Supplemental Materials

Materials and methods

Study participants

An infertile men, his brother, and his parents were recruited at the Peking Union Medical College Hospital (Beijing, China). The study was conducted in accordance with the principles of the Declaration of Helsinki and approved by the institutional review boards at the Peking Union Medical College Hospital. Signed informed consents were obtained from all subjects participating in the study. The patient exhibited a normal karyotype (46, XY) and normal hormone levels; no microdeletions were found on the Y chromosome. Five milliliters of peripheral blood was collected from the brothers and his parents.

WES and Sanger sequencing

Genomic DNA was isolated from peripheral blood of the subjects via QIAamp DNA Blood Mini Kit (QIAGEN, USA). Agilent SureSelect Human All Exon V6 Kit (Agilent Technologies, USA) was applied to exon capture and Illumina HiSeq X system was utilized to perform sequencing according to the manufacturer's introductions. The average sequencing depth on targets was ~107×, and the ratio of the target fraction covered at minimum 10× was 99.5%. Reads were mapped to the human genome reference (GRCh37/hg19) by the Burrows Wheeler Aligner (BWA) software. ANNOVAR software was utilized for functional annotation via various databases, including dbSNP, 1000 Genomes Project, ExAC, and HGMD. The Genome Analysis Toolkit (GATK 3.7) was employed to identify and quality-filter the variants. Sanger sequencing was applied to verify the mutations detected by WES in the proband, his brother, and his parents. The primers of Sanger sequencing were listed in the Table S4.

Ccdc188-KO mice

Animal experiments were approved by the Animal Care and Use Committee of

the College of Life Sciences, Beijing Normal University. The *Ccdc188* gene (NCBI: XM_011246064.4; Ensembl: ENSMUSG0000090777) has 4 transcripts and 8 exons and is located on mouse chromosome 16. Exons 1~8 of the *Ccdc188-202* (ENSMUST00000231369) transcript were selected as the knockout region. Mouse zygotes were coinjected with an RNA mixture of Cas9 mRNA (TriLink BioTechnologies, CA, USA) and sgRNAs. The sgRNA sequence was provided in Table S5. The injected zygotes were transferred into pseudopregnant recipients to obtain the F0 generation. DNA was extracted from tail tissues from 7-day-old offspring and PCR amplification was carried out with genotyping primers using the Mouse Tissue Direct PCR Kit (Tiangen Biotech, China). The founder mice were mated with wild-type females, giving rise to heterozygous mice harbouring a 2073 bp deletion in the *Ccdc188* gene. A stable F1 generation (heterozygous mice) was obtained by mating positive F0 generation mice with wild-type C57BL/6JG-pt mice.

CCDC188 antibody

Full-length mouse CCDC188 was cloned into the pET-N-His-C-His vector (Beyotime, Shanghai, China) and then transfected into the ER2566 E. coli strain (Weidi Biotechnology, Shanghai, China). Protein expression was induced by 1 mM IPTG (Beyotime) at 30°C overnight. After centrifugation, the bacterial pellet was resuspended in buffer (50 mM Tris-HCl pH 8.0, 200 mM NaCl), and the proteins were released by sonication. After centrifugation, anti-His beads (Beyotime) were added to the supernatant and incubated overnight at 4°C. After washing, recombinant protein was eluted with 250 mM imidazole (Beyotime). Recombinant CCDC188 protein was emulsified at a 1:1 ratio (v/v) with Freund's complete adjuvant (Beyotime) and administered subcutaneously into ICR female mice at multiple points. For the subsequent three immunizations, recombinant CCDC188 protein was emulsified with incomplete Freund's adjuvant (Beyotime) at an interval of 2 weeks. One week after the last immunization, blood was collected, and the serum was separated.

Fertility testing

To confirm the fertility of *Ccdc188*-KO male mice, natural mating tests were conducted. Briefly, adult *Ccdc188*-KO male mice and their littermate wild-type mice (*n*=3 each) were mated with wild-type C57BL/6J females (male: female=1:2) for two months. The vaginal plugs of the mice were examined every morning. Female mice with vaginal plugs were separately fed, and female mice were replenished. The number of pregnant females was recorded.

Semen analysis

Sperm counts were determined using a fertility counting chamber (Makler, Israel) under a light microscope. Sperm mobility was assessed via the application of a computer-assisted sperm analysis (CASA) system (SAS Medical, China). The sperm suspension was mounted on a glass slide, air-dried, and fixed with 4% PFA for 20 min at room temperature. The slides were stained with Papanicolaou solution (Solarbio, Beijing, China) and observed using a DM500 optical microscope (Leica, Germany).

Histological analysis

The testes and caudal epididymis were dissected and fixed in 4% PFA overnight at 4°C. Fixed tissues were embedded in paraffin, sectioned (5 µm thick), dewaxed, and rehydrated. The sections were stained with Periodic Acid Schiff's solution or hematoxylin-eosin staining (H&E) solution before imaging using a Leica DM-500 optical microscope (Leica Microsystems, German).

