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Introduction of PsychENCODE data and more on the supplement
Materials and Methods

1 Constructing a single-cell genomic resource for 388 individuals
1.1 PsychENCODE Consortium Structure - Description of the PsychENCODE
Consortium Structure and Contributions to the Resource
1.2 Dataset Overview - Overview of all the datasets combined to create the
resource
1.3 Portal Overview - Description of supplemental files and datasets available on
the brainSCOPE portal

Key Resource Files
Raw Datasets
Output Files
Data Visualization
Outputs from the ROSMAP study analyses
Code - Using the Dockerized LNCTP Model

1.4 snMultiome Dataset
Human postmortem tissue
Nuclei isolation, microfluidic capture, and cDNA synthesis for snMultiome

1.5 snRNA-seq Processing - Generation of cell-type-specific expression data
Step 1. Count matrix generation, demultiplexing, and ambient RNA clean-up
Step 2. Per-fastq set/sample processing using Pegasus
Step 3. Per-study aggregation of processed sample and cell-type annotation

1.6 Genotype Processing - Uniform analysis of genotype datasets
Variant calling from WGS and RNA-seq
Genotype quality control (QC) and imputation
Genotype PCA analysis and QC
Rare variant and structural variant (SV) annotation and analysis

1.7 Cell-type Fractions - Calculation of cell-type fractions from snRNA-seq data
1.8 Cell-type Fractions - Deconvolution of cell fractions for PsychENCODE
Consortium bulk-RNA-seq data
1.9 DE Analysis - Differentially Expressed (DE) Genes for disease traits
1.10 Trajectory Analysis - Identifying DE genes over cell types by pseudotime

Overall approach and differential expression analysis
Preprocessing and QC
Trajectory analysis
Differential expression along the trajectories
Post-processing
Additional results from the IT neuron trajectory analysis

2 Determining regulatory elements for cell types from snATAC-seq
2.1 snATAC-seq Processing

Step 1. Per-sample QC and filtering
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Step 2. Per-sample dimensionality reduction and preliminary analysis
Step 3. Data aggregation and further QC
Step 4. Batch effect removal
Step 5. Peak calling
Step 6. Distal-peak-to-gene linkage
Step 7. Motif enrichment and TF footprinting analysis
Step 8. Processed data availability

2.2 LDSC - Methods for Linkage Disequilibrium Score Regression (LDSC)
enrichment of candidate regulatory elements
2.3 STARR-seq - Validation of putative enhancers in neural progenitor cells
2.4 b-cCREs - Identification of brain-specific cCREs

3 Measuring transcriptome and epigenome variation across the cohort at the
single-cell level

3.1 Variance Partition - Partitioning transcriptome variation among cell types,
individuals, and regions
3.2 Variance Partition - Quantifying epigenomic variation across cell types
3.3 Conservation - Cross-species sequence conservation

4 Determining cell-type-specific eQTLs from single-cell data
4.1 scQTLs - Cell-type-specific eQTL analysis
4.2 Bayesian scQTLs - scQTLs using Bayesian linear mixed effects models
4.3 Dynamic scQTLs - Dynamic sc-eQTL analysis
4.4 Isoform QTLs - Identify QTLs for isoform expression for each cell type
4.5 Allele-specific expression
4.6 mutSTARR-seq - Investigating the allelic effects of eQTLs on enhancers
4.7 STARR-seq and MPRA Validation - Validation of the scQTLs using STARR-seq
and MPRA

Identifying the eSNPs
Defining the active and control sets for STARR-seq and MPRA
Enrichment analysis of the scQTLs in MPRA and STARR-seq

5 Building a gene regulatory network for each cell type
5.1 GRN construction - Construction of cell-type GRNs

SCENIC
scGRNom

5.2 GRN evaluation
Overlaps of SCENIC results with snATAC peaks
Comparing cell type GRNs with tissue-naive GRNs
Variance in gene expression explained by GRN models
GRN stability

5.3 CRISPR validation - Validation of TFs and target genes identified in GRNs
5.4 Network Characterization - Comparison of GRN structure across cell types

Centrality analysis
Comparison of cell-type regulons with disease co-expression modules from bulk data
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GO enrichment analysis
Motif analysis
Disease co-regulatory networks

5.5 Unifying TF-target Regulons
6 Constructing a cell-to-cell communication network

6.1 Cell-to-Cell Network - Methods to build cell-to-cell networks
6.2 Cell-to-Cell Network - Methods to determine latent patterns
6.3 Cell-to-Cell Network - Validation of cell-to-cell network with spatial data

7 Assessing cell-type-specific transcriptomic and epigenetic changes in aging
7.1 Aging Cell Fractions - Single-cell aging cell-type fraction
7.2 Aging Cell Fractions - Deconvolution of bulk-RNA-seq data
7.3 Aging DE - DE genes in control aging and schizophrenia aging

Aging DE genes in control group
Aging DE genes in the schizophrenia patient group
Aging DE genes and AD DE genes

7.4 Aging STEM - Short Time-series Expression Miner analyses
7.5 Aging Model - Aging prediction using prioritized genes
7.6 Aging Chromatin
7.7 AD Model - Associating cell-type fractions and signatures with AD

Inference of cell-type-specific gene expression and methylation
Building a model to predict AD
Multilayer perceptron

8 Imputing gene expression and prioritizing disease genes across cell types with an
integrative model

8.1 LNCTP Priors - Linear Network of Cell-Type Phenotypes imputation priors
Per-sample, per-cell type metacells
Combining the metacells into z-score distributions

8.2 LNCTP Framework
8.3 LNCTP Motivation - Motivation for linear network architecture
8.4 LNCTP Training

Unary training
GMRF training
DNN training
LNCTP on AD Prediction

8.5 LNCTP Interpretation
Imputation of bulk and cell-type expression
Saliency-based cell-type and gene prioritization
Heritability and coheritability estimates
Prioritized subgraph analysis
Polygenic risk score calculations

8.6 LNCTP Validation - In silico validation of LNCTP-prioritized genes and drug
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targets
8.6.1 Prior literature- and GWAS-based analysis of prioritized genes
8.6.2 Network analysis of prioritized genes
8.6.3 DE analysis of prioritized genes
8.6.4 Perturbation analysis of prioritized genes and drug targets
8.6.5 CLUE analysis
8.6.6 Network analysis of LNCTP perturbations
8.6.7 Ablation analysis

8.7 Independent CRISPR validation of LNCTP
8.7.1 Gene expression comparisons to CRISPR experiments
8.7.2 Gene regulatory network (GRN) overlaps with CRISPR differentially expressed
genes (DEGs)

8.7.2.1 Diffusion-network-based approach
8.7.2.2 Hop-distance-based approach
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Introduction of PsychENCODE data and more on the
supplement

This document provides an organized reference and includes four main sections:
Materials and Methods, Supplementary Figures, Supplementary Tables, Supplementary Data.
To present the data and results in an organized way, we prepared both the Materials and
Methods section and Supplementary Figures section to align with our main text. In the Materials
and Methods section, we use main text subheadings as primary headings. The secondary level
of heading represents the content of each section, where we have included a precise heading
(Bold and Italic) and detailed heading in a combined fashion (“Dataset Overview - Overview of
all the datasets combined to create the resource”).

To link and cross-reference between the main text and this supplement as clearly as
possible, we also list all precise headings that are linked to each main text section here. All
precise headings connected to the main text can be used as a quick guide for finding
information.

Quick Guide to Finding Information in the Materials and Methods
Using [Precise Heading]

Main Text Subheading Precise Heading

Constructing a single-cell genomic resource
for 388 individuals

“PsychENCODE Consortium Structure”,
“Dataset Overview”, “Portal Overview”,
“snMultiome Dataset”, “snRNA-seq
Processing”, “Genotype Processing”, “Cell-type
Fractions'', “DE Analysis”,“Aging DE”,
“Trajectory Analysis”

Determining regulatory elements for cell
types from snATAC-seq

“snATAC-seq Processing”, “LDSC”,
“STARR-seq”, “b-cCREs”

Measuring transcriptome and epigenome
variation across the cohort at the single-cell
level

“Variance Partition”,“Conservation”

Determining cell-type-specific eQTLs from
single-cell data

“scQTLs”, “Bayesian scQTLs”, “Dynamic
scQTLs”, “Allele-specific expression”, “Isoform
QTLs”, “STARR-Seq”, “mutSTARR-Seq”

Building a gene regulatory network for each
cell type

“GRN Construction”, ”GRN evaluation”,
“CRISPR Validation”, “Genotype processing”,
“Network Characterization”, “Unifying TF-target
Regulons”
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Constructing a cell-to-cell communication
network

“Cell-to-Cell Network”

Assessing cell-type-specific transcriptomic
and epigenetic changes in aging

“Aging Cell Fractions”, “Aging DE”, “Aging
STEM”, “Aging model”, "Aging Chromatin", “AD
Model”

Imputing gene expression and prioritizing
disease genes across cell types with an
integrative model

“LNCTP Framework”, “LNCTP Priors”, “LNCTP
Training”, “LNCTP motivation”, “LNCTP
Interpretation”, “LNCTP Validation”,
“Independent CRISPR validation of LNCTP”

The supplementary figures and tables are both numbered based on the order in which
they are mentioned in the main text. Note that many associated data files are available with
unique file IDs on the brainSCOPE portal: http://brainscope.psychencode.org and
https://brainscope.gersteinlab.org. References to the supplementary materials in the main
manuscript are contextualized in this document with the tag “Main manuscript reference. ”
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Materials and Methods

1 Constructing a single-cell genomic resource for 388 individuals

1.1 PsychENCODE Consortium Structure - Description of the
PsychENCODE Consortium Structure and Contributions to the Resource

The PsychENCODE Consortium (http://www.psychencode.org/) consists of over 200
researchers across 20+ institutions who are studying the effects of functional genomic elements
in individuals with neuropsychiatric disorders (113). PsychENCODE consists of several internal
committees and working groups. In particular, the following groups contributed to the data
collection and integrative analysis presented in the brainSCOPE Resource:

● Data Generation Center: Performed single-nucleus RNA sequencing (snRNA-seq),
single-nucleus ATAC-sequencing (snATAC-seq), single-nucleus Multiome (snMultiome),
and genotyping for 313 prefrontal cortex (PFC) samples in disease and control
individuals.

● Data Analysis Center: Performed uniform computational processing and integration of
sequencing datasets for the 313 PsychENCODE samples with 20 non-PsychENCODE
samples generated for this cohort and 55 samples from external sources, and generated
key resources for brainSCOPE.

● Validation Working Group: Performed CRISPR, massively parallel reporter assay
(MPRA), STARR sequencing (STARR-seq) validation, and spatial transcriptomics
experiments to validate key resources.

● Data Coordinating Center: Maintained raw datasets for brainSCOPE in appropriate data
repositories, and constructed web portal data visualization browsers for key resources
and ancillary datasets.

1.2 Dataset Overview - Overview of all the datasets combined to create
the resource

Main manuscript reference: First supplementary reference in the first paragraph of
“Constructing a single-cell genomic resource for 388 individuals.”

The collection of snRNA-seq, snATAC-seq, and snMultiome datasets used in this
analysis encompasses control, schizophrenia, bipolar disorder, autism spectrum disorder (ASD),
Alzheimer’s disease (AD) and post-traumatic stress disorder (PTSD) samples from the PFC
from several studies that fall under the scope of the PsychENCODE Consortium (108). These
studies include the CommonMind Consortium (CMC), UCLA-ASD, SZBDMulti-seq,
MultiomeBrain, DevBrain, IsoHuB, PTSDBrainomics, and Lieber Institute for Brain Development
(LIBD) studies. For the snRNA-seq component, the library preparation methods varied from
study to study, including: 10x Genomics (UCLA-ASD, DevBrain, IsoHuB, PTSDBrainomics, and
LIBD); 10x Genomics + MULTI-seq (108); 10x Genomics + CellHashing (114); and 10x
Genomics Multiome (snRNA-seq + snATAC-seq). Additional snATAC-seq data were obtained
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from the UCLA-ASD study. The analysis also encompasses data from published studies and
repositories, including the ROSMAP (115) study (as available on the AD Knowledge Portal
(116)), the Ma-Sestan study (19), and the Velmeshev study (18), as well as additional
snMultiome data (described below) from control individuals (labeled as “Girgenti-snMultiome” in
the meta-data file), processed and analyzed exclusively for this paper. All functional genomic
samples in the cohort were taken from tissue samples of various regions within the dorsolateral
PFC (DLPFC), and all samples in the integrated analysis were from adults (at least 13 years of
age, ranging up to 90+ years old).

Metadata for all samples used in this study by cohort as well as available data modalities
and uniform clinical and demographic information for each sample are shown below as data S1,
with additional information for mapping IDs across modalities provided in data S2. The datasets
used as inputs for each downstream analysis are listed in data S3 and visualized as a
dependency graph in fig. S2.

File: PEC2_sample_metadata.txt (data S1): This file contains clinical and demographic
meta-data for each sample in the brainSCOPE Resource.
File: PEC2_sample_mapping.xlsx (data S2): This file contains mapping of uniform IDs for each
sample across cohorts and data modalities (snRNA-seq, snATAC-seq, and genotype data).

1.3 Portal Overview - Description of supplemental files and datasets
available on the brainSCOPE portal

Main manuscript reference: First supplementary reference in the last paragraph of
“Introduction” and first supplementary reference in the first paragraph of the “Discussion.”

Datasets produced by the PsychENCODE Consortium include raw and analyzed
population-scale single-cell multi-omics data in a cohort consisting of 388 individual samples
from the adult human PFC of healthy controls and individuals afflicted by neuropsychiatric
diseases. These data include snRNA-seq, snATAC-seq, snMultiome, and genotype data
integrated and uniformly processed from 12 different cohorts. Together, the raw datasets and
processed output files described in the manuscript and supplement comprise the brainSCOPE
(Brain Single-Cell Omics for PsychENCODE) Resource.

All brainSCOPE-related datasets are available at http://brainscope.psychencode.org and
https://brainscope.gersteinlab.org. The portal contains lists of available data and links to a data
visualization tool called PsychSCREEN, as described below. Screenshots of the main
brainSCOPE portal, the protected dataset portal, and the PsychSCREEN browser are available
in figs. S3, S4, and S5, respectively.

Key Resource Files
This page of the brainSCOPE portal provides users with a list of select files generated

from each major analysis of the paper. It is intended for end users who wish to easily access
key results from each of the major paper analyses for use in downstream analyses. Files on this
page include sample metadata; cell-level and pseudobulk summary matrices for gene
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expression by cell type; single-cell cis-regulatory element (scCRE) regions for each cell type;
lists of differentially expressed (DE) genes by condition and cell type; individual and cell
type-derived variation for all genes; single-cell quantitative trait loci (QTL) callsets from the
primary scQTL analysis; cell-type-specific gene regulatory networks (GRNs); cell-to-cell
communication networks; and lists of genes prioritized by disease from the Linear Network of
Cell-type Phenotypes (LNCTP) model. A screenshot of this webpage is shown below in fig. S3
and is available online at http://brainscope.psychencode.org/key_resource_files.html and
https://brainscope.gersteinlab.org/key_resource_files.html.

Raw Datasets
The page labeled “Raw Data'' provides links to snRNA-seq, snATAC-seq, and genotype

file sets stored in protected-access data repositories. In particular, raw sequencing datasets
include snRNA-seq, snATAC-seq, and genotype data (single-nucleotide polymorphism [SNP]
microarray, whole-genome sequencing [WGS], or exome sequencing) for all samples derived
from PsychENCODE Consortium cohorts. A screenshot of the main protected access data
repository for PsychENCODE datasets is provided below as fig. S5. Links are also provided for
datasets from external cohorts that were analyzed alongside the PsychENCODE cohorts,
including ROSMAP samples that are hosted on the AD Knowledge Portal or Velmeshev
samples that are hosted on NCBI Gene Expression Omnibus. Each individual dataset is linked
using accession numbers for long-term data archival.

The following data matrix files hosted on the brainSCOPE portal provide links to datasets
for each sample on Synapse or other repositories:

File: raw_sequencing_data_links.xlsx: This file contains accession numbers and links to all
available snRNA-seq, snATAC-seq, and genotype data for each sample that are publicly
available to download from Synapse or other repositories.

Output Files
The page labeled “Output Files” hosts all processed datasets with open access

described in the manuscript and supplement. To better connect the supplementary text with our
resource files hosted on the brainSCOPE portal, we also list the resource file name and provide
a brief description of these files at the end of each related Materials and Methods section. A
screenshot of this webpage is shown below in fig. S3 and is available online at
http://brainscope.psychencode.org/integrative_files.html and
https://brainscope.gersteinlab.org/integrative_files.html.

Data Visualization
Finally, a link is provided to a tool for interactive visualization of the brainSCOPE

Resource data, which is integrated into the PsychSCREEN genomic data browser. The tool
includes genome browsers for snATAC-seq peaks, scQTLs, and GRN annotations. We also
provide a tool to visualize single-cell expression data for all genes by cell type across
subcohorts, including interactive Uniform Manifold Approximation and Projection (UMAP) and
dot plots. Finally, summary dot plots for gene variation and DE genes by disease and cell type
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are provided. This tool is available at https://psychscreen.wenglab.org/psychscreen/single-cell.
Datasets available on PsychSCREEN can also be downloaded at
https://psychscreen.wenglab.org/psychscreen/downloads. Screenshots of example data
visualizations are available in fig. S4, and an explanation of all PsychSCREEN features is
provided on the brainSCOPE portal at
http://brainscope.psychencode.org/psychscreen_example.html and
https://brainscope.gersteinlab.org/psychscreen_example.html.

Outputs from the ROSMAP study analyses
Per the data use requirements for the AD Knowledge portal (116), we have made the

processed snRNA-seq expression datasets (cohort and per-individual) and imputed genotype
files for ROSMAP available in the portal.

The ROSMAP h5ad file and the individual-specific gene-by-cell expression matrices are
available via the AD Knowledge Portal (https://adknowledgeportal.org). The AD Knowledge
Portal is a platform for accessing data, analyses, and tools generated by the Accelerating
Medicines Partnership (AMP-AD) Target Discovery Program and other National Institute on
Aging (NIA)-supported programs to enable open-science practices and accelerate translational
learning. The data, analyses and tools are shared early in the research cycle without a
publication embargo on secondary use. Data is available for general research use according to
the following requirements for data access and data attribution
(https://adknowledgeportal.org/DataAccess/Instructions).

Code - Using the Dockerized LNCTP Model
The LNCTP model is currently available as a Docker container and can be accessed

publicly on https://hub.docker.com/repository/docker/icefirecloud/lnctp-server/general. This
allows users to easily run or modify the model on their local systems. While the model can run
on both CPU and GPU, it is recommended to use a GPU for the training phase to expedite the
process.

To use the docker file, users must install Docker first, and then use the following steps
(for a Linux-based system):

docker pull icefirecloud/lnctp-server:latest
docker run -it icefirecloud/lnctp-server bash

Now the user should be in the docker container:
cd lnctp_code_asd
python lnctp_test_models.py
python lnctp_train_models.py

Corresponding outputs will be printed during processing. Users may also switch to other
folders (SCZ, BPD) and run the corresponding LNCTP scripts for other predictions.
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1.4 snMultiome Dataset
Main manuscript reference: Fourth supplementary reference in the first paragraph of

“Constructing a single-cell genomic resource for 388 individuals.”

Human postmortem tissue

Human DLPFC (Broadman Area 9/46) samples were collected by the Girgenti laboratory
from the NIH NeuroBioBank (https://neurobiobank.nih.gov/) (117) following the guidelines
provided by the Yale Human Investigation Committee.   Samples from the NIH NeuroBioBank
were chosen to be free of neurodegenerative conditions, stroke, head injury, HIV, COVID, and
any known neuropsychiatric conditions. Human tissues were collected and handled in
accordance with ethical guidelines and regulations for the research use of human brain tissue
set forth by the NIH (http://bioethics.od.nih.gov/humantissue.html) and the World Medical
Association Declaration of Helsinki
(http://www.wma.net/en/30publications/10policies/b3/index.html). Appropriate informed consent
was obtained, and all available non-identifying information was recorded for each specimen. No
obvious signs of neuropathological alterations were observed for any of the human specimens
considered and analyzed in this study. For all specimens, regions of interest were sampled from
frozen tissue slabs or whole specimens stored at -80ºC.

Nuclei isolation, microfluidic capture, and cDNA synthesis for snMultiome

To obtain pure and intact nuclear populations, brain tissues were homogenized by a
Dounce homogenizer in an ice-cold isolation buffer containing 2M sucrose. All buffers were
ice-cold and all reagents used for nuclear isolation were molecular biology grade unless stated
otherwise. A total of 20-30 mg of pulverized tissue was added into 5 ml of ice-cold lysis buffer
(320 mM sucrose [Sigma #S0389], 5 mM CaCl2 [Sigma #21115], 3 mM Mg[Ace]2 [Sigma
#63052], 10 mM Tris-HCl [pH 8; AmericanBio #AB14043], protease inhibitors without EDTA
[Roche #11836170001], 0.1 mM EDTA [AmericanBio #AB00502], RNAse inhibitor [80 U/ml;
Roche #03335402001], 1 mM dithiothreitol [DTT; Sigma #43186], and 0.1% TX-100 [v/v; Sigma
#T8787]). Reagents DTT, RNAse protector, protease inhibitors, and TX-100 were added
immediately before use. The suspension was transferred to a Dounce tissue grinder (15 ml
volume, Wheaton #357544, autoclaved, RNAse free, ice-cold) and homogenized with loose and
tight pestles, 30 cycles each, with constant pressure and without introduction of air. The
homogenate was strained through a 40-µm tube top cell strainer (Corning #352340) pre-wetted
with 1 ml isolation buffer (1,800 mM sucrose [Sigma #S0389], 3 mM Mg[Ace]2 [Sigma #63052],
10 mM Tris-HCl [pH 8; AmericanBio #AB14043], protease inhibitors without EDTA [Roche
#11836170001], RNAse inhibitor [80 U/ml, Roche #03335402001)] and 1 mM DTT [Sigma
#43186]. An additional 9 ml of isolation buffer was added to wash the strainer. The final 15 ml of
solution was mixed by inverting the tube 10x and carefully pipetted into two ultracentrifuge tubes
(Beckman Coulter #344059) onto the isolation buffer cushion (5 ml) without disrupting the
phases. The tubes were centrifuged at 30,000 x g for 60 min at 4ºC on an ultracentrifuge
(Beckman L7-65) and rotor (Beckman SW41-Ti). Following the ultracentrifugation, the
supernatant was carefully and completely removed, and 100 µl of resuspension buffer (250 mM
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sucrose [Sigma #S0389], 25 mM KCl [Sigma #60142], 5 mM MgCl2 [Sigma #M1028], 20 mM
Tris-HCl [pH 7.5; AmericanBio #AB14043; Sigma #T2413], protease inhibitors without EDTA
[Roche #11836170001], RNAse inhibitor [80 U/ml; Roche #03335402001], and 1 mM DTT
[Sigma #43186]) was added dropwise on the pellet in each tube and incubated on ice for 15
min. Pellets were gently dissolved by pipetting 30x with a 1 ml pipette tip, pooled, and filtered
through a 35-µm tube top cell strainer (Corning #352235). Finally, nuclei were counted on a
Countess cell counter (ThermoFisher) and diluted to 1 million/ml with sample-run buffer (0.1%
bovine serum albumin [Gemini Bio-Products #700-106P], RNAse inhibitor [80 U/ml; Roche
#03335402001], and 1 mM DTT [Sigma #43186]) in Dulbecco's phosphate-buffered saline
(Gibco #14190).

