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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

In this article Senanian and collaborators have experimentally implemented reservoir 

computing on a quantum system composed of a microwave cavity coupled to a single 

transmon qubit, and they have applied it to three different machine learning tasks. This is 

the first experimental implementation on an analog quantum system. The authors have 

developed a scheme where an input is sent on resonance to the cavity, then the state of the 

qubit is measured, and finally the qubit is used to measure the parity of the cavity state, 

before everything is repeated for the following inputs. The whole sequence for all the input 

data is repeated multiple times and the feature vector is composed from the moments of 

the statistical distribution of the parity measurement results over different measurement 

shots. 

This reservoir computing scheme is new and very interesting because it uses the backaction 

of the measurement, which is an intrinsically quantum phenomenon, to introduce 

nonlinearity necessary for the information processing by the neural network. The idea of 

using moments to capture the structure of the quantum fluctuations is new and important 

in the field of quantum machine learning, and thus I recommend the publication of this 

article in Nature Communications if they answer to my point-by-point comments and 

questions listed below. 

1. In the main text an emphasis is put on the analog nature of the system, and the possibility 

to combine its roles as a quantum detector and as a quantum reservoir. On the other hand, 

quantum dynamics, the choice of the unitaries and quantum measurement backaction are 

only discussed in the Supplementary Material. Some discussion of their role would be 

important in the main text. 

2. Are input and control pulses sent separately in time? How are they distinguished 

otherwise? 

3. The moments are not well defined in the Figure 1. In Figure 1 (c) it should be written 

$x_{n0}, x_{n1}, x_{n2}$ etc instead of $x_0, x_1, x_2$…. Also, they could be written in a 

recursive way in a few lines, mu_1, mu_2, mu_n, because all those products do not exist for 



mu_1 for example. 

4. M is not well defined in the main text. Is it the the number of inputs? Which also 

determines the number of unitaries, and the number of qubit measurements? Its value 

should be explicitly stated, especially as it is written that the trade-off concerning its value is 

important. 

5. The role of reset is not clear enough, is there a reset after each input? 

Questions and comments on the Supplementary Material: 

1. In appendix D it is written that sometimes better performance is obtained with pseudo-

inverse than with ADAM. That is surprising as ADAM is optimized to give better results. 

What is the explication for this? 

2. Why do the authors use SoftMax? 

3. It is not clear why the lowest MSE doesn’t give the best accuracy. 

Reviewer #2 (Remarks to the Author):

The authors present a nice study showing how to integrate a radio-frequency detector with 

a machine-learning algorithm using superconducting quantum bits. They demonstrate two 

classification tasks where they demonstrate processing the classical radio-frequency signals 

to determine the encoded data format or the statistical form of a noisy signal. I think this is 

an interesting result, but I find the presentation of the work is lacking in several regards. I 

encourage the authors to rework the manuscript based on the comments below. 

- While the two tasks they study appear to take advantage of their approach, it is not clear 

why these are relevant for any application. Some justification of their chosen tasks is 

needed. 

- As a detector of radio-frequency radiation, they need to provide standard metrics. What 

frequency does it operate, what is the bandwidth, what is the noise-equivalent power, etc. 

While some of the details can be found by carefully going through the supporting material, 

they should be given in the body text. 



- From what I can see, they do not mention in the body text that they have to highly 

attenuated the detector signal as it goes from room-temperature to the base temp of the 

frig. This needs to be pointed out explicitly and the metrics requested above need to be 

given outside and at the base of the frig. Some comparison to other technologies should be 

made. 

- Given the high attenuation of the signal, are there applications of their approach for 

measurement classical radio-frequency signals that are already at the base temperature of 

the frig? 

- I find the discussion of the setup and the mathematical description to be lacking. They 

have cavity and qubit control signals. They should be given different names to avoid 

confusion. I don't see a discussion of the role of the (first) cavity control signal, which is 

summed with the detected signal. The diagram of the setup in the supplemental 

information, which shows 3 circuit elements, does not correspond to the first figure in the 

body text, where they show two circuit elements. In the supplemental setup figure, they 

should label each one of the circuits and they have to indicate the location of the signal they 

are measuring outside the frig. In the Hamiltonian, they say second and last terms, but they 

probably mean pairs of terms? Anyway, they do not define all the symbols (such as \sigma_x 

and \sigma_y, nor \Omega). 

- They show that they can outperform a classical reservoir computer. The danger is that 

there is no proof that this is the classical reservoir computer. They are open to the issue that 

someone could come along and demonstrate a reservoir computer working with 

substantially fewer resources. For this reason, I don't think that this is a great comparison. I 

like better that they show decreased performance when they destroy entanglement in the 

system. They might consider dropping the comparison to the classical approach - it does not 

seem to be needed. 

Reviewer #3 (Remarks to the Author):

This work demonstrates the use of a superconducting quantum circuit for analog quantum 



reservoir computing, enabling the classification of microwave signals without discretization 

and the processing of ultra-low-power signals. The presented experimental implementation 

is an important advance for the field of quantum reservoir computing, which could merit 

publication in Nature Communications provided the authors address the following aspects. 

1) The quantum reservoir computing literature discusses several measurement protocols to 

allow for continuous measurements. It is not clear to me how the current work relates to 

previous works, could the authors clarify? 

2) I find some of the explanations of the system to be relatively involved unnecessarily. In 

particular, it is not clear to me what is the dimensionality of the feature vector. As described 

in Appendix D, the feature vector is defined to be R-dimensional but it remains quite 

abstract. In my opinion, it would help the reader to add a simple example of how to 

compute the value of R from the other parameter choices (order of moments used and 

number of shots). This would allow easier comparisons to classical reservoir computers. It 

would also be useful if the authors could show how many of the features are linearly 

independent for some particular cases (for instance in figure S17). 

3) In my current reading of the manuscript, I understand the quantum coherences are a 

needed resource to increase the performance of the system and a major justification to 

claim that the experimental system is indeed working as a quantum reservoir computer. Is 

there a simple metric to relate the quantum advantage in terms of physical resources 

between a classical and a quantum reservoir? 

4) In the context of reservoir computing, memory is a fundamental property. Here, the 

authors build feature vectors from correlations between nearest, next-nearest, and next-

next-nearest measurements. Is this analogous to say that the memory of this QRC system is 

two steps? If not, could the authors comment on the memory of the system in physical 

units? 

5) The current manuscript deals with microwave photons while there are some recent 

suggestions to implement QRC with optical photons, either with proof-of-principle 



experiments or with numerical simulations of theoretically described implementations. The 

manuscript would benefit from a brief comparison to other photonic approaches to 

quantum reservoir computing. 

Minor points: 

- In the classification of radio-frequency (RF) communication modulation protocols, the 

protocols 32QAM and 32APSK tend to be misclassified. Did the authors estimate what 

would be needed to improve the accuracy in this task in terms of reservoir computing 

properties such as memory or nonlinearity? 

- Is it possible to estimate the maximum information processing speed of this microwave 

QRC system in terms of bits per second? 

- The sentence "Given the roughly 2×16 dimensions of Hilbert space used by our reservoir, 

this computational capacity is on the order of what would be expected for a large shot 

number." at the end of Appendix H merits additional explanations. 

Reviewer #3 (Remarks on code availability):

I did not review the code. 



Point-by-point response to the reviewers. 
 
We would like to thank all the reviewers for their detailed and thorough reviews. We are glad 
that all the reviewers recognize the significance and relevance of our work. The reviewers 
raised several questions and made suggestions which have allowed us to significantly improve 
our manuscript. 
 