SEM

Sperm were fixed with 2.5% (vol/vol) glutaraldehyde in 0.1 M phosphate buffer (pH 7.4) at room temperature for 30 min and then deposited on coverslips. The coverslips were dehydrated via an ascending gradient of 50%, 70%, 95%, and 100% ethanol, and air-dried. Specimens were then attached to specimen holders and coated with gold particles using an ion sputter coater before being viewed with a JSM-IT300 scanning electron microscope (JEOL, Tokyo, Japan).

TEM

Sperm were fixed with 2.5% (vol/vol) glutaraldehyde in 0.1 M phosphate buffer (pH 7.4) at 4°C. The samples were washed four times in phosphate buffer and first immersed in 1% (wt/vol) OsO4 and 1.5% (wt/vol) potassium ferricyanide aqueous solution at 4°C for 2 h. After washing, the samples were dehydrated through graded alcohol into pure acetone. Samples were infiltrated in a graded mixture of acetone and SPI-PON812 resin, and then the pure resin was changed. The specimens were embedded in pure resin with 1.5% BDMA, polymerized for 12 h at 45°C and 48 h at 60°C, cut into ultrathin sections (70 nm thick), and then stained with uranyl acetate and lead citrate for subsequent observation and photography with a Tecnai G2 Spirit 120 kV (FEI) electron microscope.

IP-MS

Testes were collected from adult C57BL/6JG-pt mice and lysed with Pierce[™] IP Lysis Buffer (Thermo Fisher, CA, USA). Protein lysates were incubated overnight with 2 µg CCDC188 antibody or lgG at 4°C. The lysates were then incubated with 20 µl Pierce[™] Protein A/G-conjugated Agarose for 4 h at 4°C. IP products were digested by trypsin digestion for 4 h at 37°C. Separation was performed by a Thermo UltiMate 3000 UHPLC (Thermo Scientific, MA, USA). The peptides separated by liquid phase chromatography were ionized by a nanoESI source and then passed to a tandem mass spectrometer Q-Exactive HF-X (Thermo Fisher Scientific, San Jose, CA) for DDA (Data Dependent Acquisition) mode detection. Protein identification uses experimental MS/MS data and aligns them with theoretical MS/MS data from a database (i.e., UniProt) to obtain results. Mascot 2.3.02 search, quality control, and iBAQ quantification were subsequently performed. The mass spectrometry data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD045762.

4

co-IP

HEK293T line was obtained from ATCC (American Type Culture Collection) and authenticated using STR profiling test. HEK293T cells were transfected with Flag and/or Myc-tagged plasmids as indicated in respective figure legends. The primers for plasmid construction were provided in Table S6. Forty-eight hours after transfection, cells were lysed with PierceTM IP Lysis Buffer (Thermo Fisher, CA, USA) for 30 min at 4°C and then centrifuged at 12,000 × g for 10 min. Protein lysates were incubated overnight with Myc-Tag antibody (2 μ g) or Flag-tag antibody (2 μ g) at 4°C. The lysates were then incubated with 20 μ l PierceTM Protein A/G-conjugated Agarose for 4 h at 4°C. The agarose beads were washed five times with PierceTM IP Lysis Buffer and boiled for 5 min in 1×SDS loading buffer. Input and IP samples were analysed by Western blotting using HRP conjugated anti-Flag-Tag or anti-Myc-Tag antibodies. Detailed information of antibodies was provided in Table S7.

Western blotting

Proteins from mouse testes were extracted using RIPA lysis buffer containing 1 mM PMSF and protease inhibitors on ice. Supernatants were collected following centrifugation at 12,000 × g for 10 min. Proteins were electrophoresed in 10% SDS–PAGE gels and transferred to nitrocellulose membranes (GE Healthcare, USA). The blots were blocked in 5% milk and incubated with primary antibodies overnight at 4°C, followed by incubation with anti-rabbit or mouse IgG H&L (HRP) for 1 h. β -Actin served as an internal control. The signals were evaluated using Super ECL Plus Western Blotting Substrate and a Tanon-5200 Multi chemiluminescence imaging system (China). Detailed information of antibodies was provided in Table S7.

Immunofluorescence

After permeabilization with 1% Triton X-100 for 1 h, the slides of sperm were blocked with 5% goat serum for 1 h. Primary antibodies were added and

incubated overnight at 4°C. Detailed information of primary antibodies were provided in Table S7. After washing three times with 1×PBS, slides were incubated with Alexa Fluor 484-labelled or 555-labelled donkey anti-rabbit/mouse IgG (Beyotime, Shanghai, China) for 1 h at room temperature. The nuclei were counterstained with DAPI dye and observed using Leica TCS SP2 microscope.

Statistics

Data are presented as the mean \pm standard deviation (SD) and were analysed using GraphPad Prism version 5.01 (GraphPad Software). Student's *t* test (unpaired, two-tailed) was used for the statistical analyses.

Supplemental Figure Legends

Figure S1. Semen analysis of the proband, the flowchart of WES and variant-filtration pipeline. (A) Representative images of Papanicolaou staining and scanning electron microscope (SEM) of sperm were shown. Spermatozoa in the semen of the proband showed 100% headless tails. Scale bars, 10 or 5 μ m. (B) Variants were screened out following the criteria: (1) variants affected coding exons or splice sites (including missense, nonsense, frameshift, and splicing site variants); (2) a minor allele frequency (MAF) was <1% in ExAC for autosomal variants and a MAF was <1‰ in ExAC for variants on the X chromosome; (3) variants were predicted potentially deleterious by at least a pathogenicity prediction software; and (4) variants were consistent with the recessive genetic pattern (homozygous or compound heterozygous) or X-linked inheritance (hemizygous).