The nuclei samples were placed on ice and taken to the Yale Center for Genome
Analysis core facility, where they were processed with targeted nuclei recovery of 20,000 nuclei
per sample on a microfluidic Chromium System (10x Genomics) following the manufacturer’s
protocol (10x Genomics, Chromium Next GEM Single Cell Multiome ATAC + Gene Expression
Reagent Bundle, PN-1000283). Libraries were sequenced with paired-end 150 bp reads on an
Illumina NovaSeq 6000 to a target depth of 250 million read pairs per sample.

1.5 snRNA-seq Processing - Generation of cell-type-specific expression
data

Main manuscript reference: Second supplementary reference in the first paragraph
and first reference in the second paragraph of “Constructing a single-cell genomic resource for
388 individuals.”

The snRNA-seq processing pipeline was constructed based on published best practices
and new benchmarking metrics for existing methods. The pipeline is mostly implemented in
Python, except for the final cell-type annotation steps that involve the R-based program
Azimuth. The overall workflow can be summarized in three main steps:

1. Count matrix generation, demultiplexing, and ambient RNA clean-up
2. Per-fastq set/sample processing using Pegasus
(https://pegasus.readthedocs.io/en/stable/) (118)
3. Per-study aggregation of processed sample and cell-type annotation
In the following section, we present each of the steps in greater detail.

Step 1. Count matrix generation, demultiplexing, and ambient RNA clean-up
A schematic for this portion of the workflow is presented in fig. S6A.
Count matrix generation: The count matrix was generated using CellRanger count

v6.0(https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/usin
g/count) (119). Each sample was run independently, and no aggregation (using CellRanger
aggr) was carried out. However, if the same sequencing sample was run through multiple lanes
and shared the same sequencing sample identifier with different lane numbers (L001, L002,
etc.), then we used the CellRanger count feature to automatically pool all contents of the
‘same-sample different-lanes’ fastqs. We also used the ‘--include-introns’ flag for all samples, as
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the studies under consideration all involve snRNA-seq, and therefore necessitate a
quantification of pre-mRNA (and thus pre-spliced) transcripts as well. Additionally, we specified
the chemistry of the sample being quantified, whether based on 10x Genomics v2 or v3
chemistry or ARC chemistry. The same initial procedure for per-cell RNA quantification was
followed for the MULTI-seq and CellHashing data as well, with the demultiplex step using the
corresponding hashtag oligo (HTO) files described in the following section. Gene expression
datasets from snMultiome samples were also processed separately from the snATAC-seq
reads, and we used the “ARC-v1” tag to represent chemistry in the pipeline.

Demultiplexing: The studies analyzed included data from MULTI-seq and CellHashing
multiplexing assays. To process these data, we first quantified the per-cell HTO counts. There
are two standard programmatic options for this: using the R-based deMULTIplex package
(https://github.com/chris-mcginnis-ucsf/MULTI-seq) (120) or using the command-line-based
CITE-seq-Count package (114, 121). For reasons of programmatic convenience, we chose to
use the CITE-seq-Count package (v1.4), with the command embedded into our Python scripts
(122). The options provided for this command include: the R1 and R2 fastq files for the HTO
reads; a csv file containing the HTO barcodes and an associated name for the hashtag to be
included in downstream HTO quantifications; the first (cbf) and last (cbl) locations for the cell
barcodes in the file; the first (umif) and last (umil) locations for the unique molecular identifiers
(UMIs) in the file, which are chemistry specific; and the approximate number of cells expected in
the sample or a list of cell barcodes. For the tags file, we used the data providers’ lists of HTO
barcodes followed by generic names – Hashtag_1, Hashtag_2, etc. We set cbf = 1, cbl = 16,
umif = 17, and umil = 26 for the v2 chemistry samples and umil = 28 for the v3 chemistry
samples. We chose to provide an expected number of cells instead of explicit cell barcodes. We
supplied the expected number of cells using the metrics_summary.csv file output by CellRanger.
From that file, the number of cells output by CellRanger’s own cell-identification algorithm was
extracted and 500 was added to it as a simple buffer (to account for possible undercounting of
cells by CellRanger’s algorithm).

Ambient RNA clean-up: To more carefully separate out true cells from empty droplets
with ambient RNA, we used the program remove-background
(https://cellbender.readthedocs.io/en/latest/index.html) from the CellBender package (122). We
used the program in command-line form wrapped in our Python script. The program is optimized
to run on GPUs (there is a substantial difference in the runtime depending on whether GPUs or
CPUs are used), and accordingly we implemented this portion of the pipeline on a GPU (adding
the --cuda flag). The input to the program is the raw output .h5 file from CellRanger count
without filtering for cells identified by CellRanger. The options included in the program run are: a
target false positive rate (--fpr) of 0.01; the number of training epochs (--epochs) = 150; the
rough expected number of cells (--expected-cells) = the output in metrics_summary.csv from
CellRanger count, as in the CITE-seq-Count run; and the total number of droplets to be included
(--total-droplets-included) in the analysis, set to be the expected number of cells + 20,000
(chosen to be large enough to encompass many empty droplets for the training). The output of
this step is a .h5 file, where the empty droplets are filtered out, leaving just the inferred true
cells. This .h5 file is chosen as the input for the downstream analyses in Pegasus.
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Step 2. Per-fastq set/sample processing using Pegasus
The primary steps for this part of the analysis are outlined in fig. S6B. The steps are

applied to the CellBender output for each sample separately, although some pooling may have
been carried out across parallel lanes for the same sample, as described above. Many of the
steps are applied analogously to those in the Pegasus tutorial
(pegasus-tutorials.readthedocs.io/
en/latest/_static/tutorials/pegasus_analysis.html). After filtering cells based on the lower bounds
shown in fig. S6B, we removed 1,135 genes included in the MitoCarta v3.0 database (123)
such as mitochondrial genes and certain genes highly correlated with RNA sample quality (see,
for example, Hodge et al. 2019 (124). The robust genes were identified and the counts matrix
was log-normalized using the default options in Pegasus.

At this stage, if the data were from a multiplexed experiment, the matrices were
decomposed into cells from each of the component samples using the Pegasus demultiplex
algorithm. The inputs to this were the matrix, feature, and barcode files from the
CITE-seq-Count run. Only cells that were identified as singlets in the demultiplexing step were
retained.

Next, doublets were identified using a combination of two computational methods. These
steps were carried out for the demultiplexed samples as well. The rationale is that
demultiplexing removes inter-sample doublets, while intra-doublet samples still need to be
removed. We found that a combination of the program Scrublet (125) in default mode and
DoubletDetection (126) worked well. The parameters for the DoubletDetection BoostClassifier
algorithm include: n_iters = 25, use_phenograph = False, and standard_scaling = True. The
subsequent predict function uses the parameters p_thresh = 1e-16 and voter_thresh = 0.3.

After doublet removal, we aggregated the demultiplexed samples again for robust gene
identification, highly variable gene selection (5,000 genes chosen), principal component
analysis (PCA), batch correction using Harmony (127), nearest-neighbor detection, Leiden
clustering, and UMAP dimensionality reduction.

We carried out differential expression analysis using the t-test, comparing the expression
of genes in every cluster against all others. Finally, cell-type inference was carried out based on
a series of marker gene collections using the infer_cell_types function. It should be noted that
many of these later steps (from the highly variable gene selection onwards) were not strictly
necessary for further analysis. The raw count matrices for each sample, after doublet removal
and demultiplexing, were used in the next steps without referencing any of the cell-type
annotations in this per-sample stage.

Step 3. Per-study aggregation of processed sample and cell-type annotation
A schematic depicting the set of steps for this stage of the workflow is shown in fig. S7.

First, we aggregated all samples across each study, with the demultiplexed sample names
being used as identifiers for the MULTI-seq and CellHashing datasets. We specifically selected
raw count matrices for the following analyses. We then proceeded with joint analysis steps on
the aggregated AnnData object in Pegasus. Many of the steps remained the same as above
(although no doublet detection was carried out at this stage), until the cluster annotation
process. One difference is that we increased the Leiden clustering resolution parameter to
between 4.0 and 6.0. The intention was to recover as many cells as possible by more finely
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dividing the clusters, before removing those clusters that failed to be annotated (as described in
the following section). The number varied simply because the limit for UMAP generation was 64
clusters, and the same resolution parameter resulted in different numbers of clusters for
different studies.

Cluster annotation: Cluster annotation proceeded in a two-step process (fig. S9). We
first used the Pegasus’ infer_cell_types function to associate the Leiden clusters with reference
cell types based on the hybrid marker gene sets obtained from merging excitatory and inhibitory
neuronal subclass markers from the BRAIN Initiative Cell Census Network (BICCN) taxonomy
(fig. S11) (128) and non-neuronal subclasses from Ma-Sestan (file
Documentation_merged_subclass_markers.json) (19). Note that four of the non-neuronal
subclasses are unique to the Ma-Sestan dataset: Immune, RB, PC, and SMC. The final
subclass annotations (also detailed in table S3, color annotations detailed in table S4) included
the following:

Excitatory Neurons: L2/3 IT, L6 IT, L4 IT, L5 IT, L6 IT Car3, L5 ET, L6 CT, L5/6 NP,
L6b (L# signifies the cortical layer context; IT = intra-telencephalic, ET = extra-telencephalic, CT
= cortico-thalamic, NP = near-projecting)

Inhibitory Neurons: Lamp5, Pax6, Sncg, Vip, Lamp5 Lhx6, Chandelier, Pvalb, Sst, Sst
Chodl

Non-Neuronal Cells: Astro (Astrocytes), Endo (Endothelial cells), VLMC (Vascular
Leptomeningeal cells), Micro (Microglia), Oligo (Oligodendrocytes), OPC (Oligodendrocyte
precursor cells), Immune (immune cells), RB (Red Blood lineage cells), PC (Pericytes), SMC
(Smooth Muscle Cells)

These annotations, in turn, were used at this stage of the analysis because of their
purported robustness across brain regions and species (see, for example, the discussion in
(129)). Given these annotations, and the most likely assignments (sometimes a many-to-one
assignment of subclasses to clusters), we used Pegasus’ infer_cluster_names and annotate
functions to assign a single best-fit subclass assignment. We then removed all unassigned
clusters. Our rationale in doing so was that these unassigned clusters mainly consisted of
low-expression cells, likely reflecting cellular debris. For example, we found that some clusters
were enriched for synaptic and transmembrane protein expression, while the overall number of
genes expressed was very small. We speculated that these clusters included extracellular
debris and accordingly removed them. We thus chose a conservative approach to cluster
inclusion in our downstream analyses.

However, because of the ambiguity of the resolution in cluster-based assignment
strategies, we did not finalize the cell assignments based on the marker gene analysis. Instead,
the marker gene analysis was used for the aforementioned cluster removal. The remaining
clusters were then processed through Seurat/Azimuth (130) pipelines to assign subclass
annotations. The advantage of the Azimuth approach is that it uses cell-based assignment; that
is, each cell is individually assessed against a reference cell atlas to find the most likely
assignment of cell type. Specifically, the .h5ad objects from the Pegasus processing (after the
aforementioned cluster removal) were read into Seurat objects using functions in the SeuratDisk
package, and processed as follows: first, the AnnData object was converted into a .h5Seurat
object; second, the .h5Seurat object was loaded using the LoadH5SeuratObject function; third,
due to issues with reading the raw counts through this mechanism, the raw counts for each

16



study were independently exported into .npz format and reassigned to the Seurat object in the
“counts” slot; fourth, the dataset was processed using the SCTransform function in Seurat (130);
finally, the FindTransferAnchors and TransferData functions were used to add subclass
assignments as metadata in the Seurat object. We exported these assignments to a separate
file for integration with the Pegasus objects downstream. To transfer anchors, we performed the
same preprocessing steps on the raw counts for the reference atlas cells from the BICCN
(118,291 cells pre-annotated with the reference neuronal subclasses) and the Ma-Sestan study
(172,120 cells pre-annotated with the reference subclasses). Note that the marker genes for the
subclasses were derived from the same dataset.

Merging of the results from the two reference atlases. We first annotated all the cells
with the BICCN and Ma-Sestan schemes separately. To reconcile the results, we performed the
following steps:
1. We assessed the cell-type label for each annotation scheme and assigned cell types to the
appropriate cell class (excitatory, inhibitory, or glial).
2. If the cell classes were the same for the BICCN and the Ma-Sestan schemes, we retained the
cell barcode. If the cell classes were different, we removed the cell barcode. We have found that
cells that are mismatched in cell class between the two schemes tend to be of lower technical
quality, measured in terms of the number of genes expressed and the number of UMI counts.
3. For all the cell barcodes that were retained, if the cell class was excitatory or inhibitory, we
kept the BICCN label in the final annotation; if the cell class was glial, we kept the Ma-Sestan
annotation.
4. These new annotations were merged with the .h5ad objects by filtering out cells that could
not be reconciled at the cell-class level.

Once the subclasses were assigned, we added them to the metadata in the Pegasus
.h5ad (AnnData) objects. The .h5ad objects were rerun through dimensionality reduction and
reclustered so that the UMAP coordinates reflected the post-filtration groups of cells. We have
provided these annotated objects for download via Synapse (see above). The matrix “raw.X''
contains the raw UMI counts and “X” contains the log-normalized counts. The annotations of the
.obs dataframe of the AnnData object include marker gene annotations (“anno”) of clusters as
well as Azimuth labels (“azimuth”, “subclass”). The final annotations are contained under the
“subclass” column.

We also have provided the individual IDs associated with each cell and sample. This is
especially relevant for the multiplexed datasets. In addition to the .h5ad files, we have uploaded
to Synapse and the brainSCOPE portal tab-delimited expression matrix files for each individual
in the analyses, where genes with HUGO Gene Nomenclature Committee (HGNC) symbols
mark the rows and the cells are arrayed along the columns. The column headers are the
Azimuth labels of the cells. We emphasize the fact that each individual was assigned a separate
matrix; this means that if parallel samples were sequenced for the same individual in the same
cohort, the final matrix pools all cells from these samples.

Additional notes follow for specific datasets:
1. The UCLA-ASD dataset includes cells from BA44/45 and BA4/6 regions.
2. For the UCLA-ASD dataset, when comparing the genotypes from WGS, exome or SNP array
assays with genotypes obtained from snRNA-seq reads, we found that the samples 10BW,
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63BW, 65BW, and 37BW had potential mismatches. These samples were removed in the
downstream analysis.

We provide links to uniformly processed individual-level gene expression matrices and
complete expression datasets (*.h5ad files) for downstream analysis on the brainSCOPE portal.
In addition, we provide several files related to the cell-typing scheme used in our analysis, along
with the source code used to process snRNA-seq data:

File: [sample]-annotated_matrix.txt.gz: These files represent expression matrices for individual
samples in our cohort. Each column is labeled with a cell type from our harmonized
classification scheme (see below), while each row represents the normalized expression values
for a single gene (noted with an HGNC symbol).
File: BICCN_mat.RDS: This R Data Object contains the PFC cell-type annotation scheme from
the BICCN Consortium.
File: Ma_Sestan_mat.rds: This R Data Object contains the PFC cell-type annotation scheme
from Ma-Sestan.
File: BICCN_meta_share.RDS: This file contains the harmonized PFC cell-type annotation
scheme used for analysis in the study (the merger between BICCN_mat.rds and
Ma_Sestan_mat.rds).
File: Azimuth_mapping.R: This R script is used to annotate cell types in an Azimuth object.
File: reconcile_annotations.py: This Python script is used to generate the harmonized cell
typing scheme from the input matrices.
File: PsychENCODE_scRNA_pipeline-main.tar.gz: File contains source code used for
processing snRNA-Seq datasets.

1.6 Genotype Processing - Uniform analysis of genotype datasets
Main manuscript reference: Third supplementary reference in the first paragraph of

“Constructing a single-cell genomic resource for 388 individuals”; second supplementary
reference in the second paragraph of “Building a gene regulatory network for each cell type.”

In order to generate a uniform set of genotyped variants across all 12 cohorts in our
study for downstream analysis, we integrated the genotypes of 383 individuals from a diverse
range of data sources (SNP microarray, exome and WGS, and directly from the snRNA-seq
samples) for filtering and imputation.

Variant calling from WGS and RNA-seq
For samples with available exome and WGS data (derived from the ROSMAP,

UCLA-ASD, Velmeshev, Girgenti-snMultiome, and DevBrain cohorts), we re-processed
next-generation sequencing data to uniformly identify variants. In particular, we used the GATK4
Best Practices pipeline v1.0 (131) to identify variants from either raw fastq files or pre-aligned
bam files (fig. S8A). Using this pipeline, we first aligned samples to the reference genome
(hg38) using BWA v.0.7.15 (132), and then marked duplicate reads using PicardTools v.2.16.0.
We then used GATK v.4 to perform HaplotypeCaller and Base Quality Score Recalibration steps
to identify variants at a per-sample level, and further performed Variant Quality Score
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Recalibration and Joint Genotyping across all samples. We used the default parameters for
each pipeline based on data type (exome or WGS) to generate final variant call format (VCF)
callsets for each cohort.

For all non-multiplexed snRNA-seq samples, including 29 samples without available
WGS or SNP array data, we further identified variants directly from the snRNA-seq samples. To
do this, we used the GATK4 RNA germline variant calling pipeline (fig. S8A), which aligns the
snRNA-seq data to the reference genome (hg19) using STAR v.2.5.3a (133) and incorporates
an additional step to split reads spanning splice junctions before calling variants using
HaplotypeCaller. At this step, we performed JointGenotyping as in the DNA-based GATK Best
Practices (as the RNA-based Best Practices pipeline does not provide for joint genotyping of
variants across samples), and then filtered the variants for Fisher strand bias <30 and QD
(quality/depth) score >2.0.

Genotype quality control (QC) and imputation
In addition to the VCF files generated from the WGS or snRNA-seq data, we obtained

available microarray or next-generation sequencing-based variant callsets for each cohort (fig.
S8A). For each individual dataset, we first lifted hg18 or hg19 datasets over to hg38, performed
strand-flipping and excluded ambiguous SNPs for array-based datasets using snpflip
(https://github.com/biocore-ntnu/snpflip), and fixed alleles to the hg38 reference genome using
plink2 (134). SNPs with a Hardy-Weinberg equilibrium <1✕10-6 and missing in >5% of samples
were removed, and all individuals were confirmed to not have missing genotypes (>5%) or high
or low rates of heterozygosity (>|3SD| from the cohort mean).

For genotype imputation, we aimed to maximize the number of final variants available for
each sample without having any missing data. To do this, we first merged genotype data for
samples across most cohorts, while genotype data for the snRNA-seq-based variants and
genotypes from Velmeshev. (variants restricted to coding regions), MultiomeBrain (variants
derived from pre-processed VCF files), and ROSMAP Affymetrix array (lifted over from hg18)
datasets were imputed separately. SNPs with <90% call rate and minor allele frequency (MAF)
<0.05 across all samples were removed, leaving a total of 114,000 SNPs for imputation in the
combined cohort dataset. Genotypes were imputed on the NIH TOPMed Imputation Server
(Mimimac 4) using default parameters, Eagle 2.4 phasing, and an R2 threshold of 0.3 (135) (fig.
S8A). Post-imputation, we merged the imputed snRNA-seq, MultiomeBrain, Velmeshev, and
ROSMAP Affymetrix genotypes with the rest of the cohorts, and filtered out imputed variants
with MAF<0.05 and those not present in all samples. Our final imputed genotype dataset
contains 1.95 million SNPs for 383 samples, comparable to previous population-scale QTL
analyses (4).

VCF files for imputed genotypes of all PsychENCODE Consortium samples (excluding
ROSMAP samples, select WGS samples, and snMultiome samples generated in this study),
including callsets that both include and exclude samples with snRNA-seq-derived genotypes,
are available with approved access within the PsychENCODE Consortium data portal on
Synapse (see above section for “Raw dataset availability”). Raw sequencing files for ROSMAP
samples are available with separate approved access through the AMP-AD Knowledge Portal
on Synapse.
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Genotype PCA analysis and QC
We applied Peddy software (136) on the final set of imputed genotypes to calculate

genotype PCAs for each sample and to predict genetic ancestry based on 1,000 Genomes
samples (fig. S8A). As these predictions showed strong concordance with self-reported
ancestry for samples with available meta-data, we used the genetic ancestry as a covariate in a
downstream analysis (fig. S1E). Additionally, for samples with both genotype and
non-multiplexed snRNA-seq data, we performed a QC check for sample swaps and
inconsistencies with sample meta-data. In particular, we used the “Risk Assessment” program
from the privaseq3 toolkit (137) to match the genotypes derived from RNA-seq samples with
those from WGS or SNP microarray data. All of the snRNA-seq samples in our final cohort
showed the highest matching scores with their respective WGS/array genotypes; samples with
potential mismatches were excluded from downstream analysis. We also ensured consistency
for biological sex (based on coverage on the X and Y chromosome) and predicted ancestry
(based on the Peddy results) among the snRNA-seq data, genomic data, and sample metadata
across all samples.

VCF files for imputed genotypes of all PsychENCODE Consortium-derived samples
(excluding AMP-AD samples and select callsets outside the scope of the consortium) are
available for researchers with approved access within the PsychENCODE Consortium data
portal. Two VCF files are available, one with and one excluding samples with snRNA-Seq
derived genotypes. Imputed genotypes for the AMP-AD samples used in this study are available
on the AD Knowledge portal.

Rare variant and structural variant (SV) annotation and analysis
In addition to the above work to generate a robust set of common single-nucleotide

variants (SNVs) for downstream analysis, we also assessed rare deleterious SNVs and SVs for
their roles in disrupting gene regulation in a cell-type-specific manner (fig. S8B). To identify rare
SNVs and small insertions/deletions (indels) from 82 samples with exome or WGS data (fig.
S1D), we annotated GATK-derived variant calls using the Annovar v.06-2020 package (138).
We specifically selected variants annotated for disrupting exonic, splice-site, and promoter
regions (or those within 1 kbp of the transcriptional start site [TSS]) that are present in <1% of
the GnomAD v.3.0 general population panel (139) (fig. S8B). Additionally, likely damaging
missense and promoter variants were selected for downstream analysis by filtering for a
Combined Annotation Dependent Depletion Phred-like score >10.0 (140). Overall, we identified
an average of 13,503 rare variants per individual, including 84 rare loss-of-function (LOF), 455
rare deleterious missense, and 16 rare splicing variants per individual.