Summary of main changes: 

1. We have provided summaries of the design and motivation of the control signals in the 
main text, rather than referring the reader to the Appendix.  

2. We have made clarifying edits to the main text regarding the output feature vector 
construction, as well as provided more details in the Appendix.  

3. We have removed the section of the Appendix comparing our Quantum reservoir 
computer (QRC) to a classical reservoir computer (previously Appendix H).   

 
In the following, we reply on a point-by-point basis. Reviewer comments are typeset in blue, 
our reply in black. Changes to the manuscript are typeset in green. Outside of grammatical 
corrections, all our changes are contained within the reply. 
 
Reviewer 1: 
 
In this article Senanian and collaborators have experimentally implemented reservoir 
computing on a quantum system composed of a microwave cavity coupled to a single 
transmon qubit, and they have applied it to three different machine learning tasks. This is the 
first experimental implementation on an analog quantum system. The authors have developed 
a scheme where an input is sent on resonance to the cavity, then the state of the qubit is 
measured, and finally the qubit is used to measure the parity of the cavity state, before 
everything is repeated for the following inputs. The whole sequence for all the input data is 
repeated multiple times and the feature vector is composed from the moments of the statistical 
distribution of the parity measurement results over different measurement shots. 
 
This reservoir computing scheme is new and very interesting because it uses the backaction of 
the measurement, which is an intrinsically quantum phenomenon, to introduce nonlinearity 
necessary for the information processing by the neural network. The idea of using moments to 
capture the structure of the quantum fluctuations is new and important in the field of quantum 
machine learning, and thus I recommend the publication of this article in Nature 
Communications if they answer to my point-by-point comments and questions listed below. 
 
We thank the reviewer for the concise summary of our main idea and for acknowledging its 
broader relevance in the field of quantum machine learning.  
 
In the main text an emphasis is put on the analog nature of the system, and the possibility to 
combine its roles as a quantum detector and as a quantum reservoir. On the other hand, 
quantum dynamics, the choice of the unitaries and quantum measurement backaction are only 
discussed in the Supplementary Material. Some discussion of their role would be important in 
the main text. 
 



Are input and control pulses sent separately in time? How are they distinguished otherwise? 
 
We thank the reviewer for bringing this point of confusion to our attention. The cavity control 
pulses are sent before and after the input signal. The qubit control scheme features pulses 
before and after the input, as well as a full qubit rotation during the input signal. The other 
distinguishing feature between the input and control signals is that, while the control signals 
are fixed across all tasks, the input signals will vary from task to task (and within each task).  
 

 
 
The moments are not well defined in the Figure 1. In Figure 1 (c) it should be written $x_{n0}, 
x_{n1}, x_{n2}$ etc instead of $x_0, x_1, x_2$…. Also, they could be written in a recursive way 
in a few lines, mu_1, mu_2, mu_n, because all those products do not exist for mu_1 for 
example. 
 
We thank the reviewer for pointing out another point of confusion. We have edited Figure 1 to 
reflect the above suggestion and have added clarifying text in the main article.  
 

Action taken: To address the two comments above, we have rewritten the following 
paragraph in the introduction to include clearer explanations for the unitary control and 
measurement backaction: 
  
“The oscillator and qubit control drives used in this paper realize a reservoir that consists of 
a series of entangling unitaries interleaved with qubit and oscillator measurements (Fig.1c). 
The analog input is sent resonantly to the oscillator and results in a time varying conditional 
displacement of the oscillator, which streams in concurrently with control drives. The cavity 
resonator hosting the oscillator mode has a frequency of 6 GHz and a 2-kHz linewidth. The 
combination of the input and control drives implements a unitary that encodes the input into 
the state of the oscillator and generate entanglement between the qubit and the oscillator. 
Following the unitary evolution, we perform a qubit measurement, and then a parity 
measurement of the oscillator state [38,39] (see Appendix C). The parity measurement 
projects the oscillator state into super-positions of either even or odd Fock states, a highly 
non-Gaussian measurement allowing one to sense changes in the photon number 
distribution. Additionally, the entangling dynamics between the measurements effectively 
implement a sequence of non-commuting measurements generating correlated 
measurement distributions that can then be used as complex output features….” 
 
Additionally, we have added the following sentences to the results section discussing the 
details of the classification of time-independent signals:  
“…The entangling conditional displacements are applied before and after the unknown input 
is fed into the system, and the qubit is rotated by π or π/2 pulses before, during, and after the 
input. Due to the qubit-state-dependent shift of the oscillator frequency by -χ (see first term 
of Eq 1) these qubit rotations serve to make the cavity sensitive to the input signal 
independent of the state of the qubit at the start of each round of input. Additionally, when 
combined with the conditional displacements on the oscillator, the control and input scheme 
impart a geometric area enclosed by the cavity trajectory onto the qubit, such that the phase 
of an unknown time-independent input signal can be extracted via a qubit measurement.” 



 
 
 

M is not well defined in the main text. Is it the number of inputs? Which also determines the 
number of unitaries, and the number of qubit measurements? Its value should be explicitly 
stated, especially as it is written that the trade-off concerning its value is important.  
 
M is the number of measurements performed before the system is reset, and therefore 
corresponds the length of the bitstring samples used to construct our output features. There 
are two measurements for each round of input (and control unitaries), so the number of 

Action taken: We have added the following text to the introduction to help the reader 
understand how the output feature vector is constructed using examples: “For example, 
the first-order central moment μ1 is a M -dimensional vector representing the average 
over all measured bitstrings, i.e. μ1 = [⟨xn0⟩, ⟨xn1⟩, . . .], the second-order central moment μ2 
is the covariance matrix with elements (μ2)ij = ⟨xnixnj ⟩ − ⟨xni⟩⟨xnj ⟩, and so on.  Here, the 
expectation value is taken over the sample index n. 

We have also made edits to Figure 1: 

 



unitaries applied before a reset is M/2. In all of the tasks presented in the paper, we use M = 8 
measurements before reset. The role of reset is answered in the response below.  
 

 
 
The role of reset is not clear enough, is there a reset after each input? 
 
We thank the reviewer for this question. The reset is applied after four rounds of the input (and 
therefore eight measurements). This is done for two reasons: 

1. The output features are constructed from the statistics of the distribution describing 
the measurement trajectory across the eight measurements. However, in each run, we 
are only given a sample of a possible measurement trajectory (the bitstrings in Figure 
1). Therefore, in order to calculate the statistics of the underlying distributions, we 
require a reset of the system to uncorrelate sets of bitstrings.  

2. While the time between measurements is much smaller than the qubit coherence time, 
we are still ultimately limited by the cavity lifetime. Applying the reset before 
substantial decoherence occurs in the cavity ensures that our system remains coherent 
and quantum throughout the entire run of the experiment.  

 

 
 
In appendix D it is written that sometimes better performance is obtained with pseudo-inverse 
than with ADAM. That is surprising as ADAM is optimized to give better results. What is the 
explication for this? 
 
We thank the reviewer for this excellent question. The reason for this is that, in our work, the 
pseudo-inverse method and ADAM are used to find linear layers at the minima of different loss 
functions. Since our classification method is fundamentally discrete - i.e. we identify the class 
simply based on whichever output vector entry is the largest - and since a zero-loss linear 

Action taken: We have explicitly mentioned the number of input rounds we perform 
before the reset is applied: “Finally, after four rounds of applying the unitary and the 
qubit-oscillator measurements, we reset the system before repeating the scheme so that 
we may collect many samples of the measurement trajectory.” 
 
We have included the following section at the end of the introduction highlighting both the 
number of measurements and the output feature dimension used for the tasks: “These 
truncated moments are then flattened and concatenated to construct our output feature 
vectors. In all, for the M = 8 measurements we use in this work, the resultant output  
feature vector size with this prescription is 94.”  

