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Supplementary Figure 1. CRISPR-Cas9 editing strategy and chromosomal integrity assessment for
the edited clones. (a) Schematic of the Cas9 RNP editing workflow. (b) Flow cytometry analysis displays
MESCs transfection efficiency with Cas9-tracrRNA-ATTO550 (about 20% or higher - top). Untransfected
cells subjected to Cas9 RNP complex but not transfected were used to set the gates for flow cytometry
analysis (bottom). (c) Schematic with guide RNAs and ssODN designed to introduce K27A (red) and K9A
(orange) mutations in the H3f3b locus. (d-e) Representative Sanger sequencing chromatograms showing the
comparison between wild-type and K27A (d) or K9A (e) mESCs at the H3f3b endogenous locus. (f)
Representative whole-genome plots showing the copy-number difference of 100 kb genomic bins between
edited clones and the parental control line. Panel 1a created with BioRender.com released under a Creative
Commons Attribution-NonCommercial-NoDerivs 4.0 International license.
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Supplementary Figure 2: Histone modifications middle-down mass spectrometry analysis. Heatmaps
displaying the relative abundance (row z-score) of individual or combinatorial post-translational modifications
of histone H3.3 (a), H3 (b) or H4 (c). Lysine-to-alanine mutated H3.3 peptides were used as controls in panel
“a”. The peptides length was omitted for clarity from the figure and is reported here: H3K4 (3-8); H3K9/K14
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Supplementary Figure 3: Phenotypic characterization of H3.3 K27A and K9A mESCs. (a) RT-qPCR
results for neuronal progenitor cell markers (day 8) in control, K9A, and K27A (n=3 independent clonal
lines/condition). Data are the mean + standard deviation of gene expression values (2-AACt) normalized to
Rpl13 housekeeping gene and control. (b) Merged immunofluorescence images of neurons on day 12 of the
in-vitro differentiation, stained with antibodies against MAP2 and with DAPI to detect nuclei. Scale bar 100
pum. (c) Representative plots of flow cytometry analysis displaying gating strategy for measuring 5-ethynyl-2’-
deoxyuridine (EdU) incorporation in control, K27A, and K9A mESCs. (d) Representative plots of flow
cytometry analysis upon Annexin V staining for control, K27A, and K9A mESCs. (e) Levels of lipid peroxides
measured in control, K27A, and K9A mESCs using BODIPY-C11 staining and flow-cytometry analysis. P
value: two-sided unpaired t-test. Source data are provided as a Source Data file.
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Supplementary Figure 4: Analysis of DA-H3K9me3 regions. (a) Volcano plots showing differential
H3K9me3 ChlP-seq analysis in K27A. (b) Genomic annotation of the H3K9me3 regions with significantly
reduced signal in K9A mESCs. Promoter defined as TSS * 1 kb. (c) Genomic annotation of the H3K27ac
regions with significantly increased signal in K9A mESCs. Promoter defined as TSS * 1 kb. (d) Expression of
genes located within 50 kb from DA-H3K9me3 regions; individual genes (data points) are colored to indicate
if the differential expression is significant (orange/red) or not (purple). Source data are provided as a Source
Data file.
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Supplementary Figure 5: diffTF analysis for K9A mESCs. (a) Volcano plot showing TFs with higher
activity in K9A (left — orange) or in control (right — grey). TFs are classified as activators (green) or repressors
(red). Only expressed TFs are displayed.
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Supplementary Figure 6: In-vitro macrophage differentiation. (a) Representative bright-field images of
embryoid bodies (EBs, day 8), Factories (day 12), and ES cells-derived macrophages (ESDMs, day 4 post-
harvesting) were obtained from control and K9A mESCs. (b) Representative plots of flow cytometry analysis
displaying gating strategy for measuring the percentage of control mESCs-derived macrophages, positively
stained with anti-CD11b and anti-F4/80 antibodies.
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Supplementary Figure 7: Transposable elements analysis. (a) Violinplots displaying expression of highly
expressed non-LTR repeats (i.e., average log-transformed normalized count values above median), in
control and mutant mMESCs. Total repeats accounted for n=94, of which n=60 LINE and n=34 SINE. P-value:
two-sided unpaired t-test (ns: p-value>0.05). (b) Volcano plots showing differential non-LTR repeats



expression in K9A (left) and K27A (right) mESCs (padj<0.05 & abs(log2FC)>1.5). (c) Violinplots displaying
expression of highly expressed ERV families (i.e., average log-transformed normalized count values above
median) in control and mutant mESCs. Total ERVs accounted for n=297, of which n=158 ERVK (53%;),
n=42 ERV1 (14%), n=28 ERVL (9.4%), and n=69 MaLR (23%). P-value: two-sided unpaired t-test (ns: p-
value>0.05). (d) Principal component analysis of LTRs expression. (e) Volcano plot showing differential
ERVs expression in K27A mESCs (padj<0.05 & abs(log2FC)>1.5). (f) RT-gPCR using primers for selected
repeat elements. (g) Stacked barplot indicating the percentage of transposable elements with or without
significant (pval<0.01) H3.3 enrichment over input in control mMESCs. (h) Boxplot of H3.3 enrichment (log2FC
over input) at ERV families and SINE elements, displaying significant H3.3 signal (from panels S7g and Fig.
5d). (i) H3K9me3 ChIP-gPCR with primers for ERVs (left) or other TEs (right). Rosa26 locus was used as a
negative control for H3K9me3 enrichment. (j) Examples of ERV subfamilies displaying non-significant
H3K9me3 enrichment and concomitant significant H3K27ac enrichment in control mMESCs without notable
further activation in K9A mESCs. (k) TF motifs enriched at ERVs marked by high H3K27ac (i.e., enrichment
over input above median) in control and K9A mESCs. (I) TF motifs at ERVs marked by high H3K27ac (i.e.,
enrichment over input above median) exclusively in K9A mESCs. Analysis performed with Homer de-novo
enrichment (“—size given”). %T: percentage of targets with motif. Source data are provided as a Source Data
file.