We also used the genotyping software PanGenie (141) to identify both rare and
common SVs in 48 samples with available WGS fastqs. PanGenie is a kmer-based genome
inference algorithm that uses a high-quality phased SV panel from 64 Human Genome
Structural Variation Consortium/1000 Genomes samples (142) to genotype SVs in short-read
data. After genotyping each sample, we annotated SVs >50 bp in length for gene overlap and
population frequency within the reference panel (fig. S8B). Using this method, we identified an
average of 18,669 genomic deletions and 26,579 genomic insertions with any allele frequency
per sample.
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Finally, we used the rare SNVs identified in these samples to assess gene regulatory
“knockouts” in the context of the cell-type-specific GRNs. Briefly, we first overlapped rare LOF
coding variants in each sample with lists of transcription factors (TFs) identified in each
cell-type-specific regulon, and found 112 TFs with rare variants in at least one of the 82 samples
with rare variant data. For each disrupted cell-type-specific regulon, we then compared the
expression values of each downstream target gene in annotated cells among samples with and
without the mutation, and calculated basic Z-scores comparing expression across the groups of
cells. A broad threshold of |Z|>2.5 was used to define genes with putative outlier expression
(143); we found that 79/103 regulons tested (77%) had downstream genes with average
absolute Z-scores of >2.5 (fig. S63), indicating possible global disruption of downstream genes
due to LOF variants in the TF.

VCF files for the rare SNVs and SVs of all PsychENCODE Consortium samples
(excluding AMP-AD samples and select WGS callsets outside the scope of the consortium) will
be available for researchers with approved access within the PsychENCODE Consortium data
portal. AMP-AD variant datasets are available on the AD Knowledge portal.

1.7 Cell-type Fractions - Calculation of cell-type fractions from snRNA-seq
data

Main manuscript reference: First supplementary reference in the third paragraph of
“Constructing a single-cell genomic resource for 388 individuals.”

Single-cell fraction statistics were calculated based on the harmonized cell annotation
scheme. The distribution of the raw cell fraction of each cell type in each individual is shown in
fig. S13, and the distributions for each individual in one example cohort (SZBDMulti-seq) are
shown in fig. S14. We compared cell-type fractions between ASD and control samples (using
samples from the DevBrain, Velmeshev, and UCLA-ASD cohorts), schizophrenia and control
samples (using samples from the SZBDMulti-seq, CMC, and MultiomeBrain cohorts), and
bipolar disorder and control samples (using samples from the SZBDMulti-seq and
MultiomeBrain cohorts). Cell-type fractions between disease and control samples were
compared using Welch’s t-test, where outliers with >1.5 interquartile range (IQR) were removed.
Only cell types with a median fraction per sample larger than 0.5% were compared. The
nominal p-value was corrected by Benjamini–Hochberg false discovery rate (FDR), and
adjusted p-values <0.05 were considered as significant. Computed cell fractions for each
individual and cell type are described in the following file on the brainSCOPE portal:

File: cell_type_fraction_count_with_meta.csv (data S4): This file contains normalized cell
fractions calculated for each individual from the snRNA-seq data. Columns indicate cell type,
cell counts, cell fraction, and relevant meta-data for each individual.
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1.8 Cell-type Fractions - Deconvolution of cell fractions for
PsychENCODE Consortium bulk-RNA-seq data

In addition to snRNA-seq data, we deconvolved cell fractions based on bulk-RNA-seq
datasets previously published by the PsychENCODE Consortium (4) against snRNA-seq
samples in the current dataset. Specifically, we collected the CMC single-cell cell-type
annotations and raw count matrices alongside the PsychENCODE Consortium bulk-RNA-seq
raw count matrix. We used BisqueRNA to infer cell-type fractions of the bulk-RNA-seq data
(144). The single-cell raw counts were first log normalized, while the bulk-seq raw counts were
quantile normalized, before being input into BisqueRNA.

As with the single-cell-derived fractions, these results are described in a file on the
brainSCOPE portal:

File: bisque.PEC_CMC.rev.txt (data S5): This file contains normalized cell fractions calculated
from deconvolved bulk-RNA-seq data.
File: cell_fraction_corr.txt (data S6): This file lists correlations between cell fractions from
single-cell and bulk deconvolution datasets for each cell type.

1.9 DE Analysis - Differentially Expressed (DE) Genes for disease traits
Main manuscript reference: Second supplementary reference in the third paragraph of

“Constructing a single-cell genomic resource for 388 individuals.”

This section only includes method details for disease traits DE genes. For DE analysis
on control aging and schizophrenia aging, see more details in 7.3 Aging DE and supporting
experiments in fig. S19.

We calculated DE genes for each cell type regarding different diseases.
Cell-type-specific pseudobulk gene expression profiles were first generated from the
snRNA-seq data by calculating the sum of the raw gene counts per cell type per individual.

Filtering: Counts per million (CPM) normalization was used to filter out lowly expressed
genes. Genes were removed if their CPM normalized expressions were >0.5 in <30% of the
samples. Genes were also removed if the raw count sums of all individuals were <20.
Additionally, within each cell type, individuals with <50 cells detected were removed from the
calculation. After filtering, cell types containing less than 16 samples were also excluded from
the differential expression calculation.

Deseq2: For each cell type, differential expression analysis was performed with the raw
counts using the standard pipeline for the Deseq2 likelihood ratio test (23), with age, gender,
genotype ancestry, PMI, average UMI per cell, and disease status as covariates. Contrasts were
made between disease and healthy status. Multiple testing corrections were performed, and
genes with an adjusted p-value<0.05 were defined as differentially expressed between contrast
conditions.

We also compared the DE gene list calculated by DESeq2 with DE genes calculated by
Dreamlet (145) in figs. S16-S18. We plotted the log2 fold change from these two sets for each
cell type using a scatter plot. We also calculated the Pearson correlation of the log2 fold change.
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The log fold changes for DE genes with a p-value less than 0.05 were found to be in
concordance between the two methods.

We also describe the Dreamlet method here: DE analysis was performed using the
Dreamlet package that uses linear mixed models with raw count matrices as inputs. Covariates
selected for each cohort were the following: age, gender, log UMI count, and PMI. Obtained
p-values from Dreamlet were further corrected for FDR within each cell group independently
using p.adjust from the R stats package and applying Benjamini–Hochberg correction.

The input files for the analysis are available in data S3, and we provide the pseudobulk
expression matrices for each cell type on the brainSCOPE portal. DE genes for disease traits
are available in several files on the brainSCOPE portal. Each file contains the gene name,
average expression, log2 fold change, standard error, test statistic, p-value, and FDR-corrected
p-value among individuals with the disease:

File: ASD_DEGcombined.csv (data S7): Sets of DE genes between control individuals and
individuals with ASD for each cell type. (Data S7 contains all significant DE genes (p<0.05,
DESeq2 likelihood ratio test); full results available on the brainSCOPE portal.)
File: Bipolar_DEGcombined.csv (data S7): Sets of DE genes between control individuals and
individuals with bipolar disorder for each cell type. (Data S7 contains all significant DE genes
(p<0.05, DESeq2 likelihood ratio test); full results available on the brainSCOPE portal.)
File: Schizophrenia_DEGcombined.csv (data S7): Sets of DE genes between control
individuals and individuals with schizophrenia for each cell type. (Data S7 contains all significant
DE genes (p<0.05, DESeq2 likelihood ratio test); full results available on the brainSCOPE
portal.)
File: [celltype].expr.bed.gz: Pseudo-bulk snRNA-Seq expression matrices for 24 cell types,
listing logCPM normalized expression values for individuals who pass quality control for each
cell type.
File: *_ASD_table.csv: Different version of DEGs between control individuals and individuals
with ASD for 20 cell types, used for LNCTP model comparisons.
File: *_Bipolar_disorder_table.csv: Different version of DEGs between control individuals and
individuals with bipolar disorder for 19 cell types, used for LNCTP model comparisons.
File: *_Schizophrenia_table.csv: Different version of DEGs between control individuals and
individuals with schizophrenia for 21 cell types, used for LNCTP model comparisons.

1.10 Trajectory Analysis - Identifying DE genes over cell types by
pseudotime

Main manuscript reference: First supplementary reference in the last paragraph of
“Constructing a single-cell genomic resource for 388 individuals.”

Overall approach and differential expression analysis
We implemented the following approach to identify genes that consistently vary in a

continuous fashion across the dimension of cortical depth. First, we generated embeddings of
the excitatory IT cells (consisting of L2/3 IT, L4 IT, L5 IT, and L6 IT neurons) in
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lower-dimensional representations, and then constructed smooth pseudotime trajectories in this
lower-dimensional space. Genes that demonstrated variation in a statistically significant fashion
over the trajectory were selected for downstream analysis (Wald test, FDR ⩽ 0.05). We
analyzed each study cohort separately for such genes, filtering out studies with more than one
trajectory (thus resulting in trajectories that may include only two cell types) or that were noisy,
and subsequently identified those genes that were also found in the trajectories for all remaining
cohorts.

The input datasets for this analysis were the annotated h5ad files from the harmonized
snRNA-seq processing. Additionally, during the process of identifying genes that varied
smoothly across the trajectories, we removed genes that were differentially expressed in only
one cell type. To generate a list of DE genes for each cell type, we separately ran the h5ad files
through the following processing steps using the Seurat package (146, 147):

1. Read the h5ad file into R and transpose the raw count matrix; convert this transpose first
into .csr format and then into dgCMatrix format (in order to generate a Seurat object);
and create a Seurat object with the raw count matrix and the metadata from the h5ad
file.

2. Run the function SCTransform (148) to normalize the matrix, with the number of variable
features set to 10,000.

3. Subset the L2/3 IT, L4 IT, L5 IT, and L6 IT neurons.
4. Run PCA and UMAP analyses and then subset out the variable features.
5. Run Seurat’s FindMarkers function (default settings with a Wilcoxon rank sum test) in a

“one versus all” fashion for the four cell types.
In the following section, we provide further details of the pipeline.

Preprocessing and QC
After reading the data from each study cohort into a Seurat object in the manner

described above, the Seurat object was subset to (a) include only L2/3 IT, L4 IT, L5 IT, and L6 IT
neurons; (b) keep only control samples; and (c) keep only samples ≥20 years of age. We then
filtered out low-quality cells with a total number of ≤1,000 UMI counts and ≤500 expressed
genes. Importantly, we retained only protein-coding genes for downstream analyses; while our
method does not inherently vary based on this filtering step, we chose to do so to simply focus
on the protein-coding component. Subsequently, the normalization step used the SCTransform
function, where variable features included were those with a residual variance >1.3. After
running PCA, the program Harmony (127) performed batch-correction with a maximum number
of 50 iterations. A UMAP embedding was generated with the top 30 principal components
(PCs). Finally, the Seurat object was subset to include only the variable features.

Trajectory analysis
We used the program Slingshot (26) to generate pseudotime trajectories. We input the

UMAP coordinates as the lower-dimensional representation used in Slingshot, and set the
starting cluster for the trajectories to be the cluster associated with L2/3 IT cell type. Note that
we did not use any form of clustering to identify cell-type clusters in the UMAP representation;
rather, we fed Slingshot the labels inferred in our annotation pipeline. The Slingshot function
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built a graph based on the data, with the clusters as nodes. A minimum spanning tree was
computed for the graph, and the tree was smoothed via principal curve analysis. Pseudotimes
were determined through orthogonal projections of the points onto the smoothed trajectories.

Differential expression along the trajectories
For the assessment of differential expression of genes along the pseudotime trajectories,

we used the package tradeSeq (27). The tradeSeq package offers the function fitGAM, which
fits a generalized additive model (GAM) using the count matrix and Slingshot trajectories.
Specifically, the function considers each gene and smoothes log counts of the gene expression
along the pseudotime trajectories using cubic splines. The GAM allows us to account for several
covariates in the process: we included for each donor their biological sex, age, sample PMI,
total cell counts, and cell-type proportions. The last two covariates were included to remove any
bias associated with particular samples not capturing sufficient total numbers of cells or having
certain cell types be underrepresented. The covariates were included in the form of a model
matrix in R.

A suite of statistical tests may be computed on these smooth functions to determine
which genes are differentially expressed along a certain lineage, between two lineages, or
across certain conditions. Our analysis made use of tradeSeq’s associationTest function, which
evaluates the statistical significance of the variation of a gene across the trajectory by testing
whether the spline fit parameters vary significantly across the trajectory. We applied a filter on
the FDR of 0.05 on the gene set from each cohort based on the Wald test implemented by the
association Test function.

Post-processing
For post-processing, we worked on a set of processed data cohorts that underwent two

stages of selection. In the first stage, we selected cohorts that had a single trajectory. In the
second, we further subset the cohorts, after visual inspection of the trajectories, to only include
ones that showed smooth trajectories that were less impacted by the occurrence of clusters
where cells from multiple cell types were intermixed. Two data cohorts demonstrated single
trajectories but had considerable intermixing of IT neuron types, so we removed these cohorts
from the final overlap across cohorts. The final cohorts included Velmeshev, SZBDMulti-seq,
CMC, IsoHuB, and MultiomeBrain. We identified a common set of genes (76 for the filtered
cohorts, 5 TFs in both sets) that varied significantly along the trajectories in each cohort and that
consistently occurred in the results for all five cohorts considered. We note that including the two
cohorts with noisy single trajectories reduced the number of overlapping genes by 10 (from 76
to 66). The list of common genes across trajectories is available below as table S5, and on the
brainSCOPE portal as a file (the last genes in the file are ten noise-sensitive genes).

Additional results from the IT neuron trajectory analysis
We conducted downstream analyses of the 76 genes identified as significant in the IT

neuron trajectory analysis, connecting them with the results in other sections of this paper as
well as published results. The goal was to identify biological functions that might be enriched in
the gene sets. For example, there were seven ribosomal proteins in our significant gene set.
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Upon inspection of the cell expression averages across the pseudotime trajectories (fig. S21),
we found that the patterns across the spatial trajectory for these seven genes were remarkably
similar.

Next, we identified genes in our set that overlapped with the GRNs. Five TFs (TFEC,
RUNX2, MAF, PROX1, ERG) occurred in the IT neuron cell-type-specific GRNs. ERG TF
showed up only in the L4 IT cell-type-specific GRN.

We subsequently searched for an overlap with other relevant categories of genes:
(a) Ligands and receptors in the cell-to-cell communication network: The genes SEMA6A
and PENK overlapped with the ligands, while TACR3 and RXFP2 overlapped with the receptors.
(b) DE genes for schizophrenia, bipolar disorder, ASD, and aging: We found overlaps of the
significant (p_adjusted < 0.05, Wald test) genes with the DE genes set (DEGs) for
schizophrenia, ASD, and aging.

Schizophrenia
Subclass = Pvalb, Total # of DEGs = 115, Overlapping DEGs = CARD18
Subclass = L5.IT, Total # of DEGs = 396, Overlapping DEGs = NPNT, LRIG3
Subclass = L6.IT, Total # of DEGs = 176, Overlapping DEGs = LONRF3
Subclass = OPC, Total # of DEGs = 20, Overlapping DEGs = RPL32, ENPP1
Subclass = Astro, Total # of DEGs = 38, Overlapping DEGs = TMEM132C
Subclass = L2.3.IT, Total # of DEGs = 166, Overlapping DEGs = CRYAB, CNDP1
Subclass = Vip, Total # of DEGs = 22, Overlapping DEGs = CCDC178

Bipolar Disorder
No overlapping genes were found.

ASD
Subclass = Vip, Total # of DEGs = 76, Overlapping DEGs = CRYAB
Subclass = L4.IT, Total # of DEGs = 185, Overlapping DEGs = RPS23
Subclass = Sncg, Total # of DEGs = 195, Overlapping DEGs = MAF
Subclass = L2.3.IT, Total # of DEGs = 828, Overlapping DEGs = EEF1A1
Subclass = Micro, Total # of DEGs = 267, Overlapping DEGs = APOE, ANKRD62,
ARHGAP6

Aging
Subclass = Sst, Total # of DEGs = 73, Overlapping DEGs = ADAMTS6, EYA4, SCN7A
Subclass = L2.3.IT, Total # of DEGs = 572, Overlapping DEGs = LONRF3, RYR3,
RUNX2
Subclass = Vip, Total # of DEGs = 289, Overlapping DEGs = CCN2, VRK2, CCDC178
Subclass = L6.IT, Total # of DEGs = 269, Overlapping DEGs = CRYAB, CA8,
RASGEF1B
Subclass = L4.IT, Total # of DEGs = 145, Overlapping DEGs = SEMA6A

(c) Functional categories of genes as identified by gene ontology (GO) (149, 150): We
further explored the functional categories of the significant genes, to identify any emerging
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patterns. We found many of the genes were associated with cell-type differentiation,
neurogenesis, and gliogenesis (data S8).

Finally, given the patterning of the cortical layers during development, we considered the
expression of the significant genes as a function of developmental stage as quantified by the
bulk RNA-seq assays from the BrainSpan study (151). As shown in fig. S22, several genes in
the list showed considerable variation across the developmental trajectory, with some
decreasing consistently from the earliest stages onwards (EEF1A1 in fig. S22A), some
decreasing around the time of birth (several of the ribosomal proteins in fig. S22A), and some
increasing dramatically around the time of birth (APOE, CRYAB, CXCL14, and IGFBP7 in fig.
S22C).

The list of significant genes (FDR<0.05, Wald test, overlapped across five cohorts) is
also available on the brainSCOPE portal:

File: IT_neuron_trajectory_sig_gene_set.tsv (table S5): Overlap set of genes (HGNC symbols)
across five cohorts, identified as significantly varying (FDR < 0.05, overlapped across five
cohorts, Wald test for each cohort) across the IT neuron trajectories in each cohort separately.

2 Determining regulatory elements for cell types from snATAC-seq

2.1 snATAC-seq Processing
Main manuscript reference: Second supplementary reference in the first paragraph of

“Constructing a single-cell genomic resource for 388 individuals”; first and second
supplementary references in the first paragraph, and first reference in the last paragraph of
“Determining regulatory elements for cell types from snATAC-seq.”

The snATAC-seq data processing and analysis workflow is largely based on existing and
published approaches, and heavily relies on the Signac package in R (152). We ran this pipeline
on snATAC-seq datasets from the UCLA-ASD cohort, as well as snMultiome datasets from the
MultiomeBrain cohort and snMultiome datasets generated specifically for this paper. In general,
this pipeline consists of the following steps:

1. Per-sample QC and filtering
2. Per-sample dimensionality reduction and preliminary analysis
3. Data aggregation and further QC
4. Batch effect removal
5. Peak calling
6. Distal-peak-to-promoter linkage
7. Motif enrichment analysis

These steps are largely derived from two perspectives: per-sample analysis and data
integration. Here, the emphasis is to ensure that the processed snATAC-seq data are of high
enough quality for further downstream analysis.
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Step 1. Per-sample QC and filtering
To be consistent with the snRNA-seq data processing, before any filtering using

snATAC-seq data, we first removed the barcodes with the high possibility of being doublets or
having poor quality on the snRNA-seq side, using the list of barcodes after Pegasus processing
with the subset() function in Signac v.1.5.0 (152). Then, for each sample, we created a
chromatin assay object using the CreateChromatinAssay function with other metadata, including
fragments, n_counts, and n_frags, properly added. Then, we filtered each sample to keep only
cells with a sequencing depth of >1,000 and a TSS enrichment of ≥2. We set the cutoff
threshold to 2 due to the fact that post-mortem brain cells tend to have lower quality, especially
in terms of the TSS enrichment. Setting a threshold too large (for instance, 4) may result in a
dramatic loss of sample size to study.

Step 2. Per-sample dimensionality reduction and preliminary analysis
After initial curation of each sample, we conducted dimensionality reduction analysis in a

number of ways. Using the snATAC-seq data only, we first performed term frequency inverse
document frequency (TFIDF) and latent semantic indexing with 30 dimensions using the
RunTFIDF and RunSVD functions in Signac. Next, including snRNA-seq information, we
attempted to create a joint embedding with the FindMultiModalNeighbors function. With the two
sets of embeddings, we performed UMAP visualization, resulting in two sets of figures, which
allowed us to visually inspect the quality of each sample and decide on a sample level to keep.
We further overlaid the TSS enrichment, number of fragments, and number of genes per cell on
these UMAP visualizations as an additional sanity check procedure to ensure the cell clusters
were reasonably formed. The resulting sample objects were stored individually in an RDS file.

Step 3. Data aggregation and further QC
We first loaded and merged each sample object into one Signac multiome object using

the merge function. After merging all samples, we calculated basic statistics of the combined
dataset, such as the mean TSS enrichment and mean snATAC-seq sequencing depth. Here,
another round of dimensionality reduction using both methods (with and without snRNA-seq
data) was performed, and the results were visualized and compared. Any outlier cells or clusters
were removed manually after this step.

Step 4. Batch effect removal
With the aggregated dataset mostly clean, we aligned all samples and removed as much

batch effect as possible using Harmony with 100 iterations. After running Harmony, we had an
embedding with the samples aligned (127). We then conducted another UMAP visualization,
colored by sample to confirm that the samples were indeed aligned.

Step 5. Peak calling
After the dataset was filtered and curated, we used the CallPeaks function in the Signac

package to call the cell-type-specific peaks. We used the default parameters and Macs2 2.2.6
(153). In this step, instead of using subclass labels, we chose to split the data into the following
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generalized cell types: excitatory neurons, inhibitory neurons, astrocytes, endothelial cells,
microglia, oligodendrocytes, oligodendrocyte precursor cells, and immune cells. We received
from this call a list of merged peaks with cell-type-specific annotations. From there, we
separated cell-type-specific peaks using the annotation function, which gave us a list of
cell-type-specific anchored peaks for each cell type. Using hg38 annotations from the UCSC
Genome Browser, we further split the peak set of each cell type into four categories: promoter,
intronic, exonic, and distal. If a peak intersected with the promoter region of a gene, we
categorized it as promoter, and similarly for the exonic and intronic regions. If a peak did not
have any overlap with the above three categories, we classified it as a distal peak.

Step 6. Distal-peak-to-gene linkage
We generated a peak-to-gene linkage graph employing the addPeak2GeneLinks

function in ArchR, utilizing two distinct parameter sets. The first configuration involved a relaxed
approach, setting a maximum distance of 250,000 base pairs (=250 kbp) and a Pearson’s±
correlation cutoff of 0.1. In the second, more lenient configuration, we extended the maximum
distance to 500 kbp and adjusted the Pearson’s correlation cutoff to 0.45. The latter, more±
lenient, distance of 500 kbp was used in the generation of the cell-type-specific gene regulatory
networks (GRNs; see supplementary section 5 below). All other parameters were maintained at
their default values. Subsequently, we imported the motif-to-peak graph from JASPAR2020
motif annotation using the getPeakAnnotation function in ArchR. Combining these two graphs,
we constructed a motif-peak-gene linkage graph, establishing an any-to-any relationship.
Specifically, we established an edge from a motif to a gene if there was a concurrent edge from
the motif to a peak and from that peak to the designated gene.