Action taken: We have added the following sentence in the introduction following the 
discussion of the unitary and measurements: “Finally, after four rounds of applying the 
unitary and the qubit-oscillator measurements, we reset the system before repeating the 
scheme so that we may collect many samples of the measurement trajectory. The reset 
rate, which occurs much faster than the decoherence rate of the cavity, additionally 
ensures that our system remains coherent.”  



layer is not generally achievable in practice, no continuous loss function can perfectly capture 
the highest-accuracy linear layer in its minima. 
 
Consider an example where we assign labels of [1,0] and [0,1] to classes of a binary 
classification problem. Suppose we try to train our linear layer by minimizing the mean-
squared error (MSE) loss between our output vector y and the correct labels. For this, the 
pseudo-inverse method is provably optimal for achieving the minimal MSE loss in the limit of 
the perturbation epsilon going to zero (up to numerical issues such as e.g. stability of the 
inversion) and ADAM would perform, at best, about as well. However, MSE loss does not 
perfectly correlate with classification accuracy - indeed we often got a better accuracy by 
keeping epsilon deliberately large. As an example of this imperfect correlation, the output [1.1, 
1.0] for a label [0, 1] has a lower MSE loss than the output [0.5, 2.0], but would result in an 
incorrect classification. 
     
As an alternative loss function, we try to train our linear layer by instead minimizing the MSE 
loss between the Softmax of our output vectors and the correct labels, rather than the output 
vectors directly. Now, there is no longer an analytic solution to minimize this loss function. 
Consequently, we must instead rely on a conventional optimizer such as ADAM. In this loss 
function, potentially very large separations between incorrect and correct labels, e.g. [-100, 
+1000] get mapped very closely to desired label [0, 1], whereas they would be seen as "high-
loss" by the previous method. Indeed, in the previous example, the correctly classifying output 
[0.5, 2.0] now has a lower loss than the incorrectly classifying output of [1.1, 1.0]. However, 
even this loss function does not perfectly map on to classification accuracy. For example, 
consider a correct label [0, 0, 1] and outputs [3.466, 3.466, 3.526] Softmax -> [0.32, 0.32, 0.34] 
and [0, 6.234, 6.194] Softmax-> [0.001, 0.490, 0.509]. The latter yields an incorrect label but a 
lower loss than the former, which yields a correct label. Additionally, had we compared the 
output vectors directly as in the first method, the output with the correct prediction would 
have had the lower loss! 
  
Why do the authors use SoftMax? 
 
SoftMax is a conventional function to use for classifications in machine learning. Although it 
does not perfectly map onto inaccuracy of classification, it can be a bit more flexible the kinds 
of outputs that yield correct prediction compared to directly calculating MSE loss. Direct 
application of MSE only considers terms to be "low loss" if the output vectors directly are 
already close to the desired e.g.  [0,1] label, whereas with softmax terms such as [-10, 2], [11, 
31] can both be mapped closely to [0,1]. 
 

 
 
It is not clear why the lowest MSE doesn’t give the best accuracy. 
 

Action taken: We have added the following sentences to Appendix D: “This approach used 
softmax, a popular choice for classifiers in neural networks [12] and back-propagation 
using the automatic differentiation package from PyTorch [13]. Training through back-
propagation with an optimizer is now necessary since an exact analytic solution to 
minimize the loss no longer exists, unlike the case of the pseudo-inverse.”  



We thank the reviewer for this comment -- this is indeed somewhat counter-intuitive. This is 
because MSE loss directly on the output vectors does not map directly to inaccuracy. To use an 
example from above, the output [1.1, 1.0] for a label [0, 1] has a lower MSE loss than the output 
[0.5, 2.0], but would result in an incorrect classification. In cases where exact, zero MSE loss 
cannot be obtained, even the linear layer achieving the global minimum doesn't have to have 
the best accuracy. It's also important to note that we use MSE Loss in both methods - the 
difference is that in one case (pseudo-inverse) we calculate the MSE Loss of the output vectors 
directly, and in the other (ADAM) we pass the output vectors through SoftMax before 
calculating MSE Loss. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Action taken: We have added the following sentences to Appendix D: “The two 
approaches optimize the linear layer over different loss landscapes. This is because our 
classification method is fundamentally discrete - i.e. we identify the class simply based on 
whichever output vector entry is the largest - so no continuous loss function will capture 
the highest-accuracy linear layer in its minima in the general case.”  



Reviewer 2: 
 
The authors present a nice study showing how to integrate a radio-frequency detector with a 
machine-learning algorithm using superconducting quantum bits. They demonstrate two 
classification tasks where they demonstrate processing the classical radio-frequency signals 
to determine the encoded data format or the statistical form of a noisy signal. I think this is an 
interesting result, but I find the presentation of the work is lacking in several regards. I 
encourage the authors to rework the manuscript based on the comments below. 
 
We thank the reviewer for the concise summary and feedback on the manuscript presentation. 
In addition to the point-by-point responses below, we have made several edits for clarity and 
presentation in the text in response.  
 
While the two tasks they study appear to take advantage of their approach, it is not clear why 
these are relevant for any application. Some justification of their chosen tasks is needed. 
 
We thank the referee for this suggestion. We have added or modified sentences in the main text 
that justify the tasks. We did not choose the tasks because we anticipated that they would do 
well in our system, rather, we chose these tasks to probe specific features and capabilities of 
our system.  
 
The first task of classifying the spiral arms in Fig. 2 demonstrates the ability of our quantum 
reservoir to process inputs nonlinearly, while also providing an illustrative and 
understandable example task. Additionally, as we outline in Appendix section G, for time-
independent tasks such as this, our QRC is provably a universal function approximator. The 
second task of classifying radio frequency (RF) signals is a standard benchmarking task in the 
RF machine learning community and provides a rough point of comparison. The choice of this 
task is also broadly motivated by applications in signal identification and interception, though 
we do not wish to make the claim that our QRC could be deployed in a real-world setting for 
these today. We have modified sentences with any such insinuation. Finally, the third task of 
classifying noisy signals probes both the memory of our QRC and the ability to perform 
classification of very high-dimensional data beyond what has been achieved with alternative 
protocols. In this third task, we modify the output feature encoding to study and distill which 
correlations in the quantum fluctuations are important given correlations in the input signals.  
 



 
 
As a detector of radio-frequency radiation, they need to provide standard metrics. What 
frequency does it operate, what is the bandwidth, what is the noise-equivalent power, etc. 
While some of the details can be found by carefully going through the supporting material, 
they should be given in the body text. 
 
We thank the reviewer for this suggestion. If one were to operate our device as a traditional 
power detector, the operating frequency is 6 GHz, the bandwidth is about 2 kHz. The literature 
of superconducting qubit-cavity photon detectors using the same setup (e.g. Ref. [38]) does not 
include noise equivalent power (NEP) value, however we have estimated it be roughly 10-19 -10-

20 W/√𝐻𝑧. This figure is calculated from the equation,  
 

𝑁𝐸𝑃 =  
ℏ𝜔𝑛𝑚𝑖𝑛

𝜏𝑚𝑒𝑎𝑠

𝜅𝑖 + 𝜅𝑐

𝜅𝑐

1

√𝜅𝑖 + 𝜅𝑐

 

 
Here, τmeas  is the minimum measurement time to resolve down to nmin photons, and κ_i  (κ_c) is 
the internal (coupling) linewidth of our cavity. For the device here, τmeas is about 1 microsecond, 
and nmin is roughly 0.05-0.1 photons. The first factor describes the incident power to our 
device, the second factor is the transmission coefficient for photons traveling at the base plate 
entering our cavity, which is roughly a factor of 40, and the last factor is a normalization due 
the measurement bandwidth. The reason for the transmission coefficient being so low is to 
thermalize the oscillator to the fridge rather than the transmission line. We did not explore the 
trade-off between stronger coupling and thermal population in the cavity. Instead, we decided 
to just set the coupling pin so that the cavity is weakly coupled to the transmission line, as is 
the standard practice. 
 
