We removed the genes that were not expressed in at 

least 5 cells. Cells with counts less than 5000 or fewer than 500 detected genes were removed. 

Additionally, we removed cells with more than 50% mitochondrial genes and 20% ERCC reads. 

The data were then normalized using size factor normalization (such that every cell had gene 

counts of 10,000) and then log-transformed. We selected the top 2000 genes with the highest 

standardized variance as the highly variable genes by using the VST method in Seurat V3 (12), 

which is also implemented in Scanpy. Cell-cycle regression was performed after calculating the 

score of the S and G2/M phases for each cell (13). The data were then scaled to a maximum 

value of 10. We then computed principal component (PC) analysis and neighborhood graphs and 



clustered the data using Louvain and Leiden methods. The data were visualized using UMAP 

projection. 

For MULTI-seq data, for each 10X lane, we first removed the cells with UMI counts below 2500, 

and fewer than 250 genes, or more than 50% mitochondrial reads by using the Scanpy Python 

package version 1.8.1. In addition, to filter out reads from ambient RNA, we ran DecontX(14) with 

default parameters separately for each 10X lane. Next, we refiltered the dataset from every 10X 

run when cells did not contain a minimum number of genes (250), minimum of counts/UMIs 

(2500), and/or had more than 50% mitochondrial reads. The data were then further processed as 

described above for the Smart-Seq2 dataset. Cells were sample assigned using the MULTI-seq 

demultiplexing result, thereby removing doublets but including unassigned ‘negative’ cells. We 

used DBSCAN clustering to recover MULTI-seq-unassigned ‘negative’ cells. Based on the results 

of the Smart-Seq2 data, cells from different PDX tumors clustered separately from each other in 

transcriptional space. Negative cells in one DBSCAN cluster were assigned as the same tumor 

sample as the majority of MULTI-seq classified cells in that cluster. After completing cell 

assignment, all 10X runs were combined into one MULTI-seq dataset, and genes that were not 

expressed in at least 20 cells were removed. We then performed normalization, log-

transformation, identification of highly variable genes, cell cycle regression, principal component 

analysis, UMAP dimension reduction, and Louvain and Leiden clustering as described for the 

Smart-Seq data.  

EMP scoring and classification 

We used gene set enrichment analysis (GSVA) scoring with its default parameters to assign each 

cell an epithelial (E-score) and mesenchymal score (M-score) using epithelial and mesenchymal 

marker genes (15). The EMP-score for each cell is calculated by the sum of the E-score and M-

score for that cell. Cells with an EMP-score > 0.2 were classified as mesenchymal-like cells, cells 



with an EMP-score < -0.2 were classified as epithelial-like cells, and cells with an EMP-score 

between -0.2 and 0.2 were classified as EMP intermediate cells.  

Cell phase proportion statistical test 

Cells were assigned to different cell cycle phases based on the cell cycle score calculated 

previously. Then cell phase proportions in each tumor were calculated in different groups in each 

category, such as EMP cell stage, sort, and metastatic potential group. Finally, the Wilcoxon rank 

test was performed to compare groups in each category in each cell phase. The statistical tests 

were generated by using the Seaborn (16) and Statannot (17) packages in Python.  

ROC curve and AUC value 

The cells were first ordered by their PC2 value either in the whole SS2 dataset or in individual 

tumor samples. The true and false-positive rates were calculated based on the cell’s label 

(primary tumor cell or metastatic cell) and PC2 value by using the “roc_curve” function from Scikit-

learn (18). In addition, “roc_auc_score” from Scikit-learn was used to calculate the AUC value 

from the true- and false-positive rates.  

Differentially expressed genes 

Identifying DEGs in primary tumor and metastatic cells 

We performed differential expression analysis between primary tumor and metastatic cells in the 

entire dataset using the Seurat function FindMarkers using MAST (19) and the tumor model as 

the latent variable. In addition, we identified DEGs between primary tumor and metastatic cells 

for each tumor sample separately using the same Seurat function without setting the latent 

variable. Genes with p value < 0.05 and log2-fold change > 0.5 were retained for further analysis. 

After filtering, we combined the DEGs from tumors within the same metastatic potential group. 

We included DEGs that are shared between at least two tumors in the same metastatic potential 

group. 