Step 7. Motif enrichment and TF footprinting analysis
Given a set of called peaks and the curated dataset, we performed motif enrichment

analysis using ArchR (38). First, we added the peak set to the dataset and generated the
corresponding count matrix, using the addPeakSet and addPeakMatrix functions with default
parameters. Then, we added the differentially accessed marker peaks using getMarkerFeature
functions, with the cell type being the general cell type described in the peak calling step, the
bias being TSS enrichment and log10(nFrags), and the testing method being the Wilcoxon test.
We used the JASPAR2020 (154) database for motif annotations, and calculated the motif
enrichment scores in terms of normalized -log10(Padj) using the found peaks and cutoffs of FDR
≤0.1 and log2FC ≥1. A heatmap was drawn from this result with a manually selected set of
motifs. Furthermore, we selected a set of TF motifs to calculate motif footprints using ArchR’s
getPositions, addGroupCoverages, and getFootprints functions, according to default parameters
and the general cell types described above.

Step 8. Processed data availability
The identified snATAC-seq peaks, signal tracks based on snATAC-Seq and snMultiome

datasets, and associated analyses are available on the brainSCOPE portal as follows:
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File: [celltype].PeakCalls.bed: These BED files consist of a set of seven cell-type-specific
ATAC-seq peaks identified in our analysis of snMultiome and snATAC-seq data, along with a file
showing the union of peaks across all cell types (All.celltypes.Union.PeakCalls.bed).
File: [celltype].bigwig: These bigWig files consist of seven cell-type-specific signal tracks for
chromatin accessibility, as well as a track for merged open chromatin signal across all cell types.
Three sets of signal tracks are available for each snATAC-Seq and snMultiome cohort assessed
(Girgenti-snMultiome, MultiomeBrain, and UCLA-ASD).
File: *tf_enrich.csv (data S11): These files list the enrichment Z-scores of scCREs in proximal
and distal regions for 634 TF binding sites.

2.2 LDSC - Methods for Linkage Disequilibrium Score Regression (LDSC)
enrichment of candidate regulatory elements

Main manuscript reference: First supplementary reference in the third paragraph of
“Determining regulatory elements for cell types from snATAC-seq.”

We downloaded 11,908 genome-wide association study (GWAS) summary statistics for
4,585 traits, including 3,582 for males, 3,741 for females, and 4,585 for both sexes, from the UK
Biobank (http://www.nealelab.is/uk-biobank/). We also obtained 17 summary statistics from PGC
(Psychiatric Genomics Consortium, https://pgc.unc.edu/for-researchers/download-results/) and
six summary statistics from PASS (155). We parsed these statistics into a format that could be
recognized by the LDSC pipeline (156). In order to control the statistical power of the summary
statistics, we filtered the summary statistics with the threshold of >5,000 samples. We divided all
traits into 19 biological system-based categories derived from the Human Phenotype Ontology
(157): behavioral, blood/blood-forming tissues, cardiovascular, constitutional symptom, digestive
system, ear, endocrine system, eye, genitourinary system, growth, head/neck, immune system,
integument, musculoskeletal, metabolism/homeostasis, neoplasm, nervous system, and
respiratory. We defined ‘behavioral’ and ‘nervous system’ traits as brain-related traits, and all
other categories as non-brain-related traits. We then ran the LDSC pipeline against nine main
types of annotations: UCLA-ASD snATAC-seq data for Astro, Endo, Exc, Inh, Micro, OPC,
Oligo, adult brain cis-regulatory elements (b-cCREs), and ENCODE adult cCREs v4 (31). LDSC
enrichment results for all brain-related triats are shown in fig. S26. To ensure genome version
consistency, all summary statistics and annotations were lifted over to GRCh37. Linkage
disequilibrium (LD) scores used in the pipeline were derived from (158).

All LDSC results for the nine tested sets of regulatory elements and relevant metadata
files are available on the brainSCOPE portal:

File: ukbb-all-traits-pval.csv (data S9): This file contains the -log(p-value) of LDSC enrichment
for UKBiobank GWAS summary statistics in snATAC-seq peaks of seven cell types (Astro,
Endo, Exc, Inh, Micro, OPC, Oligo) as well as adult b-cCREs regions. The index is trait ID. The
column ‘UK Biobank trait’ refers to the trait name/description in UKBB. The column ‘HPO
phenotype category’ refers to the phenotype ontology category. The column ‘brain’ refers to
whether the trait is brain-related.

30

http://www.nealelab.is/uk-biobank/
https://pgc.unc.edu/for-researchers/download-results/


File: PGC_PASS-all-traits-pval.csv (data S10): This file contains the -log(p-value) of LDSC
enrichment for PGC and PASS GWAS summary statistics in snATAC-seq peaks of seven cell
types (Astro, Endo, Exc, Inh, Micro, OPC, Oligo) as well as adult b-cCREs regions. The column
‘brain’ refers to whether the trait is brain-related.
File: IDtoTraitName.txt: This file contains a matrix to convert trait ID into the full UKBiobank trait
name.
File: cluster.trait.txt: This file contains a matrix that assigns each UK BioBank trait to a Human
Phenotype Ontology category, such as behavioral, eye, or respiratory. The column 'HPO
phenotype category' is used to distinguish brain- and non-brain-related traits. We defined the
“behavioral” and “nervous system” categories as brain-related traits.

2.3 STARR-seq - Validation of putative enhancers in neural progenitor cells
Main manuscript reference:Third supplementary reference in the first paragraph of

“Determining regulatory elements for cell types from snATAC-seq.”

We performed two rounds of capture STARR sequencing (CapSTARR-seq) in primary
human neural progenitor cells (phNPCs) isolated from the fetal cortex (159), each containing
two biological replicates. Detailed protocols for the CapSTARR-seq assays are available in the
PsychENCODE Consortium publication by Gaynor and colleagues (32). This approach
implemented a hybridization-based capture method to isolate specific candidate regions to test
for enhancer activity through STARR-seq. Our first CapSTARR-seq experiment interrogated
22,400 candidate regions selected based on bulk ATAC-seq, DNase-seq, and ChIP-seq data
from the PFC. Our second experiment interrogated 56,215 candidate regions selected based on
bulk ATAC-seq data from the PFC, ChIP-seq and DNase seq data from NPCs, developmental
data, eQTL and transcription-wide association study data from the fetal brain, and GWAS data
(4, 100, 160–162). Two replicates were performed for each experiment. Combined, these
panels identified 8,148 regions with enhancer activity in at least one replicate and 6,612 regions
with enhancer activity across both replicates (32). We identified 2,288 predicted target genes for
our enhancer regions, many of which were implicated in neuronal pathways.

A list of validated enhancers from the STARR-seq experiments is available on the
brainSCOPE portal in the following file:

File: starrseq_enhancers_merged.bed: BED file that contains the merged set of validated
STARRseq enhancers.

2.4 b-cCREs - Identification of brain-specific cCREs
Main manuscript reference: First supplementary reference in the second paragraph of

“Determining regulatory elements for cell types from snATAC-seq.”

To curate candidate cis-regulatory elements specific to the brain from adult samples, we
followed a multi-step approach. First, we identified all non-disease brain ENCODE DNase-seq
experiments (96 adult samples). From each DNase-seq experiment, we selected V4 cCREs with
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a Z-score > 1.64. V4 cCREs were obtained directly from ENCODE, accessible at
screen.encodeproject.org (31). Subsequently, we removed cCREs with limited experimental
support and retained only those elements that were supported by at least five experiments. This
filtering resulted in a collection of 253,638 adult b-cCREs. We selected this threshold to
maximize phyloP conservation across the retained elements.

A list of validated enhancers from the STARR-seq experiments is available on the
brainSCOPE portal in the following file:

File: adult_bcCREs.bed: BED file containing the list of identified b-cCREs.

3 Measuring transcriptome and epigenome variation across the
cohort at the single-cell level

3.1 Variance Partition - Partitioning transcriptome variation among cell
types, individuals, and regions

Main manuscript reference: First supplementary reference in the first paragraph, and
first supplementary reference of the last paragraph of “Measuring transcriptome and epigenome
variation across the cohort at the single-cell level.”

In order to assess biological sources of expression variation, we leveraged the tool
variancePartition (163) and applied it to our population-scale snRNA-seq data. We filtered the
total set of genes down to ~13,000 genes based on minimum quality requirements such as
sufficient expression. We used pseudobulk expression (similar to expression processing for
eQTLs) of each gene for a given individual and cell type as a sample for this analysis. Together,
all samples across individuals and cell types were run through variancePartition to assess the
percent variation associated with cell type, individual, and residual. In addition, we found the
total variance across all samples for a given gene.

With the same strategy described above, we also considered the partitioning of variation
among different brain regions, cell types, and donors. Six individuals with snRNA-seq data from
three brain regions (PFC, parietal lobule, and occipital lobule) from the Gandal-UCLA cohort
(164) were processed using our snRNA-seq pipeline and hybrid annotation scheme, as
described above (see section “snRNA-seq Processing”). Average gene expression was
calculated based on the single-cell gene expression matrices for each individual, and we
calculated the total variation and percent variation for each gene using variancePartition.

Next, we compiled a list of all GO annotations for each gene from geneontology.org
(150), with a specific focus on curating gene sets/families associated with neurotransmitters
(such as serotonin). Since each gene set/family consists of a list of associated genes, we took
the mean total variance as well as the mean partitioned variance (by cell type, individual, and
residual) to provide a breakdown of the gene sets and families per their associated variation by
percent. We compared various neurotransmitter families and other gene sets in regards to their
partitioned variance.
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To plot the UMAPs to show the serotonin receptor genes HTR2A and HTR2C, we used
the SZBDMulti-seq dataset and drew a heatmap of the gene expression across cell types (fig.
S31C). The annotations are consistent with the UMAP labels in Fig. 1B.

In addition to the GO annotations, we investigated the variation of drug target-related
genes. We selected 280 neuro-related drug target genes from the CLUE database and
calculated their inter-individual and inter-cell type variation (42). We further highlight some of
these examples in fig. S32.

Associated output and metadata files for the variancePartition analysis are available on
the brainSCOPE portal, as follows:

File: variancePartition_output.csv (data S12): This file contains the summary of the
variancePartition results for all genes (~13k genes that meet the minimum QC requirements).
Percent variations derived from various factors are given, as well as the total absolute variation
of each gene.
File: variance-partition-092623.csv (data S13): This file contains a summary of the
variancePartition results for all genes. Percent variations derived from various factors
(individuals, cell types, brain regions) are given, as well as the total absolute variation of each
gene.
File: gene_map_df_02252023.txt (data S14): This file contains the data frame for mapping
genes to their respective gene families using GO annotations.

3.2 Variance Partition - Quantifying epigenomic variation across cell types
To obtain population-scale variation on open chromatin regions in a cell-type-specific

manner, we leveraged 628 bulk ATAC-seq signals previously generated by the PsychENCODE
Consortium (4). We used cell-type-specific open chromatin regions from our snATAC-seq
dataset as anchors and found the variation of the bulk ATAC signals within those regions.
Cell-type specificity was determined by using the merged set of anchors and then determining
how many of the seven cell types intersected with the merged anchors.

3.3 Conservation - Cross-species sequence conservation
Main manuscript reference: First supplementary reference in the third paragraph, and

second supplementary reference of the last paragraph of “Measuring transcriptome and
epigenome variation across the cohort at the single-cell level.”

We used phastCons annotations as a measure of cross-species sequence conservation
for all analyses (165). PhastCons citations are available for download at
http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phastCons100way/.
Specifically, we used bigwigaverageoverbed to calculate phastCons scores across various
annotations. Protein-coding gene annotations were derived from GENCODE release 43 of the
human genome. In addition to coding gene peak regions, we computed phastCons scores for
b-cCRE regions and cell-type-specific snATAC-seq open chromatin regions.
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Several output files associated with the conservation analysis are available on the
brainSCOPE portal, as follows:

File: gene_coding_conservation_phastcons.bed: This BED file lists the PhastCons scores for all
coding genes.
File: bcCRE_conservation_phastcons.bed: This BED file lists the PhastCons scores for all
b-cCRE regions.
File: scATAC_conservation_phastcons.bed: This BED file lists the PhastCons scores for all
identified snATAC-seq peaks.

4 Determining cell-type-specific eQTLs from single-cell data

4.1 scQTLs - Cell-type-specific eQTL analysis
Main manuscript reference: First, second, fourth and sixth supplementary reference in

the first paragraph, and first supplementary reference of the second paragraph of “Determining
cell-type-specific eQTLs from single-cell data.”

To evaluate the association between genotypic variation and gene expression variation
within distinct cell types, we used snRNA-seq data to identify cis-eQTLs within 17 distinct cell
types (“scQTLs”). To do so, we first merged genotype, UMI expression, and covariate data
across all 12 cohorts. Within this merged cohort, we excluded any samples meeting the
following criteria:
- Some samples were duplicated across different cohorts; we took one instance of such
samples to avoid data redundancy in our analysis.
- Samples missing genotype data were excluded.
- We excluded any samples with missing covariates.

For each cell type, we first generated pseudo-bulk matrices by averaging the UMI counts
across all nuclei within a given sample for that cell type. For a given individual to be included in
the pseudobulk matrix of a given cell type, we enforced that the cell type must be represented
by >50 nuclei. Additionally, we enforced that each individual must have >300 nuclei in total. We
then normalized the psuedobulk expression matrix for each cell type by performing a
log(CPM+1) transformation. We filtered out lowly expressed genes by removing genes in which
the fraction of samples with non-0 expression is ≤10%. These filtered matrices were then used
as the psuedobulk expression matrices for our scQTL analyses. For genotype data, we
removed all variants with MAF<0.05 from the uniformly processed imputed genotypes.

We additionally performed a simulated statistical power analysis using powerEQTL
(166), and found that a minimum of 200 samples per cell type would be required to detect
significant eQTLs (p<0.05, one-way unbalanced ANOVA) with 80% power (fig. S36D), given the
parameters of 50 nuclei/sample, 80 million SNP/gene pairs tested, >0.05 SNP MAF, SNP effect
size of 0.13 and standard deviation (SD) of 0.13, 0.5 intra-group correlation, and an error rate of
0.5.

We adopted a highly standardized approach for finding scQTLs. In particular, after
generating pseudobulk matrices for each cell type, we followed the same general procedure as
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that adopted by GTEx (5). By using a 1 MB cis window up- and downstream of the TSS of each
gene, we implemented QTLtools (167) using biological sex, age, diagnosis, cohort, five
genotype PCs (to control for ancestry), and 100 expression PCs as covariates (to control for
hidden batch effects). We used 100 expression PCs in particular, as this was found to optimize
the total number of significant eGenes across cell types (fig. S36E). Details regarding
significance detection in eGene searches are given in the next paragraph.

Our scheme for defining significance is detailed by the approach taken by GTEx (5) in
their application of FastQTL (168), and we summarize this framework here. QTLtools was used
to perform permutation-based searches to first identify a set of eGenes for each cell type (at an
FDR threshold of 0.05). Our results are based on performing 10,000 permutations, though we
note that the gene-level p-values (significance was determined using a fitted beta distribution
derived from random permutations, as detailed in (168) and (167)) obtained do not differ
substantially if only 1,000 permutations had been used (fig. S39). eGenes were determined to
be associated with at least one significant eSNP within its cis-window using permutation tests
(with 10,000 permutations). FDR values were estimated using Storey q-values (169) and we
designated all such genes as “eGenes” with an FDR threshold of 0.05. These corrections were
applied at the level of each cell type individually. In addition, for each cell type separately, in
order to call all significant eSNPs associated with each eGene, we defined a genome-wide
threshold (pt) as the beta distribution-derived p-value (also called the “beta-adjusted p-value”
within QTLtools) associated with the least significant gene among all eGenes within a given cell
type. For each eGene, a nominal p-value threshold was determined using the eGene's
associated beta distribution fg by setting this eGene-specific nominal p-value threshold to
Fg

−1(pt), with Fg
−1 being the inverse cumulative beta distribution for that eGene. Any SNP within

the 1 MB cis-window of the eGene having a nominal p-value less than the eGene-specific
nominal p-value threshold Fg

−1(pt) was considered to be a significant eSNP associated with that
eGene. All such significant pairs of eSNPs and eGenes were taken to be significant scQTLs.

We assessed the functional and disease relevance of eGenes from our primary scQTL
callset using GO enrichment analysis (fig. S51) and disease-associated gene set
overrepresentation analysis (fig. S50). GO enrichment analysis was performed using g:Profiler
(170). Additionally, we annotated eGenes with sets of high-confidence genes related to ASD
(Tier 1 genes in the Simons Foundation Autism Research Initiative [SFARI] Gene database),
schizophrenia, bipolar disorder, AD, and aging (171–175). eGenes with disease annotations
were visualized across the human genome in Fig. 4G using the PhenoGram package
(https://ritchielab.org/software/phenogram-downloads).

Various scQTL callsets are available on the brainSCOPE portal, including the primary
scQTL callset and several modified callsets calculated with different parameters. These include
those that used LD-based filtering of genotypes before calculation. LD pruning was performed
using the software PLINK (176) (v. 1.90-beta5.3) with the following parameters:

a) window size of 50 SNPs
b) LD calculated between each pair of SNPs in the window
c) one of a pair of SNPs removed if the LD is >0.5
d) the window shifted five SNPs forward to repeat the procedure

Each set of QTLs contains one file per cell type, with columns (in order) given as:
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1. The common gene name associated with the eGene
2. The gene chromosome
3. Start position of the gene
4. Start position of the gene (provided again as output from the software)
5. The gene strand
6. The number variants in the cis window for this gene
7. The distance between the variant and the gene start position
8. The variant ID
9. The variant chromosome
10. The start position of the variant
11. The start position of the variant (provided again as output from the software)
12. The nominal p-value of the association between the variant and the gene
13. The r2 of the linear regression
14. The beta (slope) of the linear regression
15. Indicator variable denoting whether this variant was the best hit for this gene

A given eGene may be associated with many eSNPs via scQTLs. However, the effect of
a given eSNP may be conditionally dependent on the effects of other eSNPs for the same
eGene. Thus, we separately also performed a conditional analysis using QTLtools (167),
wherein the objective was to identify the number of independent signals for each eGene (where
a signal is a group of eSNPs with conditionally dependent effects on gene expression, and with
effects that are conditionally independent of eSNPs that do not belong to the same signal). The
approach implemented here aims to (a) identify the set of independent signals, (b) find the best
candidate eSNP for each signal, and then to (c) assign all other eSNPs to their appropriate
signal.

For this conditional QTL analysis, the columns in the data files are as follows:
1. The gene ID or if one of the grouping options is provided, then gene group ID
2. The gene chromosome
3. Start position of the gene
4. (Dummy variable)
5. The gene strand
6. The number variants in the cis window for this gene.
7. The distance between the variant and the gene start positions.
8. The most significant variant ID (here, the most significant variant is that with the lowest

nominal p-value, with each p-value being derived from the coefficient associated with the
linear regression of the gene's normalized expression on the genotype dosage
associated with that variant, while including covariates in the multivariate linear
regression). This p-value is thus derived from a t-test on the coefficient associated with
the variant within the multivariate linear regression. We applied the --normal flag when
running QTLtools (167). More detailed descriptions of deriving p-values from the
coefficients in linear regression models can be found in the works by Casella et al (177)
and James et al (178));

9. The most significant variant's chromosome (here, this is simply the chromosome
associated with the most significant variant; please see details within item #8 of this list)
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10. The start position of the most significant variant (here, this is simply the locus associated
with the most significant variant; please see details within item #8 of this list)

11. (Dummy variable)
12. The rank of the association. This tells you if the variant has been mapped as belonging

to the best signal (rank=0), the second best (rank=1), etc. As a consequence, the
maximum rank value for a given gene tells you how many independent signals there are
(for example, rank=2 means 3 independent signals).

13. The nominal forward p-value of the association between the most significant variant and
the gene. Here, significance is defined similarly to how it is defined within item #8 of this
list, but with the dependent variable being the residualized gene expression during the
forward conditional pass. Further details can be found in (167).

14. The r squared of the forward linear regression.
15. The beta (slope) of the forward linear regression.
16. Whether or not this variant was the forward most significant variant. (To derive

significance, see description within item #13 of this list).
17. Whether this variant was significant. (To derive significance, see description within item

#13 of this list; details are provided in (167)).
18. The nominal backward p-value of the association between the most significant variant

and the gene. For details regarding significance in the backward pass, please see (167).
19. The r squared of the backward linear regression.
20. The beta (slope) of the backward linear regression.
21. Whether or not this variant was the backward most significant variant. For details

regarding significance in the backward pass, please see (167).
22. Whether this variant was significant. (To derive significance, see description within item

#13 of this list; details are provided in (167).

Specific callsets and associated meta-data files are available on the brainSCOPE portal
as follows:

File: [celltype]_sig_QTLs.dat: These files represent the primary set of cell-type-specific scQTLs
identified for 24 cell types, processed with the standardized (GTEx-based) pipeline.
File: [celltype]_sig_eGenes.dat (data S15): These files list the significant eGenes for 17 cell
types with significant scQTL results, used as inputs for functional validations. For a discussion of
how significance was derived, please refer to the paragraph above that starts with “Our scheme
for defining significance is detailed by the approach taken by GTEx…”
File: [celltype].SNPs.dat: These files list all variant IDs used per cell type in the scQTL
calculations.
File: [celltype].cov.100_expr_PCs.bed: These files represent sample-level covariates used for
QTL calculations in each cell type. Each column represents an individual, while rows represent
binary variables for biological sex, age of death, diagnosis, cohort, five genotype PCs, and up to
100 expression PCs.
File: core_scqtl_processing_code.tar: TAR file containing the code used for calculating scQTLs
using the standardized (GTEx-based) pipeline.
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File: [celltype]_sig_QTLs.dat: These files represent cell-type-specific scQTLs identified for 17
cell types, processed with the standard pipeline but utilizing LD variant selection.
File: [aggregated_celltype]_sig_QTLs.dat: These files represent cell-type-specific scQTLs
identified for three PFC cell type groupings (inhibitory neurons, excitatory neurons, and
non-neuronal cells), processed using the standard pipeline.
File: conditional.[celltype].txt: These files represent cell-type-specific scQTLs processed with a
conditional regression-based QTL identification pipeline.
File: conditional_top_variants_per_signal_[celltype].txt: These files represent cell-type-specific
scQTLs processed with a conditional regression-based QTL identification pipeline, and contain
the top variants for each eGene identified in the analysis.
File: scQTL_disease_overlap.txt (data S17): This file contains a list of eGenes found in any cell
type from the primary analysis that are annotated for four brain-related diseases and traits. “X”
annotations in each of the four disease columns indicate if an eGene is associated with a
disease.

4.2 Bayesian scQTLs - scQTLs using Bayesian linear mixed effects
models

Main manuscript reference: Third supplementary reference in the first paragraph of
“Determining cell-type-specific eQTLs from single-cell data.”

In addition to providing scQTLs based on standard approaches and methods, we also
provide supplementary scQTL callset based on Bayesian analysis. Specifically, we quantify the
relationship between genotype dosage and gene expression using a Bayesian linear mixed
effects model. Our description and implementation follow closely those given by Hoff (179).