The NEP, as calculated above, is limited primarily by the qubit readout fidelity and the 
transmission coefficient (i.e. if the cavity was critically coupled, the NEP would improve by a 
factor of 40). Other works, using an identical setup and measurement scheme, have entirely 
done away with limitations on qubit readout fidelity by using sophisticated post-processing 
techniques on repeated measurements [38], bringing their minimum detectable photon 
number down to ~10^-4, leading to another two orders of magnitude improvement in the NEP 
as calculated above.  
 

Action taken: We have added these sentences in the paragraph introducing the RF 
signals: “Next, to highlight the ability to perform classification of higher dimensional data, 
we classified time-dependent radio-frequency (RF) signals. The microwave signals in this 
dataset encode digital information using one of 10 different digital modulation schemes, a 
standard benchmark task in RF machine learning [43, 44].” 
 
Additionally, for the noise classification task, we have added the following sentence: “The 
resultant dataset consisting of six classes of noisy signals was designed to probe the 
ability of our QRC to process high dimensional data with bandwidths larger than the 
cavity linewidth. Additionally, this task allowed us to probe the memory of our QRC and 
its ability to be sensitive to fluctuations in time, a key feature that enable temporal signal 
processing in QRCs [46, 47]” 



The signals that we classified could have been composed of ~0.05 photons per run (or perhaps 
down to 10^-4 if the post-processing techniques of [38] were implemented) of the reservoir 
and have been detectable (e.g. for an example of such a detection, see Fig. S5). However, for 
the tasks we performed, the number of photons in the cavity is closer to 1-1.5 photon per run.  
 
The reason for the difference in the number of photons needed for detection vs classification is 
that, in this work, we are doing a proof-of-concept primarily of processing on-device to 
perform classification. Having more photons increases the computational capacity of our 
device by leveraging a larger portion of the Hilbert space, allowing us to construct more 
complicated features in response to signals composed of a few photons. While the NEP figure 
is sufficient to characterize the ability of our device to detect microwave photons, it is not 
sufficient to characterize the ability of our device to perform the classification. The latter of 
which was found to be 10-20 times higher than the requirement for single-photon detection, 
but will generally depend on the task itself. Ultimately, we would like a system that is operated 
with the highest level of photon sensitivity while also performing the QRC processing. This is 
an important step for future work and will, as we mention in the Discussion, hopefully result 
in a system that can both receive signal photons with high efficiency and classify them.  
 
Since there doesn’t yet appear to be an established way to calculate the NEP for 
superconducting-cavity-based detectors in the literature, and the focus of our paper is on the 
processing rather than detection-sensitivity aspects, we would prefer to leave our back-of-the-
envlope NEP calculation out of the present manuscript, as we are sufficiently unsure about the 
number derived above. Instead, inspired by the suggestion, we would like to include 
quantitative metrics that we are confident in report. We have added the minimum number of 
photons per second that is needed to perform the classification task in a reasonable 
amount of shots. We have also added the value of the frequency and bandwidth of our 
detector.   
 

 
 

Action taken: We have added the following to the introduction describing the minimum 
number of photons per microsecond needed to perform the classification: “The maximum 
amplitude of the input signal distribution max(|εin|) (i.e. the points in the spiral arms 
furthest away from the origin in Fig. 2b) was chosen such that the amount of displacement 
of the oscillator state initialized in vacuum would result in a coherent state with  ̄n = 0.3 
photons per round of input. This input amplitude was needed in order to perform the 
classification with sufficient accuracy in a reasonable amount of shots” 
 
We have also added the linewidth and frequency to the paragraph introducing our system: 
“The cavity resonator hosting the oscillator mode has a frequency of 6 GHz and a 2-kHz 
linewidth.” 
 
Finally, we also described the coupling coefficient in the Appendix: “The cavity pin is set 
such that the oscillator mode is under-coupled to the transmission line by a factor of 40. 
While this reduces the transmission of photons incident on our device by a factor of 40, it 
keeps the oscillator state thermalized to the fridge rather than the transmission line.” 
 



From what I can see, they do not mention in the body text that they have to highly attenuated 
the detector signal as it goes from room-temperature to the base temp of the frig. This needs to 
be pointed out explicitly and the metrics requested above need to be given outside and at the 
base of the frig. Some comparison to other technologies should be made. 
 
We thank the reviewer for raising this point -- indeed, this is an important clarification for our 
work. While the signals reaching our device comprise a handful of photons, the signals 
originate at room temperature and are highly attenuated. We have added text in both the 
introduction and the conclusion that highlight this point.  
 

 
 
Given the high attenuation of the signal, are there applications of their approach for 
measurement classical radio-frequency signals that are already at the base temperature of the 
frig? 
 
We thank the reviewer for this important question. Before directly answering the question 
regarding applications of our QRC for signals that originate at the base temperature, we wish 
to highlight a central point: while it is true one could find applications for signals that originate 
at the base temperature, it is not our belief that this is the only application for our QRC device. 
As other experiments have demonstrated, it is possible to obtain an advantage on classical 
signals with noise temperatures much larger than the device temperature [34,37]. Thus, with 
careful microwave engineering techniques, we envision that one could modify our experiment 
to perform machine learning processing on signals with a signal-to-noise ratio of order 1 
originating at temperatures much higher than the device temperature.  
 
On the question of applications of our scheme to signals originating at millikelvin 
temperatures, we envision using our QRC to potentially classify signals from other quantum 
devices. These could be classical signals, e.g. coherent states encoding some measurement 
result in a handful of photons, or quantum signals where a quantum device is directly 
interfacing with our QRC, and the task would be to classify a particular density matrix. 
 
I find the discussion of the setup and the mathematical description to be lacking. They have 
cavity and qubit control signals. They should be given different names to avoid confusion. I 

Action taken: We have modified a few sentences in the introduction to read: “The signals 
we classify are synthesized at room temperature and pass through 60 dB of attenuation 
before reaching our device. However, if instead one combines this analog quantum 
processing with a sensitive quantum detector of microwave radiation, as has already been 
previously demonstrated using superconducting circuits [34–38], then one can construct a 
system that achieves a quantum advantage in the task of combined sensing and signal 
processing of high temperature signals.” 
 
Additionally, we have modified a sentence in the conclusion to read: “While the signals 
classified in this work originate at room temperature and are highly attenuated before 
reaching the device, our experiments have shown that it is possible to accurately classify 
signals using a superconducting circuit even when there are only a few photons of signal in 
the superconducting circuit within any single run.” 



don't see a discussion of the role of the (first) cavity control signal, which is summed with the 
detected signal.  
 
We thank the reviewer for pointing out this source of confusion. Another reviewer had a 
similar comment, and we have made edits to the introduction to help clarify the role of the 
control signals in the main text, rather than refer the reader to the Appendix.  
 

 
 
The diagram of the setup in the supplemental information, which shows 3 circuit elements, 
does not correspond to the first figure in the body text, where they show two circuit elements. 
In the supplemental setup figure, they should label each one of the circuits and they have to 
indicate the location of the signal they are measuring outside the frig.  
 