Figure S2. Alignment result of human and mouse CCDC188. (**A**) Alignment result of human CCDC188 and mouse CCDC188 was analyzed by M-Coffee website (https://tcoffee.crg.eu/). (**B**) According to the NCBI database, *Ccdc188* mRNA was specifically expressed in the testes among different mouse tissues. According to the Single Cell Expression Atlas, single-cell RNA sequencing of mouse germ cells indicated that *Ccdc188* mRNA was restricted to spermatid subpopulation. Immunofluorescence staining of CCDC188 in a mouse spermatozoon, showing the HTCA-specific localization. For a negative control, IgG was added instead of the primary antibody. Flagella and nucleus was stained with acetylated Tubulin (ac-TUB) and DAPI, respectively. Scale bar, 5 μm. (**C**) The expression of CCDC188, SUN5, and PMFBP1 in sperm samples from the proband and a normal control. β-actin served as a loading control.

Figure S3. More detailed analysis of *Ccdc188***-KO mice.** (A) Spermatogenesis in *Ccdc188*-KO mice was revealed by Periodic acid-Schiff staining of testis sections. Seminiferous tubules could be divided into I-XII

stages and 16 steps of spermatids could be identified. Scale bars, 50 or 10 µm. (**B**) Papanicolaou stain of sperm smear from WT mice and *Ccdc188*-KO mice. Scale bars, 10 µm. (**C**) Transmission electron microscope (TEM) of sperm from WT mice and *Ccdc188*-KO mice. Scale bars, 500 nm. Nu, nuclear; Acr, acrosome; Ax, axoneme; Mp, midpiece; Pp, principle piece; HTCA, head-tail coupling apparatus; Mt, mitochondrial sheath. (**D**) Intracytoplasmic sperm injection (ICSI) outcomes. *Ccdc188*-KO sperm heads were collected by centrifugation in 70% Percoll (Sigma, P4937) followed by three washes in M2 medium. Single sperm heads were picked up from the sperm suspension and injected into wild-type oocytes using a micromanipulator with a Piezoelectric actuating pipette. 2-cell embryos and blastocysts were shown. Scale bar, 100 µm.

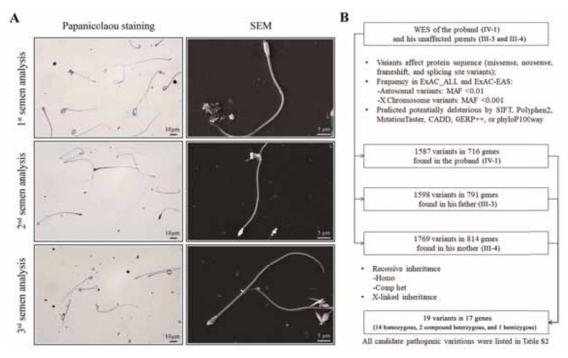
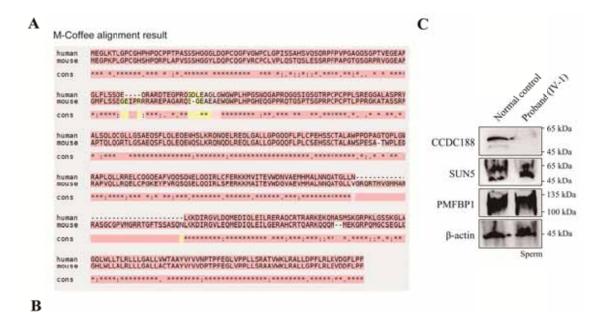



Figure S1.

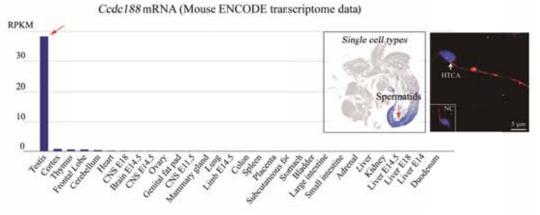


Figure S2.

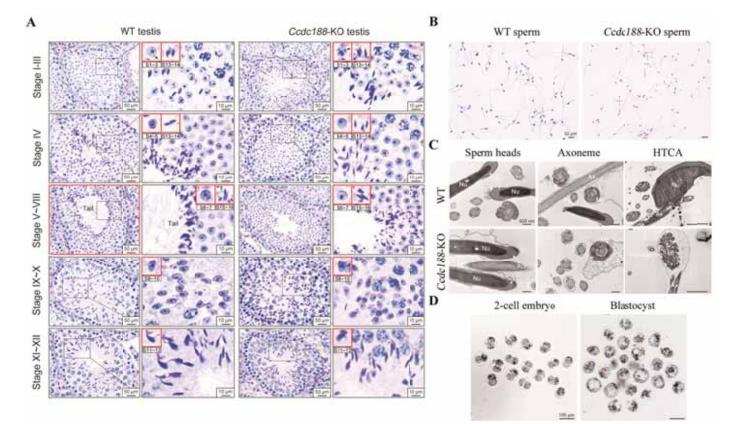


Figure S3.