Identifying gene signatures associated with metastatic potential 

To identify genes in the primary tumor that are associated with metastatic potential we first 

removed metastatic cells from the data. Then, we used the Seurat function FindMarkers using 

the MAST test and tumor model as the latent variable for identifying DEGs between one individual 

tumor and all tumors in the other metastatic groups. Genes were filtered with a cutoff of p value 

< 0.05 and log2-fold change > 0.5. After filtering, we combined the upregulated gene lists from 

tumors within the same metastatic potential group. Signature genes related to metastatic potential 

were determined as genes that were shared between at least two tumors in the same metastatic 

potential group. As final signature genes, we selected genes that were shared between the SS2 

and MULIT-Seq datasets. The number of overlapping DEGs between those two scRNASeq 

methods was shown to vary between tissues and cell types and was within the expected range 

(8, 20). 

Identifying EMP marker genes 

We identified marker genes for each EMP category (epithelial-like, EMP intermediate, 

mesenchymal-like) using the Seurat function FindMarkers using the MAST test and tumor sample 

ID as the latent variable. Genes were filtered with a cutoff of p values < 0.05 and log2-fold change 

> 0.5. 

Gene set enrichment analysis 

To identify pathways that were enriched in primary tumor or metastatic cells, we used the fgsea 

package(21) with Hallmark and GO gene sets from MSigDB (22, 23). We examined pathways 

that were significantly enriched in at least four tumor models. Pathways enriched in highly and 

poorly metastatic signatures were identified with the online tool of MSigDB.   

Copy number variation analysis 



To investigate clonal relationships between individual cells derived from primary tumors and 

metastases we inferred copy number variation (CNV) profiles for each cell using the inferCNV 

package(24) with the SS2 data set of mammary epithelial cells as a reference (20) and using the 

denoised output generated with default parameters. We calculated the mean CNV values for each 

genome position across all cells derived from primary tumors and metastases for each tumor and 

determined the Pearson correlations for each tumor model.  

Survival analysis 

For survival analysis, we used the breast cancer gene chip mRNA dataset from the KM-plotter 

(25) website. The mean expression levels of the signature genes were calculated for each sample 

in the dataset. The patient samples were then divided into low- and high-expressing sample 

groups with the median expression as the cutoff. Visualization was performed using the Lifelines 

Python package (26). The metastatic potential gene lists resulted from the overlapping genes 

between the MULTI-seq and Smart-Seq2 datasets from each metastatic potential group. For EMP 

signature gene lists, the epithelial signature gene list and mesenchymal signature gene list were 

the overlapping genes from the top 100 differentially expressed genes in the MULTI-seq and 

Smart-Seq2 datasets, and the intermediate EMP marker gene signature included the overlapping 

genes found in both the MULTI-seq and Smart-Seq2 datasets.  

In addition, the METABRIC(27) dataset was obtained from cBioPortal. We used 

"all_sample_Zscores" to create Kaplan-Meier survival plots (26) and perform log-rank tests for 

each breast cancer subtype using the mean expression of the intermediate EMP marker genes. 

Data Availability  

Raw sequencing files are available at the NCBI BioProject number PRJNA847563. Raw and 

processed data have been deposited in NCBI’s Gene Expression Omnibus and are accessible 



through GEO Series accession number GSE210283. Processed data are available as h5ad files 

on figshare (https://figshare.com/s/328942c0b8dc9aa69be1 and 

https://figshare.com/s/b53f327a8b612a7b2eeb). Code is available on GitHub 

https://github.com/aopisco/scBC. Supporting data values file is provided as supplementary 

information. 

Statistics 

The used statistical test is indicated in the figure legends. Full p values are reported and p values 

< 0.05 were viewed as significant. Survival was estimated using the Kaplan-Meier method and 

analyzed by log-rank test. Comparisons between two groups were tested using two-tailed 

unpaired Wilcoxon rank or Fisher’s exact test.  

Study approval 

Fresh primary breast tumor samples were obtained from the Cooperative Human Tissue Network 

(CHTN) in accordance with the Institutional Review Boards’ approval. Tissues were received as 

deidentified samples and all subjects provided written informed consent. Medical reports were 

obtained without personally identifiable information. The UCSF Institutional Animal Care and Use 

Committee (IACUC) reviewed and approved all animal experiments.  
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Supplementary Figure 1: Biological characteristics of the PDX models 