We thank the referee for pointing out these important omissions. We have made edits that 
label each circuit element and labeled the origin of the input signals. Additionally, we have 
made an edit in the caption of Figure 1 to explicitly mention that the readout resonator is not 
shown for clarity in the main text.  
 

Action taken: In response to the clarification of the role of the control signals, we have 
added the following text describing the choice of control drives: “The unitary encoding the 
input displacement is complimented by control drives that entangle the qubit and cavity 
via a couple of conditional displacements [42] and qubit rotations (Fig. 2a). The entangling 
conditional displacements are applied before and after the unknown input is fed into the 
system, and the qubit is rotated by π or π/2 pulses before, during, and after the input. Due 
to the state-dependent shift of the cavity frequency by -χ (see first term of Eq 1) these qubit 
rotations serve to make the cavity sensitive to the input signal independent of the state of 
the qubit at the start of the protocol. Additionally, when combined with the conditional 
displacements on the cavity, the control and input scheme effectively impart a geometric 
area enclosed by the cavity trajectory onto the qubit, such that the phase of an unknown 
time-independent input signal can be extracted via a qubit measurement.” 
 



 
 
In the Hamiltonian, they say second and last terms, but they probably mean pairs of terms? 
Anyway, they do not define all the symbols (such as \sigma_x and \sigma_y, nor \Omega).  
 
We thank the reviewer for pointing out this mistake. We edited the text to describe all symbols 
defined in the Hamiltonian.  
 

Action taken: We have also made edits to Supplemental wiring diagram with clear labels 
for each of the components of our QRC device. We have also labeled the origin of our 
input signals (which are synthesized in the same way as our cavity control signals): 

 

Additionally, in the caption for Figure 1 in the main text (not the figure above), we have 
explicitly stated that the readout resonator has been omitted in the schematic diagram: 
“The signals interface directly with the qubit-oscillator system, composed of a 3D 
aluminum cavity (blue) hosting a transmon qubit (red) and a readout resonator (omitted 
for clarity).” 



 
 
They show that they can outperform a classical reservoir computer. The danger is that there is 
no proof that this is the classical reservoir computer. They are open to the issue that someone 
could come along and demonstrate a reservoir computer working with substantially fewer 
resources. For this reason, I don't think that this is a great comparison. I like better that they 
show decreased performance when they destroy entanglement in the system. They might 
consider dropping the comparison to the classical approach - it does not seem to be needed. 
 
This point is absolutely true, and one we considered deeply while preparing the manuscript. 
Indeed, it is hard to argue for an objective classicalized reservoir. We have removed the 
Appendix section that compares our QRC with a classicalized version of the same device, 
however, we wish to keep the comparison with digital reservoir computers. While the 
construction of the former is subjective and from our own attempts at providing a fair 
comparison, the latter is a standard architecture for digital reservoir computers in the field.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Action taken: We have edited the paragraph following the introduction of the Hamiltonian 
to include a definition of all terms. For brevity, the qubit operators are now explicitly 
written in terms of the Hilbert space, rather than the pauli matrices: 
 
“Our quantum reservoir, composed of a cavity resonator coupled to a transmon (Fig. 1b), 
can be modeled with the following qubit-oscillator Hamiltonian in the rotating-frame 
 

𝐻 = −𝜒|𝑒⟩⟨𝑒|𝑎†𝑎 + 𝜖(𝑡)𝑎† + Ω(𝑡)|𝑒⟩⟨𝑔| + 𝐻. 𝑐. 
 
Where |g> and |e> define the qubit subspace of the transmon, a is the photon annihilation 
operator of the cavity mode, and χ is the nonlinear interaction strength (see Appendix B for 
details). The third term of Eq 1 describes the unitary control of the qubit from a time-
dependent drive Ω(t), and the second term describes both the encoding of the input data 
εin(t) and unitary control of the oscillator mode, i.e., ε(t) = εin(t) + εcontrol(t)… 

Action taken: We have removed the Appendix section comparing the performance with a 
classicalized version of our quantum reservoir computer.  
 



Reviewer 3: 
 
This work demonstrates the use of a superconducting quantum circuit for analog quantum 
reservoir computing, enabling the classification of microwave signals without discretization 
and the processing of ultra-low-power signals. The presented experimental implementation is 
an important advance for the field of quantum reservoir computing, which could merit 
publication in Nature Communications provided the authors address the following aspects. 
 
We thank the reviewer for the concise summary and for acknowledging its application to the 
field of quantum reservoir computing broadly.  
 
The quantum reservoir computing literature discusses several measurement protocols to 
allow for continuous measurements. It is not clear to me how the current work relates to 
previous works, could the authors clarify? 
 
We thank the reviewer for the question. Indeed, previous proposals for quantum reservoir 
computing include protocols with continuous measurements such as Refs. [22,23], where, like 
our work, the measurements contribute to the dynamics. In our experiments, the 
measurements employed are projective measurements, the backaction of which induce highly 
non-classical states within the reservoir dynamics. This is in contrast to the weak 
measurements employed in the proposals referenced previously. Additionally, in these 
experiments, we do not average over measurement outcomes, which would amount to only 
considering the first-order central moment. We build output feature vectors from higher-order 
moments in time, directly capturing the correlations induced by the act of measurements on a 
quantum system. Additionally, in this work, we perform machine learning classifications of 
analog signals, including very high-dimensional continuous-time signals, as opposed to 
parameter estimation of a parametrized signal.  
 

 
 

I find some of the explanations of the system to be relatively involved unnecessarily. In 
particular, it is not clear to me what is the dimensionality of the feature vector. As described in 
Appendix D, the feature vector is defined to be R-dimensional but it remains quite abstract. In 
my opinion, it would help the reader to add a simple example of how to compute the value of R 
from the other parameter choices (order of moments used and number of shots). This would 
allow easier comparisons to classical reservoir computers. It would also be useful if the 
authors could show how many of the features are linearly independent for some particular 
cases (for instance in figure S17). 
 
We thank the reviewer for pointing out this source of confusion. The dimensionality of the 
output feature vector depends on the order of the correlator, as well as how far apart we 
choose to keep the correlations. E.g., if we only keep up to second-order correlations among 

Action taken: We have added a sentence in the discussion to highlight the benefits of our 
platform and measurement protocol: “The superconducting circuits platform not only 
allows us to leverage projective non-demolition (QND) non-Gaussian measurements to 
generate correlated output features, but is also well-matched to process microwave 
signals that can generally be continuous in time.”  
 



nearest-neighbor and next-nearest-neighbors, this will result in a feature vector much smaller 
than if we also included higher-order correlators or looked at correlations among 
measurements further apart. The dimension of the output feature vector does not depend on 
the number of shots, however. The number of shots increases our ability to accurately 
estimate these correlators. For the tasks presented in this work, we use output feature vector 
size we use for our tasks is ninety-four.  
 
We have edited the main text with explicit mentions of the feature vector dimension. 
Additionally, we have added edited the Appendix section discussing the construction of the 
output feature vector with examples, as well as explicit mentions of the output feature size for 
different order of moments/locality of the moments.  
 
Regarding the comment on linear dependence of the output features, this will be task 
dependent, however, we do not expect to see a large amount of independence for many tasks. 
For example, in Figure S11 and S12 we see that the output features have a significant amount 
of redundancy for the different classes, despite the efforts to distill the output features to a 
physically significant encoding. Nonetheless, we think it is an interesting comment, and 
designing the output feature vectors is paramount to designing a good reservoir computer.  
 



 
 
In my current reading of the manuscript, I understand the quantum coherences are a needed 
resource to increase the performance of the system and a major justification to claim that the 
experimental system is indeed working as a quantum reservoir computer. Is there a simple 
metric to relate the quantum advantage in terms of physical resources between a classical and 
a quantum reservoir? 
 