Before discussing how a Bayesian linear mixed effects model works, it is helpful if we
first briefly review the basic principles behind standard QTL approaches. In any QTL analysis
using linear regression, the key value of interest is the slope associated with the regression of a
given gene’s expression (expr) on the genotype dosage associated with a particular variant (g),
while simultaneously controlling for a set of q covariates (cov1, cov2, … covq):

expr ~ β0 + βg g + βcov_1 cov1 + βcov_2 cov2 + … + βcov_q covq

In the context of this multivariate regression, the key value of interest is the parameter
βg, which quantifies the association between the genotype dosage g and expression. A QTL
search under this model is framed as a hypothesis test, with H0 denoting the scenario wherein
βg = 0. A standard QTL search entails estimating the value of βg using a least squares linear
regression, and then evaluating the evidence against H0 using a p-value (namely, larger
absolute values of βg that deviate from 0 provide greater evidence in favor of H1 ≠ 0).

A Bayesian-based approach to this problem treats the parameter βg as an unknown
value that can be described by a probability distribution. In particular, this probability distribution
is first given as a prior p(βg). It is then updated after evaluating our dataset, using gene
expression values across a large cohort of individuals, along with their corresponding genotypes
and covariates. This updated distribution is the posterior probability distribution p(βg|dataset)
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associated with the parameter βg. The posterior distribution p(βg|dataset) is defined over the
range of all possible βg values (negative ∞ to positive ∞ in our case). p(βg|dataset) optimally
describes our available information for βg, given our prior p(βg), our dataset, and a sampling
model. Instead of evaluating the strength of evidence for or against H0 using p-values, a
Bayesian-based approach evaluates the degree to which 0 lies within or outside of the posterior
p(βg|dataset). A scenario wherein the value 0 lies very much within the high-density region of
p(βg|dataset) provides evidence against the presence of a QTL (fig. S37A), whereas a scenario
wherein 0 lies in one of the very far tails (or far from high-density regions of p(βg|dataset))
provides evidence that βg ≠ 0, and thus provides evidence in favor of a QTL (fig. S37B).

In the context of this study, we searched for QTLs in m=24 cell types. Thus, the general
model for our analyses takes the following general form:

exprAstro ~ β0(Astro) + βg(Astro) g + βcov_1(Astro) cov1 + … + βcov_q(Astro) covq
exprOligo ~ β0(Oligo) + βg(Oligo) g + βcov_1(Oligo) cov1 + … + βcov_q(Oligo) covq

. . .

. . .

. . .
exprOPC ~ β0(OPC) + βg(OPC) g + βcov_1(OPC) cov1 + … + βcov_q(OPC) covq

For a given cell type, the set of parameters can be represented by a vector β. For
example, βAstro is a vector representing ⟨β0(Astro), βg(Astro), βcov_1(Astro), βcov_2(Astro), … βcov_q(Astro)⟩. The
set of explanatory variables can likewise be represented in a vector X, with X being the vector
⟨1, g, cov1, cov2, … covq⟩. Likewise, for a given cell type, we have N expression values, where N
denotes the number of individuals for whom expression data are available (or the sample size
used in a regression for a given cell type). These expression values may therefore also be
represented by vectors expr. Thus, a more compact representation of the set of equations
above may be given as:

exprAstro ~ βAstro
T XAstro

exprOligo ~ βOligo
T XOligo

. . .

. . .

. . .
exprOPC ~ βOPC

T XOPC

Our objective is to approximate posterior distributions associated with the parameter
vectors, with these posterior distributions given by p(βAstro|XAstro, exprAstro), p(βOligo|XOligo,
exprOligo), … p(βOPC|XOPC, exprOPC). From these posterior distributions, we can easily determine
the marginal posterior distributions that are truly of interest in the context of our analysis –
namely, the posterior distributions associated with the parameters that describe the relationship
between genotype dosage and expression within each cell type (represented by the parameters
βg(Astro), βg(Oligo), ... βg(OPC)).

In order to approximate the posterior distributions p(βAstro|XAstro, exprAstro), p(βOligo|XOligo,
exprOligo), … p(βOPC|XOPC, exprOPC), we must first define prior distributions for the parameter
vectors in each cell type, p(βAstro), p(βOligo), … p(βOPC). We set each cell type’s parameter vector
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prior as a multivariate normal (MVN) distribution that itself is parameterized by a mean vector Θ
and a covariance matrix Σ:

p(βAstro) ~ MVN(Θ, Σ)
p(βOligo) ~ MVN(Θ, Σ)

. . .

. . .

. . .
p(βOPC) ~ MVN(Θ, Σ)

Note that the same vector Θ and matrix Σ are used for all cell types. Importantly, Θ and Σ
are not known in advance, and specific values are thus not assigned to them. Instead, Θ and Σ
are also modeled using a Bayesian approach, and therefore each have their own respective
prior distributions, p(Θ) and p(Σ). We use an MVN distribution for p(Θ) and an inverse Wishart
distribution for p(Σ):

p(Θ) ~ MVN(μ0, Λ0)
p(Σ) ~ inverse-Wishart (η0, S0

-1)

The model described here is a Bayesian linear mixed effects model (or a “normal
hierarchical regression model”), and it may be represented diagrammatically using the following
hierarchical structure:

Treating the common mean vector Θ and covariance matrix Σ as unknown parameters
that are estimated under a Bayesian framework provides important behavior for this model:
namely, it provides a mechanism for sharing information across cell types. By contrast, if we
were to alternatively set Θ and Σ to specific fixed values in advance, then βAstro, βOligo, … βOPC

would be conditionally independent parameter vectors (each having the same priors), so there
would be no mechanism to share effects across cell types. The notion of incorporating shared
effects between cell types may be justified by considering what the parameters within each of
the vectors βAstro, βOligo, … βOPC represent. Consider the single parameter βg(Astro) as an example.
βg(Astro) represents the effect of a particular variant on gene expression, while controlling for
covariates. βg(Astro) may be found to be a very large positive value, but if the sample size
associated with astrocytes is small, then this may reduce our confidence that βg(Astro) truly has a
very large value. In this regard, the large estimate for βg(Astro) may be an artifact that stems from
the fact that a low sample size confers high variance when estimating a parameter. By contrast,
the remaining cell types (oligodendrocytes, OPC, etc.) may have parameter estimates of βg(Oligo),

40



… βg(OPC) that are very close to 0, and these cell types may have much larger sample sizes.
Their larger sample sizes provide us with confidence that the true underlying values βg(Oligo), …
βg(OPC) are 0. Given that the underlying biology among the various cell types of the PFC are not
completely independent, this in turn may further reduce our confidence that βg(Astro) truly has a
large positive value. By sharing information between cell types, we may use the near-0
estimates of βg(Oligo), … βg(OPC) to inform our estimate for βg(Astro), effectively helping to mitigate the
effect that the small sample size in astrocytes has on yielding an extreme estimate for βg(Astro).

Looking back to the hierarchical diagram above, we see that our full model has the
unknown parameters Θ, Σ , βAstro, βOligo, … and βOPC (for clarity of exposition, we omit discussion
of another parameter σ, which describes the variance associated with gene expression at a
particular genotype value within a given cell type; see (179) for further details). μ0, Λ0, η0, and
S0

-1 are hyperparameters for which we pre-specify precise values (see details below). Our
objective is thus to approximate the joint posterior distribution of all unknown parameters:

p(Θ, Σ, βAstro, βOligo, … βOPC | XAstro, XOligo, XOPC, exprAstro, exprOligo, exprOPC)

We approximate this joint posterior distribution using Gibbs sampling. Gibbs sampling is
a Markov chain in which we sample from the full conditional distribution of each parameter in
turn, while conditioning on the data as well as the most recently sampled values for all of the
other parameters. Under our assumed priors given above, these full conditional distributions are
given as follows (for the β vectors, the full conditional distribution is only provided for βAstro, but
full conditional distributions associated with the other vectors βOligo, … βOPC have the same
general form):

p(βAstro | XAstro, exprAstro, Θ, Σ, σ) ~ MVN(μAstro, ΣAstro)

μAstro = [Σ–1 + XAstro
TXAstroσ-2]–1 (Σ–1Θ + XAstro

TexprAstroσ–2)

ΣAstro = [Σ–1 + XAstro
TXAstroσ–2]–1

p(Θ | Σ, βAstro, βOligo, … βOPC) ~ MVN(μm, Λm)

μm = [Λ0
–1 + mΣ–1]–1 [Λ0

–1μ0 + mΣ–1 ]β

Λm = [Λ0
–1 + mΣ–1]–1

= mean value of the parameter vectors βAstro, βOligo, … βOPCβ

p(Σ | Θ, βAstro, βOligo, … βOPC) ~ inverse-Wishart (η0 + [S0 + Sθ]–1)

Our implementation relies on first using the significant eGenes from running 10,000
permutations (For a discussion of how significance was derived, and how it’s used throughout
this paragraph, please see supplementary section 4.1 scQTLs - Cell-type-specific eQTL
analysis; especially the paragraph above that starts with "Our scheme for defining significance
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is detailed by the approach taken by GTEx..."). This is the first step in the 2-step multiple testing
correction scheme used to find our core set of scQTLs. We used the significant eGenes
identified from these permutations. For each significant eGene (FDR<0.05) in each cell type, we
evaluated the top eSNP per eGene. This top eSNP is the most significant eSNP for the eGene,
with significance given by the eSNP’s associated nominal p-value. Using this eSNP-eGene pair
(which we term an “anchor QTL” for the Bayesian approach), we implemented the Bayesian
linear mixed effects model across all 24 cell types, using 10 expression PCs when searching for
Bayesian QTLs (see fig. S36C, S36E, S37, and table S8). Any covariates with very high
collinearity were removed from the regression. To set the priors in our model, we used the least
squares regression estimates within each cell type to set μ0 (thus, μ0 was set to be the mean
among the “standard” least squares regression estimates from each of the 24 cell types).
Likewise, Λ0 was set to equal the covariance matrix associated with the least squares
regression estimates across the 24 cell types. S0 was also set to equal the covariance among
the least squares regression estimates.

In order to approximate the posterior distributions associated with the parameter vectors
that model the relationship between the eSNP (as well as the covariates) with the eGene’s
expression, we then ran a Gibbs sampler consisting of 25,000 steps. We thinned the sequence
to mitigate the strong dependencies between adjacent steps in the Gibbs sampler (which is a
Markov chain) by saving every 10th set of parameter values in the Gibbs sampler.

To determine whether a given eSNP-eGene pair within a given cell type was a Bayesian
QTL, we evaluated whether the value βg = 0 (for that cell type) appeared within the highest
posterior density (HPD) associated with βg for each cell type. The intuition behind this approach
is given in fig. S37. In our implementation, we consider a given eSNP-Gene pair not to be a
Bayesian QTL if the 0.9999999999 HPD overlaps the value βg = 0. In practice, this means that a
given eSNP-eGene pair is considered to be a Bayesian QTL if every one of the 2,500 sampled
βg values is >0 (designating a QTL with a positive effect size) or if every one of the 2,500
sampled βg values is <0 (designating a QTL with a positive effect size).

The results from this analysis are given in fig. S36C and table S8. Three key features
may be highlighted:

1) The number of scQTLs identified using this Bayesian framework is substantially less
than the number of scQTLs identified using the standard linear regression-based approach (ie,
our core scQTL callset). In this regard, the Bayesian framework offers a more conservative set
of results, and it is largely a consequence of the fact that our framework relies on a small set of
anchor QTLs as a base (as detailed above, these anchor QTLs are the eSNP-eGene pairs that
link the most significant eSNP with a significant eGene). However, the diminished number of
scQTLs identified under the Bayesian framework may also partially result from a phenomenon
whereby a significant scQTL using the least squares linear regression becomes non-significant
under the Bayesian approach. This may occur, for instance, if a significant effect size occurs in
only one cell type; the other cell types (with non-significant effects) may effectively pull the one
strong effect size toward 0, thereby causing it to be non-significant. This is a result of the shared
effects between the cell types.

2) The number of QTLs identified using the Bayesian approach is relatively stable across
cell types. This is also a direct consequence of the shared effects that are built into the Bayesian
linear mixed effects model.
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3) There are several cell types (namely, L5.ET, Pax6, SMC, Endo__VLMC, L6.IT.Car3,
Sncg, and Immune) for which we were unable to identify any significant QTLs using least
squares linear regression (see fig. S36C). However, a limited number of significant scQTLs
have been identified using the Bayesian framework detailed here. Thus, this framework may be
especially valuable for low-abundance cell types in which small sample sizes make it otherwise
difficult to identify significant eSNP-eGene associations using standard linear regression-based
approaches.

An UpSet plot delineating the extent of overlap among various scQTL types (standard,
Bayesian, conditional, and LD-pruned) is provided in fig. S38.

As with the primary (“core”) scQTL analysis, the scQTL callsets for the Bayesian
analysis are available on the brainSCOPE portal. Columns indicate cell type, eGene, eSNP, and
the posterior mean and standard deviation associated with posterior beta effect sizes from the
Gibbs sampler. We also provide a similar file with overlapping scQTL results across methods on
the brainSCOPE portal.

File: bayesian_scQTLs.dat: These files represent cell-type-specific scQTLs processed with the
Bayesian model-based QTL identification pipeline.
File: Bayesian_QTL_code.tar.gz: TAR file contains code used for calculating scQTLs with the
Bayesian model-based pipeline.
File: metaQTLs.txt: This file lists a combined set of QTLs discovered in each analysis (primary,
conditional, Bayesian, and dynamic) for all cell types. Each scQTL entry lists analysis type, cell
type, gene and SNP identifiers, and associated statistics.

4.3 Dynamic scQTLs - Dynamic sc-eQTL analysis
Main manuscript reference: Fifth supplementary reference in the first paragraph, and

first supplementary reference of the last paragraph of “Determining cell-type-specific eQTLs
from single-cell data.”

To further expand our sc-eQTL analysis to a true single-cell resolution, we also
developed a Poisson mixed effect (PME) model that incorporates continuous cell-state scores
generated from trajectory analysis and the interaction between genotype and trajectory. With
this model, we can calculate scQTLs at the single-cell level and assign a unique effect size to
each cell, resulting in what we refer to as "dynamic sc-eQTLs". The total effect size (βtotal) of the
dynamic sc-eQTLs varies across single cells, reflecting the dynamic nature of gene regulation.
Furthermore, the βtotal is partially related to the continuous trajectory, which allows us to
extrapolate eQTLs to cells in which we may not detect these eQTLs with the standard
pseudo-bulk approach.

To ensure rigorous control over potential batch effects, we limited our dynamic sc-eQTL
analysis to a single cohort, the SZBDMulti-seq cohort, which comprises 24 healthy donors, 24
schizophrenia patients, and 24 bipolar patients. We excluded four individuals with <1,000 cells,
resulting in a total of 312,131 neurons (L2/3 IT, L4 IT, L5 IT, and L6 IT) from 68 SZBD-Kellis
individuals. To correct for batch effects, we integrated the data using SCALEX (180).

Next, we conducted a Slingshot trajectory analysis using the same pipeline as described
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in the previous “Trajectory analysis” section. We extracted pseudo-time from the gene
expression patterns that varied along the cortical depth axis, specifically from L2/3 IT to L6 IT
neurons (fig. S53), and incorporated it into our subsequent PME model.

In our PME model, we modeled the raw UMI counts of a gene as a function of genotype,
adjusting for trajectory cell state score and multiple individual and cell-level confounders
including age, biological sex, genotype PCs, total UMI counts, and gene expression PCs.
Individual-level random effects were also included in the model:

Here, E denotes the expression level of a gene in cell i, θ denotes the intercept, and all
βs denote fixed effects as indicated (nUMI: number of UMI counts, gPC: genotype PC, ePC:
single nucleus mRNA expression PC, ptime: pseudo-time cell state score generated from
trajectory analysis) for covariates at cell i or donor d level. The donor is also modeled as a
random effect.

To test whether there is a significant interaction between the trajectory and the genotype,
we further include the interaction term Gxptime in our model:

Overall, 6,225 top eQTLs (eGene – most significant eSNP pairs) identified in at least one
IT neuron cell type were tested with our PME model. Given the much more limited sample size
(a reduction from around 300 to 68 individuals), we still successfully reproduced 4,186 (67.2%)
top eQTLs from the primary scQTL dataset, among which 1,692 showed significant interactions.
The significance was tested via the likelihood ratio test (fig. S52).

Similar to the main scQTL analysis, the dynamic scQTL callsets are represented as
individual text files for each assessed cell type on the brainSCOPE portal:

File: full_dynamic_eqtl.tsv: This file lists the full set of eQTLs used as input for the PME model
(6,225 top eQTLs identified with the pseudo-bulk approach).
File: sig_dynamic_eqtl.tsv (data S18): This file lists the 4,186 significant dynamic eQTLs
identified with the PME model (SNP term only).
File: sig_ptime_dynamic_eqtl.tsv (data S19): This file lists the 1,692 significant dynamic eQTLs
identified with the PME model (SNP and interaction terms).
File: SZBD.ptime.tsv: This file lists the pseudo-time values for all tested excitatory neuron cells
from samples in the SZBDMulti-Seq cohort (generated via SCALEX and Slingshot).
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4.4 Isoform QTLs - Identify QTLs for isoform expression for each cell type
Main manuscript reference: Seventh supplementary reference in the first paragraph of

“Determining cell-type-specific eQTLs from single-cell data.”

In addition to identifying cell-type-specific eQTLs from our datasets, we identified QTLs
for isoform-specific expression (“isoQTLs”) using cell-type-specific single-cell datasets. This
analysis is challenging, as the 3’ sequencing direction of the 10X snRNA-seq technology leads
to reduced sequencing rates in isoforms that differ at the 5’ end of the gene, compounding the
sparsity inherent to single-cell expression (181). To overcome this issue, we used the SCASA
algorithm for isoform quantification, which fits read-count data onto an alternating expectation
maximization model to identify and quantify single-cell expression for clusters of isoforms that
can be detected in each sample (181).

After running SCASA for all 388 snRNA-seq samples with default parameters, we
transformed the expression values of individual cells into pseudo-bulk data across cell types,
similar to the main expression data. Briefly, we performed the following steps: matched cells
with their annotated cell types; discarded cells without annotations, those with <500 UMIs, or
those with <200 isoforms expressed; removed cells of the same cell type if there were <10 total
cells per individual; summed the non-zero read counts across samples and cell types;
normalized expression values to CPM without log transformation; and removed isoform clusters
where >95% of individual values were 0 or NA. After filtering, we were able to assess an
average of 42,662 nuclei across 187 individuals per cell type, with wide variability across cell
types (between 871 and 287,831 nuclei and 11-320 individuals) (fig. S40A). We next used the
software package sQTLseekeR2-nf (182) to identify isoQTLs for each individual cell type in our
dataset. Due to low sample sizes and cell counts, we merged select similar cell types for this
analysis (chandelier with Pvalb, endothelial with VLMC, and Sst with Sst_chodl), as was done in
the main scQTL analysis, resulting in 23 total cell types. sQTLseekerR2 models the effects of
genotype (imputed variants with >0.05 MAF) towards isoform expression (CPM values), using
cohort, biological sex, age of death, disorder, nuclei count, three expression PCs (calculated
using the prcomp package in R), and three genotype PCs (calculated using PLINK2) as
covariates. Similar to the scQTL calculations described above, sQTLseekeR2 first identified
nominally significant isoSNPs (p<0.05, one-way factorial test) located within 5 kbp of the
canonical gene TSS (“isoGene”) after performing additional QC steps (such as removing genes
without alternative isoforms in the cohort), and found the associated isoGenes for each isoSNP
that passed multiple testing corrections. We then implemented the permuted mode of
sQTLseekeR2 to identify beta distribution-derived p-values and FDR values for each isoGene,
and calculated individual nominal p-value thresholds for each isoGene for isoSNP discovery. We
also excluded isoQTLs at complex genetic loci with high variation, namely the HLA locus and
ARL17B at the 17q21.31 locus, from downstream analysis.

Due to low sample size, difficulty in detecting isoforms from 10X sequencing data, and
noise from unspliced transcripts in the nucleus, our power to detect isoQTLs in specific cell
types is diminished. As such, we report a total of 1,389 putative isoGenes corresponding to
133,861 isoSNPs across 22 of the 23 cell types with beta distribution-derived p-values <0.05,
without filtering for FDR at the isoGene level (fig. S40B). Note that SST Chodl cells did not yield
any isoQTLs passing nominal significance (p>0.05, beta distribution). With this approach, end
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users can set their own FDR threshold for candidate isoQTLs. For instance, we found 86
significant isoGenes at FDR<0.25, 32 isoGenes at FDR<0.1, and 21 isoGenes at FDR<0.05
(figs. S40C-D). In particular, the 21 isoQTLs with FDR<0.05 that we considered for downstream
analysis, which corresponded to 575 total isoSNPs (or 527 unique isoSNPs), were present in
nine cell types with larger sample sizes and nuclei counts. Most of these isoQTLs were unique
to a particular cell type, with only 48/527 isoSNPs (9%) present in multiple cell types (fig.
S41A). We also found that 302/527 (57.3%) of the isoSNPs overlapped with bulk
RNA-seq-based isoQTLs in the adult brain (fig. S41B). Finally, we observed a bias towards
isoSNPs contributing to complex 3’ events (390/575, 74%), likely due to the 3’ bias inherent in
10X Genomics single-cell RNA-seq (fig. S41C). Examples of isoQTLs are shown alongside
scQTLs in Fig. 4G and presented as a Sashimi plot in fig. S42 (183).

Lists of isoSNPs and isoGenes that passed filtering thresholds are available on the
brainSCOPE portal, as described below. Text files for isoGenes in individual cell types contain
columns for (a) isoGene name, (b) number of cis variants tested, (c) mean LD in the region, (d)
top isoSNP ID, (e) p-value, (f-g) two fitted beta distribution parameters, (h) number of
permutations, (i) permutation-based p-value, (j) beta distribution-based p-value, (k) runtime, and
(l) Benjamini-Hochberg FDR correction value. Text files for isoGenes in individual cell types
contain columns for (a) isoGene name, (b) isoSNP name, (c) F test statistic, (d) number of
genotype groups, (e) maximum difference in relative expression difference among groups, (f-g)
alternate transcript IDs, (h) number of individuals with missing, reference, heterozygous, and
homozygous alternate genotypes, (i) nominal p-value, and (j) nominal FDR value.

File: [celltype]_permuted_fdr_correct.nominal05.txt: These files represent genes in
cell-type-specific isoform usage QTLs (isoGenes) in 22 cell types (permuted beta
distribution-derived p<0.05, with FDR values listed for each isoGene).
File: [celltype]_significant_sCQTLs_p0.05.txt (data S16): These files represent all SNPs
associated with isoGenes (permuted beta distribution-derived p<0.05 filter) for cell-type-specific
isoform usage QTLs (isoSNPs), filtered for isoGene-specific nominal p-value <0.05, in 22 cell
types.

4.5 Allele-specific expression
Main manuscript reference: Second supplementary reference in the third paragraph of

“Determining cell-type-specific eQTLs from single-cell data.”

We identified genes with allele-specific expression (ASE) in the 21 MultiomeBrain cohort
samples to compare the effect sizes and allelic fraction of cell-type-specific eQTL variants and
corresponding allele-specific expression eGenes, respectively (Fig. 4F, fig. S49).