Supplementary Table Legends

Table S1. Proband's information and his semen characteristics.

Table S2. Candidate pathogenic variations identified in the proband by WES and analysis.

 Table S3.
 CCDC188-interacting proteins in mouse testis protein lysates

 identified by IP-MS.

Table S4. Primers used for the verification of the c.937C>T variant affecting the human *CCDC188* gene.

 Table S5.
 The sgRNA sequence to generate Ccdc188-KO mouse strain.

Table S6. Primers for plasmid construction.

Table S7. All antibodies used in this study.

Video S1. The motility and morphology of sperm from WT mice.

Video S2. The motility and morphology of sperm from *Ccdc188*-KO mice.

Subject	ľ	V-1				
Age	30 years					
Physical examination	normal					
Karyotype	46, XY					
Y Chr micro-deletion	no					
	Semen Parameters	Reference limits				
Volume (ml)	2.7	>1.5				
Concentration (10 ⁶ /ml)	2.77	>15				
Motility (%)	24.4	>40				
Progressive motility (%)	14.64	>32				
Morphological normality (%)	0	>4				
Acephalic sperm (%)	100					

Table S1. Proband's information and his semen characteristics.

Lower reference limits for semen analysis are provided according to the World Health Organization (WHO) standards. At least 200 spermatozoa were observed for morphology analysis.

Gene	Туре	Variation	ExAC_ ALL	ExAC _EAS	SIFT	Polyp hen2	Mutation Taster	CADD	GERP ++	phyloP 100way	Inherited pattern
ANKRD2	nonsynonymous SNV	ANKRD2:NM_001291218 c.C17G:p.P6R									homozygous
<i>CCDC188</i>	stopgain	CCDC188:NM_001365892.2 c.C937T:p.R313*		•	•	•		40	3.79	0.907	homozygous
CCND2	nonsynonymous SNV	CCND2:NM_001759 c.C64G:p.R22G	2.58E-05	0.0004	Т	В	Ν	14.83	3.09	-0.191	homozygous
FAT4	nonsynonymous SNV	FAT4:NM_001291285 c.A3067G:p.K1023E	4.14E-05	0.0006	D	В	D	13.9	5	2.145	homozygous
FOXD4L4	nonsynonymous SNV	FOXD4L4:NM_199244 c.G839C:p.G280A			Т		N	2.608	2.18	-0.517	homozygous
GGT2	nonsynonymous SNV	GGT2:NM_001351304 c.C1664T:p.T555M			Т		N	12.67	1.68	2.398	homozygous
GOLGA6L9	nonsynonymous SNV	GOLGA6L9:NM_198181 c.C451G:p.Q151E			Т			5.077	0.046	0.047	homozygous
ITPRIPL2	nonsynonymous SNV	ITPRIPL2:NM_001034841 c.G1462C:p.A488P			Т	В	Ν	12.53	5.22	0.01	homozygous
KIAA1024	nonsynonymous SNV	KIAA1024:NM_015206 c.C862T:p.P288S	8.24E-06	0	D		D	1.481	5.29	0.763	homozygous
LOC100129307	nonsynonymous SNV	LOC100129307:NM_001310140 c.C446T:p.T149M		•	•	•		•	•	•	homozygous
MAN2C1	nonsynonymous SNV	MAN2C1:NM_001256496 c.A1040G:p.N347S	1.93E-05	0.0003	Т	D	D	23.7	5.54	7.434	homozygous

Table S2. Candidate pathogenic variations identified in the proband by WES and analysis.