We thank the reviewer for this excellent question. Indeed, this is a question we spent much 
time thinking about, but it is not an easy question to answer. The central issue is coming up 

Action taken: In the introduction, we have edited the text to reflect the output feature 
vector construction as well as explicitly mentioned the dimension size: “For example, the 
first-order central moment μ1 is a M -dimensional vector representing the average over all 
measured bitstrings, i.e. μ1 = [⟨xn0⟩, ⟨xn1⟩, . . .], the second-order central moment μ2 is the 
covariance matrix with elements (μ2)ij = ⟨xnixnj ⟩ − ⟨xni⟩⟨xnj ⟩, and so on. Here, the 
expectation value is taken over the sample index n. This approach, inspired by Ref. [17], 
has the benefit of leveraging the hierarchy of noise in the central moments, while 
capturing the essential correlations in the dynamics to achieve high accuracy even in the 
few-sample regime. Furthermore, the output feature vector dimension only scales 
polynomially with the number of measurements, where the highest polynomial power is 
given by the order of the highest central moment, which we restrict to 3 for all tasks in this 
work. Finally, given finite memory in our reservoir, we further restrict the output vector by 
choosing to only calculate correlations between measurements at most 3 measurements 
apart. These truncated moments are then flattened and concatenated to construct our 
output feature vectors. In all, for the M = 8 measurements we use in this work, the 
resultant output feature vector size with this prescription is 94.” 
 
Additionally, in the Appendix, we have edited a paragraph to be more transparent in how 
we construct the output feature vectors:  
“We denote these appended feature vectors as \vec{μ}≤p for feature vectors containing up 
to p central moments, e.g.  
 
    \vec{μ}≤2 = [\vec{μ}1, μ2]  
           = [ 〈x0〉, 〈x1〉, 〈x2〉, …, 〈x0x1〉 - 〈x0〉〈x1〉, 〈x0x2〉  - 〈x0〉〈x2〉,…, 〈x1x2〉  - 〈x1〉〈x2〉,…] 
 
is a feature vector constructed from appending the flattened covariance to the mean. The 
first-order moment here is a vector to denote that we take the mean over repetitions of 
different measurements, whereas the covariance is a matrix and thus is not denoted as a 
vector. Additionally, we only take the independent degrees of freedom of the symmetric 
covariance matrix equivalent to discarding one of the following redundant elements 〈xi xj 〉 
and 〈xj xi〉 for some integers i,j. In general, for arbitrary moments, the number of 
independent components for M measurements is ${M+p-1}\choose{p}$, where $p$ is the 
order of the moment. For up to third-order central moments of M = 8, this gives a total 
output feature dimension of dim(\vec{μ}≤ 3) = 8 + 36 + 120 = 164. This output dimension for 
the results presented in the main text is further reduced as discussed in the following 
paragraphs below.” 



with a set of control drives that work across several different tasks. This was the central 
question that motivated the design for the control signals for both the quantum reservoir 
computer presented in the main text, as well as the classical reservoir computer presented in 
the Appendix. What was clear was that the set of control drives that seem to generalize well in 
the quantum case did not generalize in the classical case, and a separate design was needed in 
the classical reservoir computer, and this is what was pursued. However, as another reviewer 
pointed out, there is no guarantee that the control drives we produced are the optimal ones 
(for either the quantum or the classical case). Thus, since we agree with the other reviewer, we 
have decided to remove the section altogether.  
 

 
 
In the context of reservoir computing, memory is a fundamental property. Here, the authors 
build feature vectors from correlations between nearest, next-nearest, and next-next-nearest 
measurements. Is this analogous to say that the memory of this QRC system is two steps? If 
not, could the authors comment on the memory of the system in physical units? 
 
We thank the reviewer for the good question. We saw that for the tasks studied in this work, 
when we truncated the output feature vector to nearest, next-nearest, and next-next-nearest 
measurements, we saturated the accuracy. On the other hand, the correlations can last longer 
than the three sets of measurements, as indicated by the central moments plotted for the 
spiral classification task in Figure S11 and S12, though these longer-range correlations do not 
strongly contribute to distinguishing the input datasets between the two tasks.  
 
The memory of our device is limited by the coherence of the cavity (100 microseconds for us 
here), or the duration before resetting the device (roughly 15 for us here) – whichever is 
shorter. Whether or not this memory leads to an improved accuracy will generally be task 
dependent, as noted in Figure 4 of the main text. 
 
Finally, a note on the main motivation for keeping the reset time at roughly 15 us rather than 
nearly the entire cavity coherence time. Increasing the reset time in our scheme would lead to 
the added cost of having more measurements. More measurements mean more measurement 
trajectories, and therefore more sampling noise in estimating the correlators. Although our 
feature vector construction only requires several samples that grows polynomially in the 
number of measurements (as opposed to an exponential dependence as required by using the 
full measurement distribution), this polynomial cost was still significant, so we decided to 
keep the number of measurements to eight.  
 
The current manuscript deals with microwave photons while there are some recent 
suggestions to implement QRC with optical photons, either with proof-of-principle 
experiments or with numerical simulations of theoretically described implementations. The 
manuscript would benefit from a brief comparison to other photonic approaches to quantum 
reservoir computing. 
 
We thank the referee for the suggestion. The primary technological advantage with microwave 
quantum systems that we leverage in this work is the accessibility to highly non-Gaussian 

Action taken: We have removed the Appendix section comparing the performance with a 
classicalized version of our quantum reservoir computer.  
 



QND measurements. While optical approaches have been proposed using non-Gaussian 
measurements such as photon-counting, the realization of such measurements in a fashion 
that is QND has not been demonstrated in the optical domain to the best of our knowledge. It is 
the combination of the QNDness and the non-Gaussianity of our measurements that allow us 
to generate states with Wigner negativity through measurement back-action.  
 

 
 
In the classification of radio-frequency (RF) communication modulation protocols, the 
protocols 32QAM and 32APSK tend to be misclassified. Did the authors estimate what would 
be needed to improve the accuracy in this task in terms of reservoir computing properties such 
as memory or nonlinearity? 
 
We believe the easiest way to reach > 99% on this task is to increase the number of 
measurements and the number of samples. For the current accuracy curve plotted in Fig. 3 in 
the main text, the accuracy has not yet saturated with the number of shots. We believe another 
factor of 5 shots would saturate the accuracy at > 99%. Indeed, adding more nonlinear 
elements would additionally increase the complexity of our system and likely lead to higher 
classification accuracy as was shown in simulations of multi-qubit systems in Appendix Fig. 
S18. 
 
Is it possible to estimate the maximum information processing speed of this microwave QRC 
system in terms of bits per second? 
 
We thank the referee for the interesting question. We think this question may be more relevant 
for a signal processing task that might involve decoding a modulated signal, or perhaps a task 
that discretely encoding a signal and performs a set of discrete gates. However, we feel, that 
ascribing bits per second to an analog system processing analog tasks becomes difficult, 
especially in a machine learning context where the computation is a classification of different 
analog signals.  
 
The sentence "Given the roughly 2×16 dimensions of Hilbert space used by our reservoir, this 
computational capacity is on the order of what would be expected for a large shot number." at 
the end of Appendix H merits additional explanations. 
 
Indeed, we have added a clarification to this point. In the conventional view of reservoirs, we 
make our data linearly separable by sending it into a higher dimensional space where such 
separability is possible. The dimensionality of our Hilbert space, given by the two dimensions 
of the qubit and the approximately 16 occupied levels of our storage resonator, limits the 
degrees of freedom we have available in encoding our data as the final, measured state. 
Consequently, we use this total Hilbert space dimension as a proxy for the quantum resources 
used in terms of reservoir dimensionality. 
 