The BAM output files were first converted to pseudo-bulk fastq files containing
snRNA-seq reads corresponding to each cell type using bamtofastq v1.4.1
(https://support.10xgenomics.com/docs/bamtofastq). We then remapped the reads to personal
genome fasta sequences constructed with vcf2diploid (184), and assessed allelic imbalance at
each heterozygous SNV and gene using the AlleleSeq2 pipeline (184–186).
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The full scASE files will be available for researchers with approved access within the
PsychENCODE Consortium protected data portal. Anonymized files are available on the
brainSCOPE portal as listed below.

File: MultiomeBrain_scASE_hetSNVs.tsv (protected) and
MultiomeBrain_scASE_hetSNVs_anonymized.tsv: These files list hetSNVs that confer ASE in
individual cell types, with haplotype-specific read counts.
File: MultiomeBrain_scASE_genes.tsv (protected) and
MultiomeBrain_scASE_genes_anonymized.tsv: These files contain ASE genes with
haplotype-specific read counts.

4.6 mutSTARR-seq - Investigating the allelic effects of eQTLs on
enhancers

Main manuscript reference: First supplementary reference in the third paragraph of
“Determining cell-type-specific eQTLs from single-cell data.”

We used a mutation STARR-seq approach (MutSTARR-seq) to investigate the allelic
effects of eQTLs on activity of our putative enhancers. To do so, we first examined the overlap
between our CapSTARR-seq results (see above section “STARR-seq analysis”) and variants
identified from scQTL analysis (see above section “scQTL analysis”). We prioritized 47 scQTLs
and synthesized gene fragments with and without the scQTL variant to assess the enhancer
activity of each fragment through STARR-seq. We found that four enhancer regions had
significantly different enhancer activity with the eQTL variant, but only one of these regions
remained significant following correction for multiple testing (Chi-squared test, adjusted p-value
= 0.005). This region was chr17:45894107-45894607, and the alternate allele for this region
showed increased enhancer activity. This region is predicted to target 12 different genes and
has been previously implicated in several neurodegenerative diseases (40).

Lists of tested enhancers from our mutSTARR-seq experiments are available on the
brainSCOPE portal in the following file:

File: starrseq_enhancers_merged_sig_qtls_fdr_0.05.bed: This file includes the panel design
used in mut-STARRseq by intersecting STARR-Seq-validated enhancers with cell-type-specific
eQTLs.

4.7 STARR-seq and MPRA Validation - Validation of the scQTLs using
STARR-seq and MPRA

Main manuscript reference: First supplementary reference in the fourth paragraph of
“Determining cell-type-specific eQTLs from single-cell data.”
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Identifying the eSNPs
Our comparative enrichment analysis was carried out using eSNPs. The eSNPs are

those variants that appear as part of significant scQTLs. In particular, these significant scQTLs
are the primary set of QTLs identified for 17 cell types, processed with a
standardized/conservative pipeline (available in the file "[celltype]_sig_QTLs.dat" on the
brainSCOPE resource page).

Defining the active and control sets for STARR-seq and MPRA
(1) STARR-seq : We obtained candidate regions of STARR-seq with a fold-change score

based on two replicates in primary human neural progenitor cells (phNPCs) isolated from
the fetal cortex (159, 187). Next, we obtained active enhancer regions in these two
replicates using STARRPeaker (188), totaling 6,202 regions for replicate 1 and 6,484 for
replicate 2. For each replicate, we selected candidate regions with fold-change scores
falling within the 25% quartile range as their respective control regions (figs. S48A-B).
As a result, we obtained a total of 7,276 regions for both replicates.

(2) MPRA: We obtained the MPRA dataset of primary cells from the study by (189). We
used a more strict criterion to define the activity of MPRA by its RNA/DNA ratio. First, we
categorized MPRA peaks into three groups: active enhancers (is_enhancer=1), silencers
(is_silencer=1), and controls (is_enhancer=0 and is_silencer=0) based on their initial
labels. Then, we computed the activity scores of MPRA using abs(RNA/DNA - 1). Next,
we selected the 25% quartile of MPRA (6,221) in the control group as the control set.
Additionally, we identified the MPRA peaks (6,575 peaks) with activity scores above the
maximum active score in the control group as the active set (fig. S48C).

Enrichment analysis of the scQTLs in MPRA and STARR-seq
We randomly selected 6,000 peaks with replacements from the active set and control set

in MPRA or STARR-seq and used BEDTools (190) to intersect the eSNPs dataset with both the
active and control peak sets. We calculated the ratio of eSNPs located within the active and
control sets. This process was repeated 2,000 times, allowing us to statistically test the
enrichment of eSNPs in the active and control sets. The results show that eSNPs are more
enriched in the active set than in the control set (fig. S48D).

5 Building a gene regulatory network for each cell type

5.1 GRN construction - Construction of cell-type GRNs
Main manuscript reference: First supplementary reference in the first paragraph of

“Building a gene regulatory network for each cell type.”

We used snATAC-seq and snRNA-seq data from healthy individuals across all cohorts to
predict proximal and distal regulatory links between TFs and their potential target genes. We
used the metacell algorithm to identify homogeneous and robust groups of cells, which helped
to reduce noise and variability in the snRNA-seq data (191). The values within the resulting
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metacell matrices were converted to CPM units and standardized to z-scores within each
cohort. The resulting z-score matrices were combined and used for GRN construction using
complementary approaches, as described below. We note that red blood lineage cells yielded
very few metacells and were excluded from the GRN analysis. Additionally, Sst and Sst_Chodl
cells were merged to improve statistical power. Our approach resulted in the identification of
cell-type-specific GRNs, highlighting the utility of single-cell-resolution datasets for uncovering
gene regulation patterns across cell types.

SCENIC
Single-Cell rEgulatory Network Inference and Clustering (SCENIC) (58) is a commonly

used computational method for reconstructing GRNs and determining cell state from
snRNA-seq. First, SCENIC uses cis-regulatory motif enrichment analysis (RcisTarget) on gene
co-expression modules (which can be inferred from GENIE3 or GRNboost) to infer regulons.
Given that gene co-expression modules may contain many false positives and indirect targets,
RcisTarget then evaluates and identifies the modules in which the upstream regulator's binding
motif is enriched across the target genes, resulting in regulons that consist only of direct targets.
Lastly, the activity level of these regulons in each cell is quantified using an area under the
recovery curve (AUC)-based enrichment score using AUCell.

For the present study, the SCENIC pipeline (R version) was applied to the metacell
expression matrix. We first used GRNBoost2 in Python (192) to infer gene co-expression
networks across all cell types. Then, we identified regulons with
runSCENIC_1_coexNetwork2modules and runSCENIC_2_createRegulons functions with
default settings. Specifically, the cisTarget motif enrichment analysis limited the regions for TF
searching to a distance of 10 kbp centered on the TSS or 500 bp upstream of the TSS. Next,
the revealed regulons (with at least 10 genes) were scored for their activity level in each cell
using the runSCENIC_3_scoreCells function, and the AUCell enrichment was calculated based
on the top 1% of the number of detected genes per cell. Lastly, we used the regulon specificity
score (RSS (193) metric to assess cell-type specificity of the discovered regulons. RSS, which is
based on Jensen-Shannon divergence, is a measure of the difference in regulon activity across
different cell types. For each cell type, we ranked the predicted regulons by their RSS values
and selected the top 100 regulons with the highest scores. Finally, within each regulon, we
sorted TF-target gene links based on the ‘CoexWeight’ from GRNboost2 outputs and selected
links with the top 20% scores to construct the cell-type GRNs.

scGRNom
A limitation of the SCENIC approach is that it does not take into account the dynamic

and functional information that can be gained from snATAC-seq or open chromatin regions.
snATAC-seq is a powerful tool for identifying accessible chromatin regions and can provide
important information on gene regulation and functional genomic elements at a cell-type
resolution. Without snATAC-seq data, the SCENIC approach may not be able to accurately
predict gene expression patterns and identify regulatory relationships between TFs and target
genes.

To compensate for this, we applied the scGRNom pipeline (59) to capture regulatory
links within accessible promoter regions in the snATAC-seq data. Briefly, the scGRNom uses a
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prior, or reference network, depicting likely interactions between TFs and target genes based on
TF binding site (TFBS) mapping within accessible or open promoters. However, under this
scenario, multiple TFBSs can be mapped within a single promoter region, with potentially many
of them having no regulatory effects. The scGRNom pipeline filters such links by estimating
expression-based relationships between every target gene and all TFs linked to its promoter in
the reference network. To do this, scGRNom uses elastic-net regression, a machine learning
method that we have previously tested to model TF-target gene expression in bulk brain GRNs
(4). For the present analysis, we first mapped putative TFBSs in the JASPAR2020 database
(154) within promoter peak regions in the snATAC-seq data to create reference networks for
each cell type. Then, the reference network and normalized metacell expression matrix were
supplied to the scGRNom function scGRNom_getNt, along with the following parameters:
cutoff_by = 'quantile', cutoff_percentage = 0.2, and train_ratio = 0.7.

For subclass annotations, reference networks were replicated from the parent cell type
or closely matching subclass cell type (for example, excitatory and inhibitory neuron reference
networks used for L2/3 IT and Pvalb, respectively; microglia and endothelial reference networks
used for immune cells and VLMC, respectively). We excluded pericytes and smooth muscle
cells from this analysis to avoid using snATAC-seq peaks from biologically distinct cell types.

We merged high-confidence TF-enhancer-promoter interactions from snATAC-seq (top
100 TFs; intersection of all cohorts) with the union of top-scoring TF-target gene links from
SCENIC (top 20% of links within the top 100 regulons) and scGRNom (top 20% TFs for each
target gene) to construct merged GRNs for the 24 cell types. The 20% threshold was
determined by evaluating SCENIC results on a benchmark derived from TF-promoter links in
our ATAC-seq (see below section “GRN evaluation”). We discern activating and repressing
edges by examining the sign of Pearson’s correlation between the metacell expression profiles
of each TF-target gene pair. Note that we retain edge weights as RSS scores for SCENIC runs,
absolute regression coefficient from scGRNom runs, and binary value of 0 or 1 depicting
presence/absence of motif-enhancer-peak links in snATAC derived links. Finally, scQTLs were
mapped to enhancers and promoters in the merged GRNs using the findOverlaps function of
the GenomicRanges package (194).

We have constructed two sets of cell-type GRNs for the analyses in this paper: (1) GRNs
with the pediatric samples (age < 13 years) filtered out and utilizing all the snATAC-seq data
(GRN-A); (2) GRNs including the pediatric samples and using only the UCLA-ASD snATAC-seq
peaks (GRN-B). The GRN-B set was used in the LNCTP (see section 1.8).

We provide the cell-type-specific GRNs and meta-data files related to their construction
(including MetaCell expression values) on the brainSCOPE portal, as follows:

File: [celltype]_GRN.txt: These text files detail cell-type GRNs for 24 cell types (GRN-A). The
files list the TF, enhancer location, promoter location, target gene, interaction type (proximal or
distal), correlation, activating/repressing, edge-weight, and cell type.
File: [celltype].txt: These text files detail an alternate version of cell-type GRNs for the 24 cell
types that were used as inputs for the LNCTP model (GRN-B). (These GRNs differ from the
main files in that only UCLA-ASD snATAC-seq peaks were used to generate the GRNs and that
samples with an age < 13 years were retained.)
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File: SCENIC_RSS.csv (data S20): This file shows SCENIC-derived cell-type RSS (regulon
specificity scores) for all TFs, used as inputs for constructing the final GRNs.
File: [celltype].eqtl_edge.txt (data S21): These files list the edges in the cell-type GRNs that link
enhancer/promoter elements to scQTLs.

5.2 GRN evaluation
We aimed to capture both distal and proximal regulatory links between TFs and target

genes by integrating snATAC-seq and snRNA-seq data using complementary strategies.
Proximal links between TFs and target genes (TF → promoter) were identified using two
different approaches: the SCENIC pipeline and scGRNom. We reasoned that using only one
technique would likely miss important regulatory interactions. The SCENIC pipeline captures
cell-type-specific regulon activities from cell-type expression data but remains devoid of
epigenomic data. The scGRNom pipeline fills this gap by utilizing a prior network built using
enhancer promoter interactions in snATAC-seq data. However, utilizing snATAC-seq data from
parent cell types for subclass cell annotations could limit scGRNom’s ability to capture
differences between certain sub-cell types. Therefore, taking a union of highly scoring TF-target
gene links from both these methods could potentially construct a more robust GRN. Thus, we
combined the most highly scoring proximal links from SCENIC and scGRNom with distal links
from snATAC data to construct the cell-type GRNs. On average, each cell-type GRN comprises
387 TFs, ~9000 target genes, and 14,000 enhancers. These genes are connected via an
average of 39,000 proximal and 38,000 distal links (fig. S54).

Overlaps of SCENIC results with snATAC peaks
As part of our integrative approach to construct cell-type-specific GRNs, we also mapped

TFBSs to gene promoters using our snATAC-seq data. These binding sites were then used to
evaluate the outputs of the SCENIC pipeline, which identifies cell-type-specific regulons based
on gene expression data. To evaluate the accuracy of the SCENIC regulons for each cell type,
we used TFBSs in ATAC peaks within gene promoter regions as a benchmark. We calculated
precision as the proportion of SCENIC links that were also present in the snATAC-seq
benchmark. Through our analysis, we found that the best precision was achieved when we
selected the top 20% links based on the co-expression weight from GRNboost and the top 100
regulon ranks from SCENIC. We used this threshold to filter SCENIC runs in the merged GRNs.
It is worth noting that we did not perform this evaluation for the scGRNom complement of the
GRNs. This is because scGRNom uses TF-target gene promoter links from snATAC-seq data
as a prior to build a GRN from snRNA-seq data. Instead, we chose a threshold of the top 20%
targets for each TF based on our experience developing the algorithm and tests with other brain
datasets (59, 195).

Furthermore, we observed that the cell-type GRNs show patterns that reflect the known
biology of cell-type relationships in the brain. For example, the GRNs of excitatory neuron
subtypes were more similar to each other than to inhibitory neuron subtypes, and vice versa
(figs. S55B, S56), which is not surprising given their distinct functions and developmental
origins. This pattern was maintained even when the snATAC-seq links were removed from the
GRNs, suggesting that the snRNA-seq data alone are sufficient to capture the cell-type
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relationships. Additionally, the stability of the pattern across different edge-trimming thresholds
for both scGRNom and SCENIC indicates that the results are robust to variations in the analysis
parameters (fig. S55A).

Comparing cell type GRNs with tissue-naive GRNs
We also compared these cell-type-specific GRNs to cell-type-naive regulatory networks

available in the DoRothEA database (196). The DoRothEA database provides a comprehensive
list of TF-target gene interactions, scored on a scale from A to E, with A indicating the most
reliable interactions supported by strong literature evidence, and E representing the least
reliable interactions based on computational predictions. As anticipated, we observed only
minimal overlaps with the DoRothEA network, with the majority of overlaps found in the E
category of edges (fig. S66). This observation suggests that bulk GRNs are insufficient in
capturing the intricacies of cell-type-specific regulatory signals.

Variance in gene expression explained by GRN models
Gene expression is a product of regulation, which includes TFs as regulators. Regulators

often contribute to explaining a certain amount of the observed variability in gene expression.
We formulate a network-based regression method to estimate the percentage of variation in
gene expression explainable by our cell type GRN models. Operationally, for each target gene,
we fit a linear regression model using the expression levels of all linked regulators (TFs) as
predictors, weighted by their respective edge weights (Pearson’s correlation). The percentage of
variation explained by the regression model is then obtained by comparing the amount of
variability captured by the model (SS_residual) with the total variability in the data (SS_total).
These analyses indicate that the GRNs account for approximately 52% of the variance in gene
expression on average (fig. S62). Notably, when focusing solely on TF→TG edges mediated
through enhancers or promoters, this percentage decreases by 5-10%, suggesting that merging
enhancer and promoter links into a unified GRN substantially contributes to capturing more
accurate GRN models.

Overall, these tests allowed us to evaluate the stability and robustness of our cell-type
GRNs and ensure their accuracy in capturing both distal and proximal regulatory links. Our
findings provide confidence in the accuracy and biological relevance of the constructed GRNs.

GRN stability
We assessed the stability of these cell-type GRNs across three random splits of the

CMC cohort. In each split, we randomly selected 80% of the donors within the cohort and
independently applied our GRN inference pipeline. Note that it was not possible to create two
equal and non-overlapping splits of any cohort because our GRN pipeline uses the metacell
algorithm to normalize each cohort and integrate them within a Z-score space. Applying the
metacell pipeline to too few individuals yields very low power to run the GRN inference pipeline.
Thus, we decided to use three splits of 80% randomly chosen donors from the CMC cohort.

Within this framework, the regulon specificity scores (generated by SCENIC) from the
splits are substantially correlated (fig. S57). We also found that the average overlap between
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the hub TFs is ~71% across the three splits (fig. S58). This level of agreement between the
splits exceeds what has been observed in similar analyses of bulk datasets (100).

5.3 CRISPR validation - Validation of TFs and target genes identified in
GRNs

Main manuscript reference: First supplementary reference in the second paragraph of
“Building a gene regulatory network for each cell type.”

We overlapped the predicted regulatory genes and enhancers identified from
cell-type-specific GRNs with psychiatric disease-associated active enhancers and their nearby
genes (32). We selected four enhancers that have the same predicted target gene for further
functional validation: NGEF, RORA, PLEKHO1, and TOML2. These enhancers were knocked
out in primary human NPCs through ribonucleoprotein-mediated CRISPR/Cas9 genome editing
in two biological replicates. DNA genotyping and Sanger sequencing were used to confirm the
deletion of the enhancers at the expected loci. TaqMan quantitative PCR (qPCR) was used to
examine the relative expression level change of target genes before and after enhancer
knockout (KO). Detailed protocols for the CRISPR/Cas9 assays are available in the
PsychENCODE Consortium publication by Gaynor and colleagues (32).

We validated the CRISPR/Cas9 deletion of candidate enhancers with Sanger
sequencing (32). After enhancer KO, Taqman qPCR assays showed that the average
expression of the target gene was diminished after enhancer KO. In particular, the relative
expression level of NGEF decreased to 0.45 (SD between biological replicate 1 and biological
replicate 2: ± 0.01, after EH37E1198822 KO), RORB decreased to 0.56 (SD: ± 0.2, after
EH37E1000386 KO), PLEKHO1 decreased to 0.16 (SD: 0.02, after EH37E0114246 KO), and
TOM1L2 decreased to 0.42 (SD: ± 0.01, after EH37E0426064 KO). These results demonstrate
that these active enhancers regulate transcription of the target gene tested.

Additional data related to these experiments are located in the following file on the
brainSCOPE portal:

File: crispr_validation_results.xlsx (data S22): This file details expression of the target genes
before and after CRISPR KO of the linked enhancers, as predicted by peak2gene linkages.

5.4 Network Characterization - Comparison of GRN structure across cell
types

Main manuscript reference: First supplementary reference in the third paragraph, and
first supplementary reference in the last paragraph of “Building a gene regulatory network for
each cell type.”

Centrality analysis
We used three measures of network centrality to assess the importance of TFs in a

directed cell-type GRN. Specifically, we computed the in-degree and out-degree of a given TF in

53



a GRN, which represent the number of incoming and outgoing edges, respectively. We also
calculated the betweenness centrality by counting the number of shortest paths that pass
through a TF among all possible shortest paths. These centrality scores were sorted in
decreasing order, and we selected the top 5% of TFs based on out-degree, in-degree, and
betweenness centrality. From these lists, we identified pure out-hubs, which are TFs that solely
exhibit out-hub behavior and are not present in the top decile of the other two centralities. We
identified pure bottlenecks and in-hubs in a similar fashion. These lists of TFs are shown in data
S23. The centrality scores were calculated using the igraph package (https://igraph.org/) in R.
All hubs and bottlenecks are located in the data files referenced below and available on the
brainSCOPE portal:

File: inhubs.txt (data S23): This matrix lists whether a TF was identified as an in-hub (1) or not
(0) in each cell type.
File: outhubs.txt (data S23): This matrix lists whether a TF was identified as an out-hub (1) or
not (0) in each cell type.
File: bottlenecks.txt (data S23): This matrix lists whether a TF was identified as a bottleneck (1)
or not (0) in each cell type.

Comparison of cell-type regulons with disease co-expression modules from bulk data
Our cell-type GRNs link TFs to their potential target genes based on co-expression

relationships in scRNA-seq data and binding sites identified in scATAC-seq data. We aimed to
investigate whether the group of target genes associated with a particular TF, or regulons, shares
overlap with co-expressed disease gene modules previously identified in bulk data. Our specific
interest focused on investigating whether genes within cell-type regulons exhibit co-expression
behaviors that are disease specific.

To test this hypothesis, we obtained disease co-expression modules previously identified
from bulk data (100). We then conducted statistical enrichment analysis of these bulk disease
modules within cell-type regulons (generated by SCENIC) using hypergeometric tests and counted
the number of regulons with significant p-values. We observed that non-neuronal regulons are
particularly enriched for ASD and depleted for bipolar disorder (fig. S65). Additionally, certain
excitatory neuronal regulons, such as L6.IT, showed relatively higher enrichment for schizophrenia.
Overall, this analysis demonstrates the utility in identifying potential regulators of disease modules,
information not readily extractable from co-expression modules.

GO enrichment analysis
We obtained the human GO biological process annotations that were propagated along

'is_a' and 'part_of' relationships from a previous study (197). These annotations were filtered to
retain only those terms that annotated between 5 and 1,000 genes. We then applied the
resulting set of GO biological process terms for an enrichment analysis. To determine the
statistical enrichment of a list of query genes, such as bottleneck genes, within a given GO
biological process term, we used hypergeometric tests. The background for these tests
consisted of all genes present in the corresponding GRNs. We report only those enrichment
tests with an FDR of less than 0.1.
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GO enrichment results for identified bottleneck genes are available as a file on the
brainSCOPE portal:

File: GO_enrichment_bottlenecks.txt (data S24): GO enrichment among bottleneck genes in
cell-type-specific GRNs. Columns represent GO terms, p-value, FDR, signature, gene set count,
overlap count, background, count cell type, TF, and enrichment score.

Motif analysis
In order to identify particular structural patterns in the cell-type GRNs, we conducted a

motif analysis. Specifically, we examined triplets of TF subgraphs that were grouped into 13
isomorphic classes. To determine the frequency of each class in each GRN, we used the
Mfinder tool (198). We used default parameters for the analysis, with the exception of the
number of random networks (r), which was set to 1,000. From these results, we calculated the
z-score of the distribution.

Disease co-regulatory networks
The cell-type GRNs that we generated are directed and unweighted graphs with edges

connecting TFs to target genes. However, in order to investigate the co-regulation strength
among known disease risk genes (which include non-TF genes), we converted these directed
GRNs into undirected networks that also include connections between target genes. To
accomplish this, we calculated the overlap between predicted TFs for every pair of target genes
within each GRN, quantifying the overlap using the Jaccard Index. The Jaccard Index values of
each cell type were then used to populate a gene-gene adjacency matrix C, where each entry
Cij represents the level of coregulation between gene i and gene j. We then subsetted matrix C
to contain only disease risk genes, and calculated the weighted density of the resulting disease
subnetwork (199). This procedure is illustrated in fig. S69.