nonsynonymous SNV	N4BP2:NM_018177 c.T2438C:p.V813A			Т	Р	Ν	11.36	5.64	0.306	homozygous
nonsynonymous SNV	NR2E3:NM_014249 c.T809C:p.L270P		•	D	Р		28.3	5.36	7.911	homozygous
nonsynonymous SNV	RLBP1:NM_000326 c.C107T:p.P36L			Т	В	Ν	0.417	5.95	-0.305	homozygous
nonsynonymous SNV	DPP7:NM_013379 c.G1177A:p.D393N	0.0003	0	Т	В	Ν	14.14	4.18	0.289	compound heterozygous
nonsynonymous SNV	DPP7:NM_013379 c.G658A:p.V220M	8.29E-06	0.0001	D	D	D	24.7	5.11	5.931	compound heterozygous
frameshift insertion	SPATA31C1:NM_001145124 c.224_225insGC:p.C76Rfs*13	7.57E-05	0.001				·			compound heterozygous
stopgain	SPATA31C1:NM_001145124 c.C1381T:p.Q461*		-	-		-			-	compound heterozygous
nonsynonymous SNV	GPR50:NM_004224:exon2:c.C92 8T:p.H310Y	1.15E-05	0.0002	D	Р	N	20.6	4.63	1.308	hemizygous
	SNV nonsynonymous SNV nonsynonymous SNV nonsynonymous SNV nonsynonymous SNV frameshift insertion stopgain	SNV c.T2438C:p.V813A nonsynonymous NR2E3:NM_014249 SNV c.T809C:p.L270P nonsynonymous RLBP1:NM_000326 SNV c.C107T:p.P36L nonsynonymous DPP7:NM_013379 SNV c.G1177A:p.D393N nonsynonymous DPP7:NM_013379 SNV c.G658A:p.V220M frameshift SPATA31C1:NM_001145124 insertion c.224_225insGC:p.C76Rfs*13 stopgain SPATA31C1:NM_001145124 nonsynonymous GPR50:NM_004224:exon2:c.C92	SNV c.T2438C:p.V813A nonsynonymous NR2E3:NM_014249 SNV c.T809C:p.L270P nonsynonymous RLBP1:NM_000326 SNV c.C107T:p.P36L nonsynonymous DPP7:NM_013379 SNV c.G1177A:p.D393N Nonsynonymous DPP7:NM_013379 SNV c.G658A:p.V220M frameshift SPATA31C1:NM_001145124 stopgain SPATA31C1:NM_001145124 stopgain GPR50:NM_004224:exon2:c.C92 115E-05 115E-05	SNV c.T2438C:p.V813A nonsynonymous NR2E3:NM_014249 SNV c.T809C:p.L270P nonsynonymous RLBP1:NM_000326 SNV c.C107T:p.P36L nonsynonymous DPP7:NM_013379 SNV c.G1177A:p.D393N nonsynonymous DPP7:NM_013379 SNV c.G1177A:p.D393N nonsynonymous DPP7:NM_013379 SNV c.G658A:p.V220M frameshift SPATA31C1:NM_001145124 insertion c.224_225insGC:p.C76Rfs*13 stopgain SPATA31C1:NM_001145124 c.C1381T:p.Q461* - nonsynonymous GPR50:NM_004224:exon2:c.C92 115E-05 0.0002	SNV c.T2438C:p.V813A I nonsynonymous NR2E3:NM_014249 D SNV c.T809C:p.L270P D nonsynonymous RLBP1:NM_000326 T SNV c.C107T:p.P36L T nonsynonymous DPP7:NM_013379 0.0003 0 T nonsynonymous DPP7:NM_013379 0.0003 0 T nonsynonymous DPP7:NM_013379 0.0003 0 T sNV c.G1177A:p.D393N 8.29E-06 0.0001 D frameshift SPATA31C1:NM_001145124 7.57E-05 0.001 . stopgain SPATA31C1:NM_001145124 . . . nonsynonymous GPR50:NM_004224:exon2:c.C92 115E-05 0.0002 D	SNV c.T2438C:p.V813A 1 P nonsynonymous NR2E3:NM_014249 D P SNV c.T809C:p.L270P D P nonsynonymous RLBP1:NM_000326 T B SNV c.C107T:p.P36L T B nonsynonymous DPP7:NM_013379 0.0003 0 T B nonsynonymous DPP7:NM_013379 0.0003 0 T B nonsynonymous DPP7:NM_013379 0.0003 0 T B sNV c.G1177A:p.D393N 0.0001 D D D frameshift SPATA31C1:NM_001145124 7.57E-05 0.001 D D stopgain SPATA31C1:NM_001145124 c.C1381T:p.Q461* nonsynonymous GPR50:NM_004224:exon2:c.C92 115E-05 0.0002 D P	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SNV c.T2438C:p.V813A I P N II.36 5.64 0.306 nonsynonymous NR2E3:NM_014249 . . . D P . 28.3 5.36 7.911 nonsynonymous RLBP1:NM_000326 D P . 28.3 5.36 7.911 nonsynonymous RLBP1:NM_000326 T B N 0.417 5.95 -0.305 nonsynonymous DPP7:NM_013379 0.0003 0 T B N 14.14 4.18 0.289 nonsynonymous DPP7:NM_013379 0.0003 0 T B N 14.14 4.18 0.289 nonsynonymous DPP7:NM_0113579 8.29E-06 0.0001 D D D 24.7 5.11 5.931 frameshift SPATA31C1:NM_001145124 7.57E-05 0.001

Protein Name	Peptide	Abundance CCDC188-IP(1)	Peptide	Abundance IgG-IP(1)	Peptide	Abundance CCDC188-IP(2)	Peptide	Abundance IgG-IP(2)
ABCF1	4	1388714.447	3	95212.32778	2	4242901.428	1	0
AGO2	2	152655.7797	1	0	2	1154051.555	1	0
AP2S1	2	3614877.672	1	0	1	503894.9781	1	0
BCLAF1	5	4523194.505	1	0	3	1293743.994	1	0
BUD31	2	564821.0144	1	0	3	1425254.251	1	0
CAPZA1	3	1642419.848	1	0	2	194774.4048	2	0
CASC3	2	992918.7054	1	49575.63559	2	58623343.77	1	80216.45187
CATSPER1	2	1011079.361	1	0	2	849897.0004	1	0
CCAR1	8	4031249.405	2	0	7	660382.3945	1	0
CCDC188	2	1311869.365	1	0	5	970548.8768	1	0
CDC51	11	13104827.84	1	0	9	5675866.507	1	544681.9764
CHTOP	6	2088517.395	1	0	6	1981336.724	1	0
CNTNAPP3	1	7504209.564	1	0	1	16817706.89	1	12532122.54
COIL	25	74678611.97	1	0	18	64396007.26	1	0
CPEB4	1	179245.8426	1	0	1	124840.073	1	0
CPSF4	1	304545.9061	1	0	2	299900.1592	1	0
CSNK2A1	7	7487280.357	1	0	7	1188198.685	1	0
CTC1	1	7126.675361	1	0	1	119080.5303	1	0
DBT	7	23089144.84	1	0	4	5967474.351	1	0
DDX23	4	7428883.373	1	0	2	4665188.072	1	0
DECR1	1	698217.1721	1	0	2	1007580.592	1	0
DENN2B	1	946053.046	1	0	1	2070328.942	1	0

Table S3. CCDC188-interacting proteins in mouse testis protein lysates identified by IP-MS.