Action taken: We have added the following sentence in the discussion highlighting the 
advantage of the microwave platform: “The superconducting circuits platform not only 
allows us to leverage projective non-demolition (QND) non-Gaussian measurements to 
generate correlated output features but is also well-matched to process microwave signals 
that can generally be continuous in time.” 
 
 



 
 
 

Action taken: We have added the following clarification in the Appendix regarding the 
effective dimensionality “In the conventional view of reservoirs, the data must be sent into 
into a higher dimensional space where linear separability becomes possible [10]. The 
dimensionality of our Hilbert space, given by the two dimensions of the qubit and the 
approximately 16 occupied levels of our storage resonator, limits the complex degrees of 
freedom we have available in encoding our data as the final, measured state. 
Consequently, we use this total Hilbert space dimension (times two due to complex 
amplitudes) as a proxy for the quantum resources used in terms of reservoir 
dimensionality. Given the roughly 2 * 16 dimensions of Hilbert space used by our 
reservoir, achieving at least the computational capacity of a 64-dimensional LESN 
reservoir is on the order of what would be expected for a large shot number. Indeed, the 
point of this comparison is to demonstrate that the computations performed by our 
reservoir cannot be trivially replicated by a digital reservoir with fewer resources with the 
same performance.” 
 
 



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

The authors have addressed all my comments. I thus support the publication of their work in 

Nature Communications. A single additional comment: 

In Supplementary Material there is a typo in Eq.(B1), it should be $\epsilon^\ast (t) a + 

\epsilon (t) a^\dagger$. In the code it is ok. 

Reviewer #2 (Remarks to the Author):

The authors have done an excellent job of addressing the concerns of all referees and the 

manuscript is now ready for publication. 

Reviewer #3 (Remarks to the Author):

The authors have partly addressed my comments from my first report. First of all, I would 

like to thank them for clarifying the size of the output feature vector and the dimensionality 

of the quantum reservoir. However, some of my previous questions remain unanswered. 

Since I believe there was a slight misunderstanding, likely due to our different backgrounds, 

I would like to rephrase some of my previous comments more directly: 

1) The memory of reservoir computing systems can be characterized by the so-called short-

term memory capacity functon(see definition in 

https://www.ai.rug.nl/minds/uploads/STMEchoStatesTechRep.pdf, eq. 15). Did the authors 

characterize the memory capacity of their quantum reservoir computing system? 

2) I would like to bring another work on photonic quantum reservoir computing to the 

attention of the authors, namely Spagnolo et al., Nat. Photon. 16, 318–323 (2022), which 

covers an experimental implementation that can handle the same type of tasks discussed in 

their manuscript. I would like to ask the authors for their opinion on the scalability and 

applicability of their approach in the context of the current literature (for instance, the 



paper by Spagnolo et al. mentioned above). 

3) In my previous report, I asked the authors about the processing speed of the system, but I 

did not receive an answer. Since the system is an analog one, could the authors report the 

input rate in inputs per second or in analog samples per second?



Reviewer #1 (Remarks to the Author):

The authors have addressed all my comments. I thus support the publication of their work 

in Nature Communications. A single additional comment:

We thank the reviewer for the feedback and the recommendation.

In Supplementary Material there is a typo in Eq.(B1), it should be $\epsilon^\ast (t) a + \epsilon 

(t) a^\dagger$. In the code it is ok.

We thank the referee for pointing this out. This is indeed incorrectly written, however we 

believe the correction is different than what is stated above: The Hamiltonian in Eq. B1 is 

written in the lab frame, whereas a term like ε*(t) a + ε(t) a† would only be valid in the rotating 

frame, since after all, our microwave signal generators can only output real-valued signals. 

However, it is indeed a typo to label the displacement drive as ε(t) in both the rotating frame 

and the lab frame, since these will be quantitatively different. We have relabeled the 

displacement drive terms in the lab frame (Eq. B1).

To clarify the above, if the real-valued signal outputted from our signal generators is ξ(t), then 

the rotating-frame displacement drivers ε(t) are related to the lab frame drives as ξ(t) = ε(t) ei ω t

+ ε*(t) e- i ω t for some carrier frequency ω. The drive term in the lab-frame Hamiltonian is then: 

Hd/ℏ = ξ(t)(a + a†)

Hd/ℏ = (ε(t) ei ω t  + ε*(t) e- i ω t)(a + a†)

If we set ω to the cavity frequency and move into the rotating frame, we can expand the above 

factor. With this expanded, we will first have the following two terms 

ε*(t) a + ε(t) a†

Which are the same as the ones pointed out, and the ones in the Hamiltonian in the main text. 

In addition, we will have another two terms 

ε*(t) e2i ω t a† + ε(t) e- 2i ω ta

However, these are oscillating at twice the cavity frequency (order of a few GHz away). Under 

the rotating wave approximation, we can safely drop these terms to obtain the displacement 

drive term found in the Hamiltonian of the main text. 



Reviewer #2 (Remarks to the Author):

The authors have done an excellent job of addressing the concerns of all referees and the 

manuscript is now ready for publication.

We thank the reviewer for the feedback and for the recommendation.

Reviewer #3 (Remarks to the Author):

The authors have partly addressed my comments from my first report. First of all, I would like 

to thank them for clarifying the size of the output feature vector and the dimensionality of the 

quantum reservoir. However, some of my previous questions remain unanswered. Since I 

believe there was a slight misunderstanding, likely due to our different backgrounds, I would 

like to rephrase some of my previous comments more directly:

1) The memory of reservoir computing systems can be characterized by the so-called short-

term memory capacity functon(see definition 

in https://www.ai.rug.nl/minds/uploads/STMEchoStatesTechRep.pdf, eq. 15). Did the authors 

characterize the memory capacity of their quantum reservoir computing system?

We thank the referee for this suggestion. We have numerically evaluated the memory capacity 

of our quantum reservoir computing system based on simulations using the Eq. 15 from the 

above reference. Before discussing the results, we would like to point out a couple of caveats 

that makes the above definition of memory capacity difficult to implement in our analog 

implementation:

The reference above characterizes the short-term memory capacity of a digital reservoir 

computer by sampling a translated time-series as input, and evaluating a measure of similarity 

between the output and the sampled input for some translation k. This input sample is a single 

number taken by evaluating a time-domain signal at time t, and a feature vector is constructed 

for each input sample at t. After a dot-product is taken with the feature vector and a weight 

vector, a single output number is evaluated at time t. This procedure results in an input and 

Action taken: We have relabeled the symbol denoting the storage drive term in the lab 
frame as ξ , instead of incorrectly using the same label for the displacement drive term in 
the rotating frame

H/ℏ = ωq q†q + ωaa†a − χq†qa†a − χ′q†qa†2a2 − Kq q†2q2 − Ka†2a2 + Ξ(t)(q + q†) + ξ(t)(a + a†)

We have also described the relationship between the two in the text below Eq. B1: “The last 
two terms describe the qubit and oscillator drives in the lab frame. The lab-frame drives 
are related to the rotating-frame drives in Eq. 1 via Ξ(t) = Ω(t)eiωq t + H.c. and ξ(t) = ε(t)eiωa t + 
H.c.”

https://nam12.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.ai.rug.nl%2Fminds%2Fuploads%2FSTMEchoStatesTechRep.pdf&data=05%7C02%7Cas3656%40cornell.edu%7C801701f9318e4f3afc2108dc7a6eaf39%7C5d7e43661b9b45cf8e79b14b27df46e1%7C0%7C0%7C638519863682839297%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=IGm2mApI5k55TM%2ByY05A4%2FkqKrwEi3WzmudRDtKjGl4%3D&reserved=0


output vector as a function of time. The similarity between these two vectors as a function of 

the translation k is then evaluated for the memory capacity.