A) Bar chart showing the number of metastatic foci per mm2 lung tissue area for individual 
animals, ordered by increasing metastatic potential of the tumor models. Each bar represents 
one animal. Metastatic foci are classified as micrometastasis (< 10 cells), intermediate (10-
100 cells), and macrometastasis (> 100 cells). 
B) Scatter plot showing the correlation of mean metastatic burden as assessed by histology 
(proportion of metastatic to total lung tissue area) and flow cytometry (proportion of metastatic 
cells to number of live cells) in each model. Linear regression with 95% confidence intervals 
and Pearson correlation coefficients are shown. 
C) Representative H&E images of metastatic lung tissue for low, moderate and high 
metastatic potential models. Scale = 100 µm. 
D) Boxplot showing median number of days after tumor transplantation until endpoint per 
model ordered by the metastatic potential as determined in Fig.1B. 
E) Spider plot showing tumor growth of HCI002 transplantation alone (black) or 
transplantation and resection with subsequent recurrence (red). 
F) Bar chart showing the number of metastatic foci per mm2 lung tissue area for HCI002 and 
HCI002 resected animals. Metastatic foci are classified as described in A. Each tick mark 
represents one animal. 2/6 (control) and 3/8 animals (resected) developed metastases (p 
value=1, Fisher’s exact test). 
G) Boxplot showing the median number of days of tumor transplantation until endpoint 
comparing HCI002 (black) and HCI002 resection (red). 
H) Representative H&E images of lung tissue of HCI002 demonstrating low metastatic 
potential.  
I) Scatterplots showing the correlation of the mean expression of the indicated receptors in 
primary tumor and metastatic cells per model. Linear regressions with 95% confidence 
intervals and Pearson correlation coefficients are shown. 
J) Representative images showing immunohistochemistry staining for ER, PR, HER2 for 
primary tumor (PT) and metastatic lung (Met) for TNBC models. Arrows indicate metastasis. 
When possible, the same metastasis is shown in consecutive sections. Scale = 100 µm. 
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Supplementary Figure 2: Differential gene expression between primary tumor and matched 
metastatic cells  

A) Ridge plot showing the normalized number of cells along Principal Component (PC) 1 
coordinates distinguished by ER status (left) and BC subtype (right). 

B) ROC curves with the corresponding area under the curve (AUC) showing PC1 
distinguishing tumor models based on ER status (left) or BC subtype (right). 

C) UMAP projection of single-cell transcriptomes color-coded by batch (individual plates). 
Dashed lines highlight clusters of cells from the same tumor measured in multiple batches 
(technical replicates). 

D) Same as in C color-coded by individual animals. Dashed lines highlight clusters of cells 
from the same model retrieved from multiple animals (biological replicates). 

E) Workflow for identifying metastasis-specific DEGs across tumors. 
F) Heatmap showing the mean expression of DEGs per model between primary tumors and 

metastases. 
G) Bar chart showing pathways enriched in primary tumors (negative NES, orange) and 

metastases (positive NES, blue) using GO biological pathways from MSigDB.  
H) Enrichment plot showing hypoxia as the top enriched pathway in primary tumors (left). 

Heatmap showing expression of DEGs associated with hypoxia in single cells (right).  
I) Same as in H for MYC targets as the top enriched pathway in metastases. 
J) ROC curve using PC2 coordinates to classify cells into either primary tumor or metastatic 

cells of all tumors grouped together (global) with depicted AUC. 
K) Bar chart shows the number of primary tumor (PT) and metastatic (Met) cells for each 

tumor. 
L) Ridge plots (left) showing normalized cell counts along PC2 of primary tumor and 

metastases for model J55454, which lacked a sufficient number of metastatic cells, and 
corresponding ROC curves (right). 

M) Same as in L showing model H5471. 
N) Ridge plots showing normalized cell counts along PC2 of primary tumors and metastases 

for individual tumor models with a sufficient number of metastatic cells and corresponding 
ROC curves of PC2. The clear separations in PC2 are reflected by an AUC > 0.7 in the 
ROC curve analysis. Heatmaps showing the expression of DEGs between primary tumor 
and metastatic cells.  

O) Scatter plot showing correlation of mean CNV values per genomic region determined in 
primary tumor and metastatic cells for each tumor.   