0	1	673117.3347	4	0	1	2821613.272	6	DHX36
0	1	7330207.531	8	0	1	49468626.68	10	DKC1
5588679.666	12	83634984.63	35	13291925.2	22	133926680.2	37	DLAT
0	1	673732.2995	1	0	1	313881.6014	1	DNAJB11
0	1	1500579.44	4	0	1	1415346.783	5	DPYSL3
0	1	2340462.089	1	0	1	649279.5851	1	DTYMK
231859.0056	1	7280284.257	6	0	3	4499377.994	7	EIF3K
0	1	2712844.591	7	0	1	3199344.953	5	ELAVL2
6561275.143	11	15769718.88	10	771418.8971	10	20932272.25	10	FAM98A
0	1	12974756.64	12	0	1	19560429.96	15	FBL
0	4	34210.48065	1	0	1	1466455.608	4	FHL4
0	3	207024.0283	3	0	1	3313521.278	4	FKBP6
582177.0824	2	147115892.1	11	487195.2845	2	108492461	7	FYTTD1
0	1	27468271.89	20	0	1	73160299.54	23	GAPDH
0	1	3653853.045	3	0	1	2461746.249	2	GAR1
0	1	2551417.666	3	0	1	912739.3267	1	GEMIN2
149396.1657	1	2065617.606	3	0	1	728294.8015	3	GLYR1
0	1	22641669.26	22	234780.2727	1	32951978.33	25	GM1141
0	2	989636.9187	1	0	1	1090700.783	2	GSTO2
0	1	347202.2042	1	0	1	8753471.45	3	GTPBP1
0	1	513512.2374	2	0	1	10613130.87	8	H2BC1
0	1	5300687.173	4	0	1	7043675.222	6	HILS1
0	1	1470839.176	1	0	1	1199491.484	1	HMGCLL1
0	1	53859620.15	22	0	1	100031969.2	19	HNRNPH3
0	1	262606491.6	45	0	1	267225348.2	50	HNRNPK
0	1	6668056.089	10	0	1	12008038.34	14	HNRNPR

0	1	180530.1379	4	0	1	29631.93889	1	HPX
0	1	476764.3523	2	62296.35924	1	623449.5713	3	HRG
0	1	424820.9758	1	0	1	43935450.43	4	HTRA2
0	1	6387300.101	10	0	1	2875746.477	7	IFT122
0	1	4255185.626	8	0	1	913972.529	7	IFT140
0	1	481196.6281	2	0	1	1304967.848	4	IGF2BP3
0	1	486148.4956	1	1538288.956	2	35125311.15	2	IQCG
0	1	436814.0653	1	0	1	3001302.774	1	IQCN
0	1	9493600.46	6	132742.6217	1	9494430.946	6	JCHAIN
0	1	505793.0349	1	0	1	3466099.229	2	KIF27
0	1	555947.6181	3	0	1	15777.63314	1	KLHL36
233032.2075	3	25521156.75	13	583953.9275	3	14893899.07	18	LACTB
0	1	3004954.942	2	0	1	264877.9544	1	LARP4
0	1	537715.17	2	0	1	626777.5108	2	LASP1
0	1	224741.4296	5	0	1	3532905.85	8	LIG3
0	3	470322.3384	5	0	1	449602.1851	4	LSM14B
190003.6757	2	7363417.545	4	0	1	9245064.217	7	MAGOHB
0	1	1597310.738	2	0	1	397919.7256	5	MEIOC
98546.5408	2	6363759.947	2	449290.234	3	37961019.02	5	MFAP1B
0	1	822575.4188	1	0	1	450345.848	1	MLF1
0	1	414068.8639	1	0	1	712844.2105	2	MTDH
0	1	505482.0366	4	0	1	2539508.791	3	MUG1
2824185.32	14	11250573.34	14	0	1	9884304.164	18	MVP
0	1	5788926.661	4	0	1	3308632.088	3	NCBP2
0	1	15361437.67	13	0	1	24813675.37	17	NCL
2400827.061	8	234800770.2	22	3520745.787	9	138627281.9	31	NCOA5