To determine the statistical significance of these observations, we estimated a
pseudo-p-value for each gene set-disease combination by randomly selecting gene sets from
the background of all genes present in C, and counting the number of times the co-regulation
score of the randomly selected gene sets was greater than or equal to the observed score in
999 independent trials. For our calculations, we obtained ASD risk genes from the SFARI gene
database (171) (release 02-02-2023) and filtered for high-confidence genes (score = 1).
Schizophrenia, AD, and Parkinson’s disease risk genes were extracted from the DisGeNet
database and screened for manually curated sources (source = "CTD_human" or "GWASCAT").
A set of housekeeping genes was used as a control.

Modular organization of cell-type GRNs
We were also interested in understanding the modular organization of the cell-type

GRNs, as functionally similar disease genes often tend to cluster and function as modules. To
identify clusters or modules of co-regulated genes within each cell type, we used the Louvain
clustering algorithm (with the modularity parameter set to 1) on the gene-gene adjacency matrix
C (discussed above). On average, we found 10 modules per cell type, with a median of 562
genes per module and 8,280 genes in total. These modules are summarized in fig. S68.

We used the normalized mutual information (NMI) as a metric to gauge the similarity
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between these cell-type modules and disease modules previously identified in bulk data (100).
Under this framework, we found that all cell-type modules in our dataset are relatively more
similar to bipolar disorder-related modules compared to ASD and schizophrenia. In conclusion,
our analysis shows that cell-type GRNs are highly modular and suggests that disease genes are
more likely to cluster in a cell-type-specific manner.

We have listed the cell type-specific module assignments of genes in the following file
available on the brainSCOPE portal:

File: Gene_module_mappings.csv: This file lists genes in the first column, module
memberships in the second column, and cell types in the third column. The modules represent
sets of co-regulated genes. Users are advised to filter modules that are too large and too small
for downstream analysis.

5.5 Unifying TF-target Regulons
Main manuscript reference: Second supplementary reference in the first paragraph of

“Building a gene regulatory network for each cell type.”

The brainSCOPE portal provides access to cell-type GRNs. In addition, we created a
unified GRN by merging all cell-type GRNs. This GRN comprises 587,385 links, with 26.9% of
which are manifest in only one cell type (fig. S64). The unified GRN is similar but not the same
as a bulk GRN in that it weighs rare cell types more highly. This additional GRN resource
presents opportunities to develop tractable solutions for retrieving disease genes regulated
across the brain broadly, offering a more streamlined approach to managing extensive lists of
disease genes and reducing complexity. Note that analyzing disease gene rewiring within this
pseudo-bulk GRN will inevitably result in the loss of cell-type-specific signals and thus is not an
explicit focus of this paper.

To develop a more sophisticated way of relating a set of input genes to their upstream
regulators, we have also applied a network diffusion method. This method, given a target gene,
provides the key regulators—specifically, the aggregate regulation score of each TF for that
target. This approach allows us to chain together larger networks involving multiple TFs,
surpassing simple combined regulons.

To illustrate the relationship between TFs and their targets, utilizing the all-inferred
TF-target relations in cell-type-specific GRNs along with their relations in unified GRN, we
applied MultiXrank, a random walk with restart (RWR) algorithm capable of utilizing multilayer
graphs (200). We individually applied the algorithm to each cell-type-specific GRN and to the
integrated GRN, consisting of 24 layers composed of cell-type-specific GRNs, using default
parameters. We calculated the diffusion scores by running the algorithm for each TF as a
starting point in the RWR algorithm for a given GRN. Thus, the resulting diffusion scores
represent the TF-target relations utilizing the topology of either cell type-specific GRN or
multilayer-GRN based on the input graph. We used arithmetic averages to aggregate the
diffusion scores across multiple layers when we applied the MultixRank algorithm to the unified
multilayer GRN.
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Overall, we have generated an easy-to-use data file containing diffusion scores for each
TF-target relationship for the unified GRN and cell-type-specific GRN, wherever such a
relationship exists (fig. S59). fig. 60 demonstrates to users how to identify the upregulators for
an example gene, EGFR. The user can identify the top regulators of EGFR gene in the
cell-type-specific GRNs (fig. S60A) and in the unified GRN, where cell-type specificity is absent
(fig. S60B).

Text files for the unified GRN and diffusion scores are available on the brainSCOPE
portal:

File: unified_GRN.txt: This matrix lists TF-target links in the unified GRN derived by taking a
union of all cell-type GRNs. Links found in a cell type are marked as 1, and are otherwise
marked as 0.
File: unified_GRN_diffuision.txt: This file lists diffusion scores between TFs and target genes for
the unified GRN and for each cell type-specific GRN. Users can easily search for a relevant
downstream gene (such as those related to a DE experiment) as a row in the file to find all the
regulatory scores for upstream TFs.

6 Constructing a cell-to-cell communication network

6.1 Cell-to-Cell Network - Methods to build cell-to-cell networks
Main manuscript reference: First supplementary reference in the first paragraph, and

first supplementary reference in the last paragraph of “Constructing a cell-to-cell communication
network.”

The advent of single-cell transcriptomics provides us the opportunity to better
deconvolute molecular and cellular signaling interactions in health and disease. Here, we
applied the standard workflow of CellChat (v1.5.0) utilizing single-cell gene expression of
ligands and receptors to infer a cell-to-cell communication network (64). The normalized count
matrix for the SZBDMulti-seq dataset was used in our cell-to-cell analysis (C2C analysis), with
the required cell-type annotations coming from the ‘subclass’ metadata column. The number of
inferred ligand-receptor pairs depends on the method for calculating the average gene
expression per cell group. We used the default CellChat robust mean method called ‘trimean’,
with the cutoff ‘trim’ parameter set to the default value of 0.1. Three separate analyses were
done for each of the psychiatric conditions in the SZBDMulti-seq dataset, namely control,
bipolar disorder, and schizophrenia.

Next, we moved from individual cell-to-cell communication analyses to differential
analyses between conditions. We began our analyses by normalizing the three-dimensional
matrices (sender cell types x receiver cell types x ligand-receptor interactions) in each of the
CellChat objects so that all matrices had the same sum to account for batch effects in the
snRNA-seq data. For example, we found upregulation of the MIF ligand-receptor pathway in
smooth muscle cells in schizophrenia. We then used the advanced computation and pattern
recognition approach non-negative matrix factorization (NMF) on the snRNA-seq data to
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compare cell-type signaling differences between patients with psychiatric disorders and controls.
Of note, we opted to not use the default Lee-Seung method for NMF optimization, which was
first applied to two-dimensional images, but instead use the Brunet algorithm, which was
developed specifically for biological data (201). Moreover, we used random seeding and 200
runs for our optimization parameters, and set the rank to three patterns. Finally, a differential
circle plot for each disorder versus control was generated, with nodes colored by input for the
overall signaling difference, while individual chord plots were generated to visualize the
individual pathway differences.

Finally, we confirmed our findings with another C2C analysis software package named
NicheNet (v1.1.1) (79). NicheNet inputs were as follows: sender cells included astrocytes,
endothelial cells, immune cells, microglia, oligodendrocytes, oligodendrocyte precursor cells,
pericytes, smooth muscle cells, and vascular leptomeningeal cells; receiver cells included all the
neuronal cell types. Target risk genes were those identified from PsychENCODE Consortium
analyses (172, 173). The following filters were used in the NicheNet analysis: ‘n_ligands’ as 20,
‘n_targets’ as 400, and ‘cutoff’ as 0.25. The top 10 ligands and 15 target genes were then
selected for our downstream C2C analysis.

Cell-to-cell communication networks per control and diseased individuals, represented
as CellChat and NicheNet objects as well as summarized text files listing ligand-receptor
patterns per cell type, are available as RDS and h5 files on the brainSCOPE portal as follows:

File: cellchat_C2C_network_[disorder].txt (data S25): These files contain sets of ligand-receptor
signaling patterns across cell types in control, schizophrenia, and bipolar disorder individuals.
Files list all interactions between ligand-receptors in different cell types, along with the strength
of interaction and annotations for interaction type and pathway.
File: cellchat_C2C_network_netP_[disorder].txt (data S26): These files contain sets of
ligand-receptor signaling patterns across cell types summarized by signaling pathway in control,
schizophrenia, and bipolar disorder individuals.
File: SZBD-Kellis_annotated-CON_cellchat.rds.gz: Network of ligand-receptor signaling
patterns across cell types in control individuals.
File: SZBD-Kellis_annotated-SZ_cellchat.rds.gz: Network of ligand-receptor signaling patterns
across cell types in schizophrenia individuals.
File: SZBD-Kellis_annotated-BD_cellchat.rds.gz: Network of ligand-receptor signaling patterns
across cell types in bipolar disorder individuals.
File: SZBD-Kellis_annotated-BD_CON.h5seurat: Changes in cell-to-cell networks between
individuals with bipolar disorder and control individuals, represented as a NicheNet Seurat h5
object.
File: SZBD-Kellis_annotated-SCZ_CON.h5seurat: Changes in cell-to-cell networks between
individuals with schizophrenia and control individuals, represented as a NicheNet Seurat h5
object.
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6.2 Cell-to-Cell Network - Methods to determine latent patterns
The patterns in the NMF (Non-negative Matrix Factorization) can be thought of as broad

clustering of cell types and signaling pathways. Simultaneously, cell types were broadly
clustered into the same pattern if they share the use of certain signaling pathways; signaling
pathways were broadly clustered into the same pattern if they share the same sender cell types.

There are three patterns, both biologically and mathematically based. Biologically, it is
known that there is a broad typing of excitatory, inhibitory, and non-neuronal cell types. We
chose three categories and determined whether our 24 cell types could be properly divided
among the broad categories. Mathematically, we calculated silhouette and cophenetic scores,
implemented in the NMF R Package (202), using default parameters. We determined that rank 3
was the most stable. For both of these scoring metrics, the higher the score, the better their
reproducibility across repeated experiments. We illustrate this in fig. S72.

6.3 Cell-to-Cell Network - Validation of cell-to-cell network with spatial
data

To perform validation for our communication network, we emphasized the importance of
spatial distance in ligand-to-receptor gene signaling. That is, the cell type expressing the ligand
gene (sender cell type) must be “close” in proximity to the cell type expressing the receptor
gene (receiver cell type) in order for cell-to-cell communication to occur. The farther apart the
cell types are, the less likely they are communicating.

From ten neurotypical controls, spatially resolved transcriptomics data were generated
using 10x Genomics Visium across the anterior, middle, and posterior DLPFC (n = 30). To
deconvolute the cell types in the spatial data, we generated snRNA-seq data of these tissue
blocks using 10x Genomics Chromium (n = 19). Raw cell-type deconvolution was performed by
multiple teams of PsychENCODE (led by Keri Martinowich, Leonardo Collado-Torres, Kristen
Maynard, and Stephanie Hicks) (203). To obtain the normalized cell-type values, we grouped by
sample ID and then divided by the column sums (where columns are raw counts for each spot
for each cell type). We show the spatial locations of specific snRNA-seq-labeled cell types, with
layer specificity in fig. S70.

Due to the difference in annotations between the spatially resolved data and our own
data, pooling of a few cell types was required. Specifically, because inhibitory cell types had no
informative PFC layer registration (per the spatial team above), all inhibitory clusters were
merged into a single cluster. Endothelial cells, smooth muscle cells, and pericytes were further
merged into the endomural cluster. L5 IT and L5 ET cells were collectively labeled as excit_l5,
while L6 IT, L6 IT Car3, L6 CT, and L6b cells were labeled as excit_l6 (Table S11). After such
merging, only the common cell types (11/13) were kept for validation of our communication
network. After harmonizing annotations between the spatial data and our own data, we
calculated the spatial distances among all pairs of cell types.

We performed three correlations between the spatial distance matrix (obtained from our
spatial data) and the communication matrix (from our original analysis). We found that Pearson,
Kendall, and Spearman correlations gave corresponding coefficients of -0.179, -0.158, and
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-0.241 at p-values of 0.06, 0.01, and 0.01, respectively (Table S12). The negative correlation
values of all three tests validate the spatial requirement of our communication network.

7 Assessing cell-type-specific transcriptomic and epigenetic
changes in aging

7.1 Aging Cell Fractions - Single-cell aging cell-type fraction
Main manuscript reference: First supplementary reference in the first paragraph of

“Assessing cell-type-specific transcriptomic and epigenetic changes in aging.”

To characterize single-cell cell-type fractions by age, we used single-cell cell-type
fractions from our harmonized cell annotation scheme. We used control samples from the CMC
cohort in this analysis. We modeled the association between cell fractions and age using a
generalized linear model with biological sex and genotype ancestry as covariates (data S27B).
Outliers were removed from the analysis if they were smaller or larger than 1.5 IQR.

Scatter plot in Fig. 7A (bottom) shows the cell fraction change over age in OPCs (grey)
and Chandelier cells (blue) with best-fit lines showing the change trend. These two cell types
showed significant decreases across age in the bulk RNA-seq deconvolution data (see section
7.2 for details) and single-cell annotations (FDR<0.05, two-sided t-test).

7.2 Aging Cell Fractions - Deconvolution of bulk-RNA-seq data
Main manuscript reference: First supplementary reference in the first paragraph of

“Assessing cell-type-specific transcriptomic and epigenetic changes in aging.”

We used quantile-normalized bulk RNA-seq datasets available for >800 individuals in
the ROSMAP cohort (17), available on the AMP-AD Knowledge Portal (116), to calculate
cell-type fractions based on age and for downstream analysis in modeling AD status.
Transcripts for each sample were quantified from aligned RNA-seq BAM files, using the
htseq-count command in the HTSeq software package (204) and transcript annotations from
GENCODE v87 gtf files. We used these individual-level files to generate a bulk RNA-seq
expression matrix, and collected this matrix and snRNA-seq cell-type annotations from available
ROSMAP samples as inputs for the BisqueRNA software, which infers cell-type fractions of the
bulk RNA-seq data (144). The single-cell raw counts were first log-normalized, while the
bulk-seq raw counts were quantile normalized, before being input into BisqueRNA for AD
patient and control samples, respectively. Signature matrices for different cell types generated
by BisqueRNA were used for downstream analyses.

We have exhibited the correlation between cell-type fractions and the aging process
through the bulk deconvolution results focusing specifically on data from the CMC cohort. The
alterations in the fractions of various cell types as revealed by bulk deconvolution align with the
cell fraction estimations obtained from CMC’s snRNA-seq data (data S27). This concurrence is
further supported by previous reports; for instance, cell types like Chandelier cells and OPCs
demonstrate a significant decline (FDR<0.05, two-sided t-test) as individuals age (82, 83).
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7.3 Aging DE - DE genes in control aging and schizophrenia aging
Main manuscript reference: Second supplementary reference in the first paragraph of

“Assessing cell-type-specific transcriptomic and epigenetic changes in aging.”

For the aging DE gene calculation, we focused on the SZBDMulti-seq and CMC cohorts
that were balanced over age as well as between healthy/schizophrenia disease groups.

Aging DE genes in control group
For the control aging DE gene analysis presented in the main text, we only used healthy

control samples, which we further split into young (25-70 years) and old (70-90 years)
individuals. The number of old and young individuals are balanced. Pseudo bulk gene
expression per cell type per individual was generated through the sum of the raw gene counts.
The filtering strategy is the same as the “DE Analysis” section (see supp.”DE Analysis”). After
filtering, the DEseq2 (likelihood ratio test) standard pipeline (23) was used for DE gene
calculation with cohort, biological sex, genotype-derived ancestry, PMI, and average cell UMI
count as covariates. Contrasts were made between the old and young groups. Multiple testing
corrections were performed, and genes with an adjusted p-value<0.05 were defined as
differentially expressed between contrast conditions.

Aging DE genes in the schizophrenia patient group
For aging DE genes in the schizophrenia patient groups, we only used disease

individuals from the SZBDMulti-seq and CMC cohorts. We further split the samples into young
(25-70 years) and old (70-90 years) individuals. The numbers of old and young individuals in the
schizophrenia patient groups were balanced. The total number of samples used in this analysis
was comparable to the number of individuals used in the control aging analysis (fig. S19A).
The calculation followed the same aging DE gene pipeline mentioned above. Compared with
the control aging group, only a small number of aging DE genes were identified in the
schizophrenia patient group (fig. S19A).

To further validate the observations, we conducted a permutation analysis, randomly
excluding five samples from each comparison group (control old, control young, schizophrenia
old, schizophrenia young. fig. S19B) Despite the reduced sample size, a consistent pattern
emerged: the schizophrenia patient group exhibited fewer aging DE genes compared with the
control group, reinforcing our findings (fig. S19B).

In addition to the permutation analysis, we explored technical and biological covariates
that might potentially affect the results. We explored the distribution of the number of cells per
individual and the UMI count. We did not observe a substantial change in the number of cells
between different groups. We do observe a difference in UMI per individual among the groups.
Differences in the UMI among groups could arise for biological or technical reasons; thus, we
included this as a covariate when we characterized the aging DE genes.
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Aging DE genes and AD DE genes
We also compared our healthy aging DE gene list with AD DE genes of the PFC by their

log2 fold change across distinct brain cell types. The AD DE gene list, published by Mathys,
Hansruedi, et al. (2019), highly overlaps with samples in the ROSMAP cohort (115). Data S28
lists an inner join of both sets of DE genes with their log2 fold change in AD and aging.

The DE genes are available on the brainSCOPE portal. Each file contains the gene
name, average expression, log2 fold change, standard error, test statistic, p-value, and
FDR-corrected p-value among older individuals.

File: Aging_DEGcombined.csv: Sets of DE genes in older and younger individuals for 20 cell
types.
File: Aging-schizophrenia_DEGcombined.csv: Sets of DE genes in older and younger
individuals in Schizophrenia group for 20 cell types.

7.4 Aging STEM - Short Time-series Expression Miner analyses
Short Time-series Expression Miner (STEM) is a Java application designed to cluster,

compare, and visualize short time series gene expression data derived from microarray
experiments, typically involving eight time points or fewer (205). Researchers can leverage
STEM to identify significant temporal expression patterns and pinpoint the genes linked to these
patterns.

Note that STEM methods have been used in a variety of publications involving single-cell
analyses (206, 207). If one has a "hard-coded" time (instead of pseudotime from a trajectory
analysis), STEM is essentially the same as the newer method scSTEM (208), which aims to
analyze time series data by pseudotime point. Since we are focusing on continuous change of
gene expression with age within each individual cell type, the original STEM approach is more
appropriate.

Samples from SZBDMulti-seq are normalized by CPM and then grouped into six different
age groups (30-40, 40-50, 50-60, 60-70, 70-80, and 80-90 years old). In this algorithm,
pseudobulk gene expression time series data were clustered to different model profiles to which
its time series most closely matched based on the correlation coefficient. We successfully
identified multiple groups of genes that align with various continuous model profiles for each cell
type. Notably, these profiles capture the continuous nature of gene expression changes over
time. We believe that incorporating STEM analysis enriches our understanding of the dynamic
interplay between gene expression and aging. Detailed information about the short time series
models (by STEM software) for each cell type, as well as the genes associated with specific
model profiles, can be accessed in fig. S74 and the brainSCOPE portal.

File: [celltype].txt: Sets of differentially-expressed genes for sample age derived from STEM
analysis for 17 cell types.
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7.5 Aging Model - Aging prediction using prioritized genes
Main manuscript reference: First supplementary reference in the second paragraph of

“Assessing cell-type-specific transcriptomic and epigenetic changes in aging”.

In our study, we account for the fact that individual variability might manifest in the
number and types of cells present. Recognizing that certain cell types might only be prevalent in
a subset of individuals, our initial step involves filtering out cell types that are present in less
than 70% of the population. This QC step results in 11 distinct cell types. We then sought to
establish a sample pool wherein all 11 cell types are uniformly present. This resulted in an
intersection that incorporated approximately 180 individuals. For our predictive modeling, we
used the XGBoost regression framework, crafting a model for each of the identified cell types to
predict age across each of our sample pools. Given the importance of age distribution, we
applied stratified sampling for our train-test split. Specifically, we grouped ages using a bin width
of 10 years, ensuring that both training and test samples were proportionately drawn from each
bin. This culminated in an 80-20% train-test division. To gauge the efficacy and precision of our
models, we implemented multiple evaluation metrics: Pearson correlation, Spearman
correlation, mean absolute error, and root mean squared error. The XGBoost models were
trained using three-fold cross-validation, adopting the negative mean squared error as the
scoring function. For robustness, this train-test split process was repeated ten times, and we
present both the mean and SD of our results.

To derive deeper insights from our model predictions, we incorporated the SHAP
(SHapley Additive exPlanations) method. SHAP values, rooted in cooperative game theory, offer
a principled framework to interpret and attribute the contributions of individual features to
machine learning predictions. In our age prediction, a positive SHAP value for a specific feature
indicates its role in driving predictions towards higher ages, while a negative value suggests the
opposite. By analyzing these values, one gains a clearer understanding of the factors
influencing age predictions, potentially revealing cell-type-specific age expression markers that
correlate with the aging processes. Specifically, we spotlighted the top ten genes characterized
by the highest mean absolute SHAP values for L2/3 IT and oligodendrocytes, showcasing them
in fig. S76. We also visualized the RNA expression of the SHAP prioritized genes, as shown in
Fig. 7C. Finally, we provide both summarized results and the full set of results from the SHAP
model, along with source code used to run the model, on the brainSCOPE portal:

File: [celltype]_shap_summary_stratify.csv: These files contain age prediction gene prioritization
results per cell type, based on the SHAP model. The first column lists gene or covariate (cohort,
disorder, ancestry, or biological sex), and the second column lists the SHAP score.
File: shap_xgboost.tar.gz: TAR file containing source code and full results for SHAP gene
expression prediction model for aging.

63



7.6 Aging Chromatin
Main manuscript reference: First and second supplementary references in the third

paragraph of “Assessing cell-type-specific transcriptomic and epigenetic changes in aging”.

In order to determine cell-type-specific aging open chromatin regions, we first compiled
bulk ATAC-seq samples from 628 individuals. Next, we deconvolved their signals to
cell-type-specific ATAC-seq peaks from snATAC-seq datasets. This was done by using
bigwigaverageoverbed to obtain the average signal per individual represented on each
cell-type-specific peak. Next, we performed a PCA for each cell type, retaining 50 PCs to
dimensionally reduce the matrix consisting of cell-type-specific peaks and signals from the 628
individuals. We further used t-distributed stochastic neighbor embedding for additional
dimensionality reduction, and reduced the matrix to two dimensions. We performed k-means
clustering on the resulting two-dimensional embedding to find distinct clusters. Each point is
colored based on age, showing that there are differences in age for the different clusters
identified. Overall, we found that oligodendrocytes and microglia show the highest stratification
of age based on clusters from the embedding of ATAC-seq peaks.

The following files that list the integrated ATAC-seq peaks and associated meta-data are
available on the brainSCOPE portal:

File: bwaob_output_col5_[cell-type].matrix: These matrices list open chromatin peaks
generated from the deconvolution of bulk ATAC-seq datasets signal to cell-type-specific signals
for seven cell types.
File: bulk_ATAC_samples_ordered.cleaned.txt: This file lists the column (sample) names for the
deconvoluted signal matrices.
File: pec_atacseq_metadata_08142021.csv: This file lists the biosample metadata for samples
in the bulk ATAC-seq dataset.