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Supplementary Figure 8: Evaluation of viral mimicry involvement in immune-related gene expression.
(a) Normalized mRNA-seq counts for selected interferon-stimulated genes in control and K9A mESCs.
Genes are divided in four groups: NF-kB pathway genes (Nfkbl/p50; Nfkb2/p65; Nfkbia/lkB-alpha;
Nfkbib/IkB-beta; Nfkbie/lkB-epsilon), Toll-like receptors genes, Antiviral effectors genes (Ch25h; Isgl5;
Rsad2/Viperin; Bst2/Tetherin; Ifitm1-2-3) and Regulators of interferon response genes (Irf2-7; Ifihl/Mdab5;
Ifnar2; Ifngr2; 117; Irf2bp1-2; Eif2ak2/Pkr; Stat1-2). Significant differences were calculated with DESeqg2, and
p-values adjusted with Benjamini Hochberg’s correction (ns: p-adj>0.05). (b) Real-time gPCR for immune
genes and pluripotency factor genes upon treatment of DMSO vehicle or of 2.5 pM RIG012 inhibitor in
control and mutant mESCs (n=3 independent clonal lines/condition). Data are the mean + standard deviation
of gene expression values (2-AACt) normalized to Rpl13 housekeeping gene and control in each treatment
group. Source data are provided as a Source Data file.
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Supplementary Figure 9: Genome browser snapshots of representative DA-H3K9me3 regions. (a-d)
Genome browser snapshot of a representative Cluster 1 and Cluster 2 DA-H3K9me3 region (highlighted),
linked through the GRN to the H2-BI (a), Cd59a (b) and Chrd (c) genes. H3K27me3, H3K27ac, H3K9me3,
H3.3, and mRNA-seq tracks are shown. For ERV annotation, only the name of the ERV located within the
DA-H3K9me3 region is shown.
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Supplementary Figure 10: Enhancers analysis. (a) MA-plot showing differentially active CRESs, according
to tfTarget analysis (retained CREs as significant with padj<0.01). (b) Selected TF motifs significantly
enriched at CREs with increased (left) or decreased (right) activity in K9A mESCs. (c) Violin plots showing
H3K27ac ChlP-seq signal at peak center = 1 kb of enhancers retained in the GRN. P-value: two-sided
unpaired t-test (ns: p-value>0.05). (d) Volcano plot showing differential H3K27ac ChIP-seq peaks in K27A
vs. control mMESCs and ChromHMM annotation of DA-H3K27ac regions. (e) Violin plots showing H3K9ac
ChiIP-seq signal at peak center = 1 kb of enhancers retained in the GRN. P-value: two-sided unpaired t-test
(ns: p-value>0.05). (f) PRO-seq signal at Weak, Medium, and Strong dREG enhancers included in the GRN
for K27A and control mESCs. Log2(RPKM) values are reported. P-value: two-sided unpaired t-test (ns: p-
value>0.05) (g) Expression of DEGs connected to dREG enhancers through the GRN; log2(fold-change)
values calculated with DESeq?2 are plotted, and individual genes (data points) are colored to indicate if the
differential expression is significant (red) or not (purple). In panels “c”, “d” and “f”, significance was calculated
with two-sided unpaired t-test (ns: p-value>0.05). (h) H3K18ac ChIP-qPCR at selected Strong enhancers
regions. The relative enrichment over the input is reported, and the data are mean + standard deviation (n=3
replicates Ctrl; n=2 replicates mutants). Source data are provided as a Source Data file.
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Supplementary Figure 11: Effect of H3.3 K27A and K9A mutations on PRC2. (a) Volcano plots showing
differential SUZ12 ChiIP-seq peaks in K27A (left) or K9A (right) versus control (consensus peakset with
n=3356 peaks). (b) Radiograms were used to calculate the mean values reported in Fig. 7g for the
PRC2 methyltransferase assay. (¢) Gene ontology enrichment analysis of bivalent genes upregulated only in



K9A (left) or in K27A/K27A+K9A mESCs (right). P.adjust: p-values of significant GO terms adjusted for
multiple comparisons. (d) H3.3 ChIP-seq signal in control mESCs, at the promoter regions of bivalent genes,
upregulated only in K9A or K27A/K27A+K9A. A group of comparable size with non-significantly differentially
expressed bivalent genes was randomly selected for comparison. P-value: two-sided unpaired t-test. (e)
Genome browser snapshot of a representative Cluster 2 DA-H3K9me3 region (highlighted), linked through
the GRN to the Frzb gene. For ERVs annotation, only the name of the ERV located within the DA-H3K9me3
region is shown; from left to right, the other elements are RMER10A, RLTR20B2, RLTR13B1, and RMER15-
int. (f) H3K9me3 ChIP-gPCR at selected cryptic enhancer regions, connected through the GRN to Thx20
and Frzb genes, in control, K9A and K9A mESCs stably expressing H3.3K9A, H3.1 or H3.3WT. The relative
enrichment over the input is reported, and the data are mean * standard deviation (n=3 independent
replicates). crEnh: cryptic enhancer. (g) RT-qPCR results for Tbx20 and Frzb genes in control, K9A, and
K9A cells stably expressing H3.3K9A, H3.1, or H3.3WT. P-value: two-sided unpaired t-test. Source data are
provided as a Source Data file.