0	1	31085690.62	11	0	1	42735640.67	21	NOP56
0	1	2455243.722	6	0	1	1776107.18	5	NUDT16L1
0	1	1169484.921	2	0	1	9830345.793	5	NUFIP2
0	1	462486.0123	1	0	1	20081060.92	1	PAFAH1B1
0	1	9281603.441	2	0	1	8085309.043	1	PDHA1
561136.9601	2	6877111.228	8	1265162.762	4	13212527.5	12	PDHX
0	1	3940606.762	8	0	1	391487.3298	6	PDZD8
784162.1291	6	19177670.66	8	218149.5239	2	11300069.41	8	PGAM5
0	1	917687.3339	1	0	1	356234.9107	1	PGM5
0	1	5147362.322	15	0	1	4609621.473	11	PMFBP1
0	1	1461687.601	7	0	1	1066786.492	5	PNN
0	1	3213788.856	1	0	1	3005002.991	1	PPIL1
0	1	226285.0025	1	0	3	339867.8999	1	PPP1CC
0	1	3416480.747	2	0	1	6776403.406	2	PPP2R2A
0	1	563387.8363	1	0	1	947267.2122	1	PRM2
0	1	404123.2916	1	0	1	148635.2907	1	PRPF3
0	1	142862.0523	1	60893.14595	1	17708661.24	4	PRPF40A
0	1	321106.2213	1	0	1	112551.7808	1	PRPS1L1
0	1	426408.1445	2	0	1	10629084.9	4	PSIP1
0	1	611094.3895	3	0	1	68843.09642	1	PSMA6
68366.39034	1	688543.5786	1	0	1	145836.0981	1	PSMG1
0	1	796560.564	2	0	1	198427.8182	1	PUM1
309944.7683	1	43362711.76	2	0	1	863395.8481	6	PWWP3A
0	1	10883084.66	6	0	1	14163551.23	5	PZP
0	1	1333546.842	1	0	1	2438732.843	1	QSOX2
0	1	2438782.327	2	0	1	5287063.235	3	RAB1A

0	1	2494974.706	7	0	1	1490250.323	5	RALY
324515.995	4	13278172.51	13	987857.2484	5	29198159.46	17	RBM46
0	1	4973063.485	7	0	1	7869096.992	8	RBMXL1
0	1	400921.1939	1	0	1	1312561.511	2	RBX1
740828.9022	4	34152717.55	4	121969.9877	1	1800705.155	3	RDH11
36055.14448	1	384138.6274	1	0	1	297670.777	1	RNF151
0	1	27267234.37	10	0	1	17086516.54	6	RPL12
0	1	928160939.1	9	0	1	1709396134	9	RPL13A
0	1	158696671.4	5	0	1	18327699.07	5	RPL18
269079.9889	3	6244483.778	5	235627.5863	3	2395504.919	4	RPL18A
0	1	7863615.289	5	0	1	3936175.5	2	RPL21
0	1	8254981.314	3	0	1	1779485.162	2	RPL23A
0	1	9443284.84	4	0	1	3020409.469	4	RPL27
0	1	1629887.649	2	0	1	359613.6991	1	RPL28
0	1	322588.5188	1	0	1	433734.7537	1	RPL32
0	1	2507421.252	2	0	1	3109504.403	3	RPL34
0	1	7712229.507	1	0	1	11750249.53	1	RPL37A
0	1	7124427.354	8	0	1	16094560.98	10	RPL6
1827427.537	4	24206876.79	11	684312.9651	4	20085037.26	16	RPL7A
4228464.973	3	63474106.51	6	0	1	43839028.01	7	RPL8
43725.33374	4	5457869.069	12	0	1	15349486.24	13	RPL9-PS6
0	1	701211.9641	1	0	1	434131.8748	1	RPLP1
0	1	4326705.821	4	0	1	1455154.89	5	RPLP2
361744.4508	2	11952028.44	8	520356.1044	3	6220625.358	5	RPS13
1244454.801	5	15482089.4	10	502262.8264	4	12594951.82	7	RPS15A
159216.9142	1	3607101.796	3	51042.73157	1	2152244.538	1	RPS23

0	1	3183766.785	2	0	1	1001845.477	1	RPS26
362507.8743	1	4461532.609	5	174202.9759	1	4987788.016	5	RPS4X
0	1	13207012.48	10	720345.5958	3	8830206.678	7	RPS6
0	1	18867533.84	8	0	1	17963135.67	8	RPS8
0	1	208032.9873	1	0	1	485912.5797	1	SAMD4B
0	1	2507668.953	5	0	1	3183204.49	3	SERPING1
0	1	795795.2605	2	0	1	2045135.06	4	SLTM
0	1	1326032.904	2	0	1	1173479.517	2	SNRPA
0	1	6738725.906	7	0	1	5972935.128	8	SNRPA1
0	1	8787656.622	6	0	1	8216900.039	9	SNRPD2
205003.6296	1	5173862.61	3	152678.062	1	2576075.644	3	SNRPD3
0	1	489896.8398	1	0	1	3513074.907	3	SON
0	1	517147.6851	3	0	1	3896083.305	5	SPAG4
0	1	1365592.534	6	121736.5245	2	12724164.34	6	SPATS2
0	1	3660262.477	5	0	1	3809745.394	6	SRSF5
0	1	7892027.259	4	0	1	3227869.177	3	SRSF6
0	1	1144369.911	3	47814.80489	1	1250157.582	5	SRSF9
0	1	254050.5293	2	0	1	279384.7636	1	SSX2IP
115330.1248	1	2279474.875	4	0	1	5891621.212	4	STAU1
0	1	212692.9631	1	0	1	398296.7047	1	STK39
0	1	2479776.339	5	0	1	1500736.938	6	STRBP
845301.3373	3	21366997.03	36	1095000.184	11	20342484.2	36	SUGP2
0	1	24981983.37	4	0	1	6093713.452	3	SUN5
0	1	3663424.378	6	0	1	9782645.082	7	TARBP2
0	1	1589801.325	3	0	1	3875700.652	4	TDRD3
0	2	417467.9546	3	0	1	1290149.515	5	TEKT1