P) Ridge plot showing the proliferation score for primary tumors and metastases.  
Q) Bar chart showing the proportion of cells in G1/G2M/S cell cycle phase for primary tumors 

and metastases. The Wilcoxon rank test revealed no significant differences between the 
two groups. 
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Supplementary Figure 3: Characteristics of the metastatic signatures   

A) Schematic workflow for the identification of metastatic signatures.   
B) UMAP projection of single-cell transcriptomes color-coded by individual tumors. 
C) Same as in B color-coded by ER status. 
D) Bubble plot showing the gene expression of receptors per tumor.  
E) Enriched pathways identified using the DEGs shared among poorly metastatic tumors. 
F) Boxplot showing immune regulation signature expression comparing low and 
moderate/high metastatic potential tumor models. Significance (p value) is indicated using the 
Wilcoxon rank test. 
G) Enriched pathways identified using the DEGs shared among highly metastatic tumors. 
H) Scatterplot showing the correlation of MYC41 and immune regulation signature expression. 
The Pearson correlation coefficient is shown. 
I) Ridge plot showing proliferation score for primary tumors with low and moderate/high 
metastatic potential. Bar chart showing the proportion of cells in different cell cycle phases for 
primary tumors of low and moderate/high metastatic potential. The MULTI-seq dataset is 
shown. The Wilcoxon rank test revealed no significant changes in proportions.  
J) Same as in I for the Smart-Seq2 dataset. The Wilcoxon rank test revealed no significant 
differences. 
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Supplementary Figure 4: Metastatic signatures are associated with poor patient-related 
outcomes 

A) Kaplan-Meier-plots showing the Recurrence-free survival (RFS) of BC patients (generated 
with KM-plotter42) stratified by PAM50 BC subtype using the mean expression of the low 
metastatic potential (top panel), moderate metastatic potential EMP (middle panel), and high 
metastatic potential signatures (lower panel). The number of patients (n) and p values (p) are 
shown calculated with the log-rank test. * indicates significance.  
B) Same as in A) showing the distant metastasis-free survival (DMFS).     
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Supplementary Figure 5: EMP is a key feature of tumor heterogeneity 

A) Scatter plots showing mesenchymal versus epithelial signatures for individual cells colored 
by the gene expression of epithelial (EPCAM, CDH1) and mesenchymal markers (VIM, FN1, 
CDH2) colored by magnitude of scaled gene expression. Showing Smart-Seq2 (upper panel) 
and MULTI-seq datasets (lower panel).  
B) Scatter plot showing the correlation of the mean EMP signature expression per tumor 
between the Smart-Seq2 and MULTI-seq datasets. Linear regression with 95% confidence 
intervals and Pearson correlation coefficient are shown. 
C) Violin plot showing EMP signature expression per tumor ordered by metastatic potential 
using the MULTI-seq dataset. 
D) Bubble plot showing the correlation of the EMP signature with PCs 1-5 using the MULTI-
seq dataset.  
E) Cells ranked by EMP signature defining three cell states: epithelial-like (blue), intermediate 
EMP (purple) and mesenchymal-like cells (red) using the MULTI-seq dataset. 
F) Bar chart showing the proportion of EMP cell states per tumor ranked by the increasing 
proportion of mesenchymal-like cells. The MULTI-seq dataset is shown. 
G) Violin plots (top) showing expression of EMT-associated TFs in expressing cells grouped 
by EMP cell states (Epi = epithelial-like, Inter = Intermediate EMP, Mes = mesenchymal-like 
cells). Bar charts (bottom) showing the fraction of expressing cells in gray. The MULTI-seq 
dataset is shown. 
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Supplementary Figure 6: Intermediate EMP cells are characterized by specific markers 
A) Heatmap showing DEGs for epithelial-like, mesenchymal-like, and intermediate EMP cells 

from the Smart-Seq2 data. Cells are ordered by increasing EMP signature. Annotations 
indicate the EMP cell state, EMP signature expression, tumor model and metastatic 
potential. The arrow highlights intermediate EMP cell marker genes. 

B) Venn diagrams showing the number of overlapping epithelial (blue, left panel) and 
mesenchymal markers (red, right panel) obtained from Smart-Seq2, MULTI-seq and Tan 
et al. 2014. Genes shared among all three sets are highlighted. 

C) Scatter plots showing the expression of the indicated genes ordered by increasing EMP 
signature expression. The dots show the expression in individual cells, and lines show 
smoothed expression in expressing cells. The bar charts on top show the proportion of 
positive expressing cells for the EMP cell states. The Smart-Seq2 dataset is shown. 

D) Kaplan-Meier-plots showing the RFS of BC patients stratified using the mean expression 
of the overlapping genes for each EMP cell state (generated with KM-plotter42). p values 
were calculated using the log-rank test. 
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