In our implementation of a quantum reservoir computer, inputs are received as time-domain 

analog signals, and output feature vectors are constructed from correlators across many 

measurements which contribute to the dynamics. This has two important consequences:

1. The closest correspondence to a single number input to our quantum reservoir would 

be a time-domain signal with a fixed amplitude and finite duration. For an example of 

this, see the spiral classification task in Fig. 2 of the main text. 

2. To achieve a singular feature vector for a single input, this input must be repeated 

several times. This is a direct consequence of constructing our output feature vectors 

from correlators of measurements, which occur intermingled with the repeated inputs.  

The consequence of points 1 and 2 above is that the smallest increment of translation k that 

fits the definition of capacity in the above reference is a duration of about 4 microseconds, and 

about 8 measurements. Therefore, given that the we experimentally found that covariances 

vanish for measurements about 3 or 4 apart (as noted in Appendix D, also see Fig. 4e), which is 

smaller than the smallest translation that fits the above definition for digital reservoirs, we do 

not expect the memory capacity to be finite for k > 1 using the above definition. This is also 

precisely what we observe in our simulations using the above adaptation of memory capacity 

to our analog system, plotted below. 

Figure 1: Memory capacity as a function of delay

To summarize: by adapting our analog system to receive digital inputs so that the memory 

capacity defined by the above reference may be evaluated, we strip away much of the ability of 

our system to store information. On the other hand, the output features of our quantum 

reservoir are constructed directly by calculating correlations across measurements (in time), 

which would all vanish if there was no memory in the system. Therefore, since we find finite 

correlations across measurements, we know that there is some small but finite memory 

in our system, which the above procedure cannot capture.



2) I would like to bring another work on photonic quantum reservoir computing to the 

attention of the authors, namely Spagnolo et al., Nat. Photon. 16, 318–323 (2022), which covers 

an experimental implementation that can handle the same type of tasks discussed in their 

manuscript. I would like to ask the authors for their opinion on the scalability and applicability 

of their approach in the context of the current literature (for instance, the paper by Spagnolo et 

al. mentioned above).

We thank the referee for making us aware of this work – it is indeed very relevant. In it, 

Spagnolo et al. fabricate a quantum memristor and numerically investigate its use as a 

quantum reservoir computer. Similar to our work, one of the tasks performed with the 

quantum reservoir computer is to classify time-dependent input signals using repeated 

measurements. In Spagnolo et al., the repeated non-QND measurements contribute to the 

dynamics by measurement feedback that influences the unitary performed in subsequent 

passes. This feedback is implemented such that short-term memory is enforced in the 

dynamics of the quantum reservoir. 

A key difference between this work and ours is that in our work, the measurements are QND 

and are repeated before the state is decohered. Consequently, the measurements directly 

imprint quantum features on the state via measurement-backaction, as is experimentally 

demonstrated in the Wigner functions in Figure 1 of the main text. Fast and QND 

measurements are a unique advantage to superconducting-qubit systems. Another distinction 

is that in our work, the output feature size grows with the number of measurements, allowing 

us to efficiently construct high-dimensional and correlated features without the use of many 

physical resources. The quantum reservoir numerically studied in Spagnolo et al. constructed 

feature vectors from measurements obtained only in the last pass through the reservoir, 

though the vectors could have in-principle been constructed from all passes through the 

reservoir. In summary, the work in Spagnolo et al. leverages channels in space to construct 

high-dimensional and correlated features, whereas we use time. 

On operability and scalability, as we show in Fig. S18, the scheme we introduce in this work is 

greatly benefitted by an increased number of qubits to the system. Examples of such many-

qubit-one-oscillator systems previously experimentally realized include Refs [1-3]. One could 

also extend our qubit-oscillator system to single-qubit-many oscillators [4,5] or many-qubits-

many-oscillators [6], though these latter two configurations were not explored in simulations. 

1. Song, C., Xu, K., Liu, W., Yang, C.-P., Zheng, S.-B., Deng, H., … Pan, J.-W. (2017). 10-

Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit. 

Phys. Rev. Lett., 119, 180511. doi:10.1103/PhysRevLett.119.180511

2. Paik, H., Mezzacapo, A., Sandberg, M., McClure, D. T., Abdo, B., Córcoles, A. D., … 

Chow, J. M. (2016). Experimental Demonstration of a Resonator-Induced Phase Gate in 

a Multiqubit Circuit-QED System. Phys. Rev. Lett., 117, 250502. 

doi:10.1103/PhysRevLett.117.250502

3. Marinelli, B., Luo, J., Ren, H., Niedzielski, B. M., Kim, D. K., Das, R., … Siddiqi, I. (2023). 

Dynamically Reconfigurable Photon Exchange in a Superconducting Quantum 

Processor. arXiv [Quant-Ph]. 



4. Chakram, S., He, K., Dixit, A.V. et al. Multimode photon blockade. Nat. Phys. 18, 879–

884 (2022)

5. Naik, R.K., Leung, N., Chakram, S. et al. Random access quantum information 

processors using multimode circuit quantum electrodynamics. Nat Commun 8, 1904 

(2017).

6. Zhou, C., Lu, P., Praquin, M. et al. Realizing all-to-all couplings among detachable 

quantum modules using a microwave quantum state router. npj Quantum Inf 9, 54 

(2023)

3) In my previous report, I asked the authors about the processing speed of the system, but I 

did not receive an answer. Since the system is an analog one, could the authors report the 

input rate in inputs per second or in analog samples per second?

We apologize for not answering the question clearly. We find it difficult to provide an answer 

that is expressed explicitly as samples per second, however, can we try to approximate it using 

the experimental results and the methods. 

In Fig. 4 of the main text, we performed classification of noisy signals with different correlation 

lengths. We empirically showed that we could accurately distinguish between signals whose 

correlation lengths were on the order of 50 nanoseconds, or signals constructed with a 

minimum of 20 MSps sampling rate. This demonstrates that our quantum reservoir is sensitive 

to analog signals with changes on the order of 50 nanoseconds. 

On the other hand, the time to perform the “processing”, or classification takes a much longer 

time. The qubit is measured once every 1.2 microseconds, where each measurement gives us 

an output sample. These samples are then retrieved repeatedly to generate the statistics to 

form our output features. Once enough samples are obtained, we can accurately perform the 

classification among the different signals – for the tasks in this work, this is on the order of 

thousands of samples. Thus, while our analog reservoir computer is sensitive to signals that 

change on the order of 10s of nanoseconds, the speed at which we process the signals to 

perform the classification is much longer. 

Action taken: We have added the following sentences to the discussion: “Generalizing our 
approach to spatial in addition to temporal inputs, as was explored in Ref. [24], would 
likely support more sophisticated computations. In Appendix F, we explore such 
extensions in simulations and find a marked improvement in classification accuracy.”

Action taken: We have added the following sentences to the results section: “Additionally, 
the ability for our quantum reservoir to distinguish between signals with correlation times 
on the order of 50 ns demonstrates the sensitivity to signals which vary on time-scales 
much faster than the measurement rate.”



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author):

My comment has been addressed in an excellent manner. I support the publication of the 

manuscript. 

Reviewer #3 (Remarks to the Author): 

The authors have properly addressed my previous concerns and I find the revised 

manuscript suitable for publication.