0	1	8536619.257	2	0	1	6834964.343	1	TEX13D
0	1	1366147.708	1	0	1	972808.1865	1	TEX30
0	1	1049916.599	2	0	1	471337.2235	1	TEX35
0	1	238613.4259	2	0	1	283097.2048	3	THOC2
0	1	1177110.808	1	0	1	373626.9266	1	THOC6
0	1	2471815.266	3	0	1	2172693.364	2	TMCO5
0	1	9698863.584	6	0	1	9591313.932	4	TMEM191C
0	1	2278614.358	1	0	1	221779.5289	1	TNRC6A
0	1	430349.9613	1	0	1	1194894.309	4	TOP2A
0	1	11632956.29	5	0	1	13211713.25	6	TOP3B
1660932.467	3	18178421.99	7	741911.0002	3	25190015.05	6	TRA2B
0	1	128102.3724	1	0	1	152146.2417	1	TRIM14
0	1	994106.6528	4	0	1	494992.961	3	UPF2
19536.17847	1	1184864.954	4	0	1	182243.6571	2	USP10
0	1	1013373.381	2	0	1	263460.1962	2	USP40
0	1	780043.4855	2	0	1	2272054.928	3	VTN
0	1	50851086.26	6	2856365.058	4	107956646.5	10	WDR33
0	1	25061300.67	1	0	1	33570774.81	3	WDR5
0	1	1979958.234	3	0	1	374687.0033	4	WRAP53
0	1	3278320.299	1	0	1	3563383.615	1	ZFP748
0	1	30212400.01	19	0	1	25456624.14	30	ZNF326
0	1	2371029.779	7	0	1	1558483.315	5	ZNFX1

Table S4. Primers used for the verification of the c.937C>T variant affecting the human *CCDC188* gene.

Variant	Sequence $(5' \rightarrow 3')$	Size
c.937C>T/p.R313*	CTGCTGTGCTTACCTCCTCTGG CAGGAAGCCGTCCACTTTGAG	883 bp

Table S5. The sgRNA sequence to generate *Ccdc188*-KO mouse strain.

Variant	Sequence $(5' \rightarrow 3')$	PAM
gRNA-1 gRNA-2	ATCCCTGACAGGGCTGATCC GTCCACTTCGAGGCGCAAGA	AGG

Table S6. Primers for plasmid construction.

Name	Sequence $(5' \rightarrow 3')$	Size
SUN5	(KpnI) CGGGGTACCCCGATGCCCCGGACGAGGAAC (XbaI) TGCTCTAGAGCAGGATAGGGGGCTCTAGGTGTGA	1047 bp
PMFBP1	(KpnI) CGGGGTACCCCGATGCTAAAGCTTAAAGGAGAATT (XbaI) TGCTCTAGAGCAGCAGTAGGAGGAGCCTGAG	3069 bp
CCDC188	(HindIII) CCCAAGCTTGGGATGGAGGGGCCAAAACCC (EcoRI) CCGGAATTCCGGGAAAGGCAGGAAGTCGTCCACT	1308 bp

Table S7. All antibodies used in this study.

Name	Factory	Catalog	Application	
CCDC188 polyclonal antibody	Home-made		WB (1:1000), IF (1:200)	
SUN5 polyclonal antibody	Proteintech	17495-1-AP	WB (1:1000), IF (1:200)	
PMFBP1 polyclonal antibody	Proteintech	17061-1-AP	WB (1:1000), IF (1:200)	
β-actin monoclonal antibody	Abcam	ab8226	WB (1:1000)	
ac-TUB monoclonal antibody	Proteintech	66200-1-Ig	IF (1:200)	
ac-TUB monoclonal antibody	CST	#5335	IF (1:200)	
Flag-tag monoclonal antibody	Abmart	M20008	IP (1:100), WB (1:2000)	
Myc-tag monoclonal antibody	Abmart	M20002	IP (1:100), WB (1:2000)	
Goat Anti-Rabbit IgG-HRP	Abmart	M21002	WB (1:5000)	
Goat Anti-Mouse IgG-HRP	Abmart	M21001	WB (1:5000)	
Alexa Fluor 488-labeled Goat	Beyotime	A0423	IF (1:200)	
Anti-Rabbit IgG(H+L)	Beyötille	110425	II (1.200)	
Alexa Fluor 555-labeled	Beyotime	A0460	IF (1:200)	
Donkey Anti-Mouse IgG(H+L)				
Alexa Fluor 488-labeled Goat	Beyotime	A0428	IF (1:200)	
Anti-Mouse IgG(H+L)				
Alexa Fluor 555-labeled	Beyotime	A0453	IF (1:200)	
Donkey Anti-Rabbit IgG(H+L)				