7.7 AD Model - Associating cell-type fractions and signatures with AD
Main manuscript reference: First and second supplementary references in the last

paragraph of “Assessing cell-type-specific transcriptomic and epigenetic changes in aging”.

Inference of cell-type-specific gene expression and methylation
Once we obtained the cell-type fraction for each bulk sample (see above section “Aging

cell fractions,” we used the bMIND software package (91) to infer cell-type-specific gene
expression and cell-type-specific methylation for each sample. The DEGs from bulk-RNA-seq
and snNA-seq among ROSMAP individuals were selected for cell-type-specific expression
inferences; the differential methylation regions were selected for cell-type-specific methylation
inferences. Methylation datasets for 740 ROSMAP individuals (17) were downloaded from the
AMP-AD Knowledge Portal (116) and integrated with the bulk- and snRNA-seq analyses to build
a predictive model.
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Building a model to predict AD
First, we explored the cell-type-specific associations between AD phenotype, defined as

AD case and control, and cell-type fractions. P-values for changes in each cell-type fraction
were calculated based on a one-tailed student’s t test between the control and AD group. Then,
we studied the contribution of gene expression and methylation features from each cell type for
the prediction of AD status using RandomForest and multiple layer perceptron (MLP) deep
learning models. The area under the precision recall curve (AUPRC) was used to evaluate the
performance of cell-type features.

Multilayer perceptron
The MLP we used is a neural network model composed of two dense layers. The first

layer applies a rectified linear unit activation function, while the second layer uses a sigmoid
activation function to produce the final output. The input is flattened into a one-dimensional
vector before being fed into the first layer. To evaluate the performance of the model, we
performed 25 experiments (total of 5 runs with corresponding seeds, where each run has its
own 5-fold cross-validation based on the corresponding seed). We split the data using a 3:1:1
ratio for training:validation:testing subsets. We explored various model configurations of different
inputs, labels, and parameters, and provide the most important ones here. To enhance the
performance, we integrated the MLP model using the Adaboost method. We used the MLP
classifier as the base estimator. During training, we adjusted the weights of the target classes
for each MLP classifier based on the previous classifier’s performance. Specifically, we
assigned a higher weight to the class on which the previous classifier made more mistakes. The
final result is the weighted output of the 25 MLP classifiers, with each classifier’s weight based
on its performance in the previous training.

The following output files related to the AD prediction model are available on the
brainSCOPE portal:

File: hybrid.admodel.auprc.txt (data S29): Text file containing AUPRC values for cell types and
data modalities (rf.meth=methylation, rf.expr=expression) from AD model predictions.

8 Imputing gene expression and prioritizing disease genes across
cell types with an integrative model

8.1 LNCTP Priors - Linear Network of Cell-Type Phenotypes imputation
priors

Main manuscript reference: Second supplementary reference in the first paragraph of
“Imputing gene expression and prioritizing disease genes across cell types with an integrative
model”.

To constrain the cell-type expression imputation process, we used the processed
snRNA-seq cohorts to quantify priors on the expression values for each gene in each cell type.
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In doing so, we had to contend with inter-cohort batch effects, as well as the inherent sparsity of
snRNA-seq data. The strategy used thus followed these steps:

1. For each cell type in each individual in every cohort, we used the program MetaCell-2
(209) to generate “metacells," which aggregate counts across several cells in close
proximity (based on expression similarity) to each other. The motivation is to strike a
balance between the need to reduce the sparsity of the expression vectors at the
individual cell level, and the need to retain some measure of heterogeneity in the
cell-type expression values. If we took a simple pseudobulk across all the cells in a given
type, we could lose information about cell-type heterogeneity.

2. The gene expression values in each individual were then converted into CPM units,
averaged across all meta-cells in that individual and cell type, and subsequently
converted into z-scores.

3. The z-score distribution for each cell type across all individuals and study cohorts was
used as a prior in the deep learning framework. Specifically, the mean and SD in the
z-scores were calculated and incorporated into the corresponding Gaussian Markov
random field (GMRF) terms.

The underlying assumptions in this procedure are that: (a) metacells maintain a
representative measure of the intra-cell-type heterogeneity, while reducing sparsity; and (b) the
z-scores for gene expression are less prone to batch effects, by utilizing the relative expression
levels of the genes rather than the absolute expression values. The latter assumption is based
on the idea that the relative expression levels of genes within samples are functionally important
and can capture essential variation across samples. Moreover, we chose to use z-scoring as a
linear transformation as opposed to nonlinear transformations, such as logarithmic scaling, as
this enables the GMRF model to apply the linear cell fraction constraints easily to the
expression values.

In the following sections, we provide further details about the processing steps for
generating metacell-based expression z-scores to be used as inputs into the predictive models.

Per-sample, per-cell type metacells
1. Each dataset is filtered, with only those genes containing at least 50 UMIs in total being

passed on to the cell-type-specific processing step. Additionally, only genes expressed in
at least three cells are passed to the next step.

2. The cell types are treated sequentially. All cells of a particular cell type are separated out
for Metacell-2 processing.

3. If, for a cell type in a dataset, there are <30 cells or the total sum of the UMI counts is
<30,000, we calculate the simple median of the cell expression vector. This vector is
appended as a “metacell” to an existing dataframe.

4. If the above conditions are not satisfied, the full Metacell pipeline is run.
a. The dataset is converted to an anndata object.
b. Metacell-2’s divide_and_conquer_pipeline algorithm is run.
c. If the process fails, None is returned.
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d. The metacells are “collected” (using Metacell-2’s collect_metacells), and a
dataframe is returned.

5. The returned dataframe, if not None, has the cell type appended to the names of the
metacells, and is concatenated with the full dataframe containing all metacells from all
cell types for that particular dataset.

6. If None is returned, the simple median is calculated as described above.

Combining the metacells into z-score distributions
Each metacell for each individual and study cohort are run through the following steps.

1. First, the gene expression in each metacell vector is converted from raw UMI counts to
CPM.

2. The z-scoring step is run for each cell type separately:
a. The mean of the gene expression across all metacells is found.
b. Then, z-scoring is performed on the resulting average vector.

3. All z-scores calculated are then concatenated across the different studies.
4. The mean and SD of the z-scores across all cells of a given type in all studies are

calculated.

The file containing metacell-normalized expression data is available on the brainSCOPE
portal:

File: Metacells_Zscores_all.txt.gz: Normalized MetaCell gene expression values for seven cell
types across individuals who pass quality control filters, used as input for GRNs and the LNCTP
model.

8.2 LNCTP Framework
Main manuscript reference: First supplementary reference in the first paragraph of

“Imputing gene expression and prioritizing disease genes across cell types with an integrative
model”.

We define an integrated framework, which we refer to as a ‘Linear Network of Cell-type
Phenotypes (LNCTP), as an energy model representing the joint distribution of a collection of
phenotypes of interest (including cell-type resolved phenotypes at multiple levels), especially
brain disorders and traits, conditioned on (a representation of) the genotype. The network is
linear in the sense that the expectation of any phenotype conditioned on any subset of other
phenotypes is a linear function. As described below, this property ensures that the coheritability
of phenotypes in the network can be readily estimated.

We partitioned the variables of the model into: genotypes , intermediate phenotypes(𝑧)
, hidden (latent) factors , and high-level/complex traits . We further indexed the(𝑥) (ℎ) (𝑦)

intermediate phenotypes into those associated with cell-types, denoted as , and we𝐶 𝑥
1
,  𝑥

2
,  …𝑥

𝐶

used to denote those phenotypes associated with bulk measurements. Additionally, we used𝑥
0
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a set of intermediate phenotypes associated with cell-to-cell communication strengths, and𝑥(𝑐2𝑐)

a set of variables representing the estimated cell fractions in the bulk observations. For an𝑓
1…𝐶

individual , represents the alternative allele dosage for individual at a common𝑖 𝑧
𝑖𝑛

∈{0, 1, 2} 𝑖

SNP , (where ), and represents a normalized summary of the expression of𝑛 𝑛∈1…𝑁
𝑆𝑁𝑃

𝑥
𝑖𝑐𝑔

∈𝑅

gene in cell type in individual . Here, we used a z-score normalization of the meta-cell𝑔 𝑐 𝑖

outputs as our summary variable. Further, , represent summary features𝑥
𝑖,𝐿,𝑐
(𝑐2𝑐) 𝑥

𝑖,𝑅,𝑐
(𝑐2𝑐)∈𝑅

associated with the ligands and receptors, respectively, of cell type in individual ,𝑐 𝑖 𝑓
𝑖𝑐

∈[0,  1]

represents the fraction of cell type c in the bulk data for individual , represents the𝑖 ℎ
𝑖𝑙𝑛

∈𝑅

activation of hidden node at level in individual , and represents a high-level𝑛∈1…𝑁
𝑙

𝑙∈1…𝐿 𝑖 𝑦
𝑖

phenotype of interest, for instance case/control (all examples we consider are binary).
The probabilistic model for the full LNCTP model is defined as follows:

Here, the parameters of the model are and acts as aθ = {β
1…𝐺

,  𝐽
0…𝐶

, 𝐽 𝑐2𝑐( ),  𝑊
1…𝐿

} λ

hyperparameter. As suggested by the notation, has the form of a Gaussian Markov𝑝
𝐺𝑀𝑅𝐹

Random Field (GMRF) conditioned on , while is a stochastic deep neural network (DNN).𝑧 𝑝
𝐷𝑁𝑁

Further, the parameters and reflect the sparsity structure arising from the eQTLs andβ
1…𝐺

𝐽
0…𝐶

GRN linkages, respectively (discussed below), where the non-zero elements of occur only𝐽
𝑐

between genes connected in the GRN of cell type . To ensure that the model satisfies the linear𝑐
conditional property mentioned above, we made the following choices for specific distributions:

, , , . Here,𝑝
ℎ

𝑣
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|𝑣

2
, 𝑊( ) = δ(𝑣

1
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^

is a delta distribution, which is 1 if and 0 otherwise, and is the expected value ofδ 𝑎|𝑏( ) 𝑎 = 𝑏 𝑓
𝑐

^

at the population level. We note that more complex (non-linear) distributions can be modeled𝑓
𝑐
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by varying these choices: in particular models a deterministic DNN𝑝
ℎ

𝑣
1
|𝑣

2
, 𝑊( ) = δ(𝑣

1
|σ(𝑣

2
𝑇𝑊))

with non-linear activation . Further, for a categorical variable , the model forms a generalizedσ 𝑦
linear model, and is hence linear in the logits of the response (or the liability in a probit model).

Finally, we note that we compared three specific architectures for . Dense:𝑝
𝐷𝑁𝑁

(𝑦
𝑖
, ℎ

𝑖
|𝑥

𝑖
)

Here, are a set of dense matrices; Sparse Embedding: Here, L=1, and the nodes of𝑊
1…𝐿

ℎ
𝑖1⋅

are partitioned into sets of size , where denotes the embedding dimensionality, and𝐶 + 2( ) 𝐸 𝐸
is sparsely structured so that non-zero connections appear such that nodes from the same𝑊

1

cell-type/bulk/cell-to-cell components of are connected only to the same partition of𝑥
𝑖

ℎ
𝑖1⋅

;  

Sparse Embedding + Dense: Finally, we allow L>1, but ensure is structured as above,𝑊
1

while have dense connectivity. This last architecture is the version depicted in Fig. 8A. We𝑊
2…𝐿

note that in all architectures, we used batch normalization prior to each layer, , which weℎ
𝑖𝑙

folded into the matrix .𝑊
𝑙

8.3 LNCTP Motivation - Motivation for linear network architecture
Main manuscript reference: First supplementary reference in the third paragraph of

“Imputing gene expression and prioritizing disease genes across cell types with an integrative
model”.

The use of a hierarchical linear architecture for the LNCTP framework ensures that the
model can be readily interpreted and related to population genetics quantities as described
below. However, we also motivate our choice on both performance and theoretical grounds.
Particularly, we observed that models with linear activations performed comparably or better
than models with non-linear activations across architectures tested (table S14), in agreement
with results in neuroscience suggesting that large-scale linear models are competitive in related
datasets (210). Further, theoretical analyses of deep linear models show that they have specific
benefits, such as implicit and regularization (along with structured weight sharing), which𝑙

1
𝑙

2

may explain their generalization properties (210, 211).

8.4 LNCTP Training
Main manuscript reference: First supplementary reference in the second paragraph of

“Imputing gene expression and prioritizing disease genes across cell types with an integrative
model”.

We followed the method outlined in (4) to create datasets from the bulk expression data,
ensuring balance for covariates including age, gender, ethnicity, and cohort. Hence, for each
disorder, we generated ten data splits of the following sizes (training/testing): schizophrenia
(640/70); bipolar disorder (170/18); ASD (50/12). Further details for training the AD model are
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described below. To these, we added the harmonized single-cell data, which were used to train
the meta-cell priors. Importantly, we did not use the comprehensive set of cell types. Instead, we
reduced the dimensionality of the overall network by using a coarse-grained set of cell types: all
excitatory neurons were combined under the type “Excitatory,” inhibitory neurons under
“Inhibitory”, and separate categories were created for the non-neuronal types “Astrocytes”,
“Oligodendrocytes”, “Oligodendrocyte Precursor Cells (OPC)”, “Microglias”, and “Endothelial
Cells”. The meta-cell construction followed this coarse-graining approach, with averages
calculated across all finer-grained excitatory and inhibitory cell types within each broader
category of “Excitatory” and “Inhibitory”, respectively. To create a tractable architecture for
training, we further limited the genes in each model to include all TFs, along with
high-confidence genes for schizophrenia, and the highest correlating genes with the
case/control status on bipolar disorder and ASD. This resulted in a gene set of ~560 genes for
each disorder, meaning that the dimensionality of x is ~5,000. We also considered the GRN set
GRN-B, encompassing all the GRNs constructed for the different cell types, including pediatric
samples (age < 13 years) and utilizing only the UCLA-ASD snATAC-seq peaks. The LNCTP
was then trained piecewise as described below.

Unary training
Local predictors for each gene were trained using a Lasso loss function, to predict the

z-score normalized expression from the eQTL SNPs associated with each gene. Hence, we
optimized:

where are the bulk eQTL SNPs associated with gene , and is the Lasso𝑧
𝑖,𝑔,𝑛=1…𝑁

𝑔

𝑁
𝑔

𝑔  λ
𝐿𝑎𝑠𝑠𝑜

penalty, which is found through 10-fold cross-validation on the training partition.

GMRF training
We then trained the term in Eq. (1), while fixing the unary terms. The J matrices𝑝

𝐺𝑀𝑅𝐹
𝑧( )

were initialized to the diagonal matrices: , where is the𝐽
𝑐

= 𝑑𝑖𝑎𝑔([ σ
𝑐,𝑔=1…𝑁

𝑔

𝑚𝑒𝑡𝑎( )2

]) σ
𝑐,𝑔
𝑚𝑒𝑡𝑎( )2

 

variance of gene in cell type from the z-scored meta-cell data. Further, the bulk unary terms𝑔 𝑐

were set to:

70



where is the empirical estimate of the bulk variance of gene , and is a gene-specificσ
0𝑔
2 𝑔 𝑏

0𝑔
𝑜𝑓𝑓

offset, initialized to 0, while the cell-type unary terms were initialized to ,𝑏
𝑐𝑔

= µ
𝑐𝑔
𝑚𝑒𝑡𝑎/ σ

𝑐,𝑔
𝑚𝑒𝑡𝑎( )2

where is the mean of the meta-cell data for gene in cell type . These settings ensureµ
𝑐𝑔
𝑚𝑒𝑡𝑎 𝑔 𝑐

that the GMRF is initialized to a Gaussian centered on the predictions from Eq. (2) in the bulk
variables and at the meta-cell means for the cell-type-specific variables.

The GMRF training then proceeded by performing stochastic gradient descent on the
loss for , where the bulk variables were treated as observed and the cell-specific𝑝

𝐺𝑀𝑅𝐹
𝑧( )

variables were treated as hidden. Hence, we have:

where the distributions and represent the clamped𝑝
𝐺𝑀𝑅𝐹

𝑥
1...𝐶

|𝑧, 𝑥
0( )δ(𝑧, 𝑥

0
) 𝑝

𝐺𝑀𝑅𝐹
𝑥

0
, 𝑥

1...𝐶
|𝑧( )δ(𝑧)

and unclamped GMRF distributions, respectively (see (212) for a derivation of Eq. (4)).

We estimated the required expectations in Eq. (4) via Gibbs sampling; specifically, we
used the updates:

where , range across the nodes of the GMRF (note that, for clarity, we dispensed with the𝑥
𝑖

𝑥
𝑗
 

individual, cell-type, and gene indices here; further, we ensured that each GMRF variable
received two Gibbs updates per expectation evaluation). We then made a step in the direction of
the gradient from Eq. (4), while enforcing the GRN sparsity structure on the matrices. Since, in𝐽
general, this may produce a non-positive-semi-definite matrix, we added multiples of a small𝐽
value to the diagonal until the matrix became positive-semi-definite (hence, performing aϵ
projected Stochastic gradient descent update). We trained the GMRF by repeatedly taking

gradient steps with a decreasing learning rate, while evaluating on a subset of the training𝐿𝐺𝑀𝑅𝐹

data, until this value no longer increased.
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DNN training
To train the term , we fixed the ’s to the estimated bulk and cell-type expression𝑝

𝐷𝑁𝑁
𝑥( ) 𝑥

from the GMRF training step, and used these to predict . We optimized DNN modes using the𝑦
dense, sparse-embedding, and sparse-embedding+dense architectures described above, while
varying hyperparameters including the learning rate (0.01, 0.001, 0.0001), number of hidden
layers (1, 3, 5, 7, 9), number of units per hidden layer (25, 50, 100, 200), and activation function
(linear, RELU, sigmoid, tanh). We optimized all models on all ten data splits and monitored the
loss on a subset of the training set (validation set) to determine an early stopping point. The
optimal hyperparameter settings for each disorder were selected according to the best
performing models on the validation partitions, and the reported performance was evaluated on
a separate hold-out test set (per data split).

LNCTP on AD Prediction
Dataset used

We used the ROSMAP dataset as the main source to evaluate and train the LNCTP on
AD prediction. Among the samples, 366 were cases (AD patients) and 179 were controls,
composing a total of 545 samples. We split the data into a 3:1:1 ratio for train-valid-test sets,
while maintaining the case-control ratio of approximately 67:33 before feeding them into the
prediction models.

AD model - De novo model and c2c version
We evaluated LNCTP’s performance in a de novo setting. First, since there are 878,363

SNP IDs in the ROSMAP genotypes, we padded it to a dimension of 1,097,784 with 0s (to
match the SNP dimensions of the other disorder cohorts) and reordered it according to the
mapping alignment. Using this reordered data, we identified and trained the best unary models
for predictions. The unary results were then used by the GMRF to generate outputs for the AD
samples. These predictions from GMRF include the gene expression predictions after the
GMRF imputation, which have 545 rows, corresponding to the total 545 cases. We identified
578 significant genes (by their Ensembl ID; p<0.05, 2 tailed t-test for differential expression,
cases vs control) based on the bulk imputed differential expression; this set includes TFs and
AD high-confidence genes. Subsequently, we passed the GMRF imputed expression values
through the WGCNA modules for preprocessing, including assigning modules for genes and
skipping genes that do not exist in modules.

Once the data were processed, we ran the TensorFlow models with a selected range of
hyperparameters and network architecture options for optimal performance (we did not perform
additional replicate experiments for each of the options). In addition, we explored the c2c
version of the TensorFlow models; we used GMRF outputs for the c2c version, and applied
similar steps as before. The final results and qualitative comparisons with methods from other
papers can be found in table S15.
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8.5 LNCTP Interpretation
Main manuscript reference: Second supplementary reference in the second

paragraph, second supplementary reference in the third paragraph, and first and second
supplementary references in the fourth paragraph of “Imputing gene expression and prioritizing
disease genes across cell types with an integrative model”.

By design, our model permits a variety of interpretation strategies:

Imputation of bulk and cell-type expression
For a given individual i, their bulk and cell-specific expression may be estimated directly

from the genotype by evaluating . This can be evaluated efficiently via:𝐸[𝑥
𝑖,0

, 𝑥
𝑖,1…𝐶

|𝑧
𝑖
]

𝑥
^
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= 𝑏(𝑧

𝑖
)Σ0,0

𝑥
^

𝑖,𝑐
= 𝑥

^

𝑖,0
Σ

0,𝑐

where . We compared the imputed gene expression from our model as above withΣ = 𝐽−1

imputed estimates formed by first applying Predixcan to impute bulk expression (92), and then
applying CibersortX (213) in high-resolution mode using the mean expression profiles from the
metacell analysis as the signature matrix, which we refer to as our ‘Baseline model’ in Fig. 8C.

Saliency-based cell-type and gene prioritization
For any individual node in our model, the saliency may be defined as the square of the

gradient of the expected output of the network with respect to the node in question; hence:

𝑠𝑎𝑙 𝑥
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𝑥
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𝑖
|𝑧

𝑖[ ]( )2

where we use to denote the output of the final layer before passing through the sigmoid𝑦
𝑖
'

function (the log-odds ratio for ). We can thus use as a measure of the salience of𝑦 𝑠𝑎𝑙 𝑥
𝑖𝑐𝑔( )

gene in cell type in our model, and as a measure of the salience of cell type ,𝑔 𝑐
𝑛∈𝐸

𝑐

∑ 𝑠𝑎𝑙 ℎ
𝑖1𝑛( ) 𝑐

where are the embedding nodes for cell type at hidden layer 1 of the DNN.𝐸
𝑐

𝑐
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Heritability and coheritability estimates
All nodes in our network can be considered either endophenotypes (with either explicit or

implicit semantics, corresponding to the and nodes, respectively) or high-level phenotypes𝑥 ℎ
(case/control status of a complex trait). The linear form of our network makes it straightforward
to estimate the coheritability between pairs of (endo)phenotypes. Specifically, we evaluate:

ℎ
𝑥,𝑦

=
𝐶

𝐴
𝑥,𝑦

𝑉
𝑃

𝑥

𝑉
𝑃

𝑦

where is the coheritability between phenotypes and , which requires us to estimate ,ℎ
𝑥,𝑦

𝑥 𝑦 𝐶
𝐴

𝑥,𝑦

the covariance between the additive genetic variance of and , and the square root of the𝑥 𝑦
product of the variances of and . We typically evaluate , where is an endophenotype in𝑥 𝑦 ℎ

𝑥,𝑦
𝑥

the LNCTP, and is the log-odds output. Hence, can be evaluated readily across the test𝑦' 𝐶
𝐴

𝑥,𝑦

set, and can be approximated using the variance of each node (alternatively, we may𝑉
𝑃

𝑥

,  𝑉
𝑃

𝑦
'

view this as an exact calculation of the coheritability of two additive traits). We used the direct
Pearson correlation between and (on the test partition) to provide a summary p-value for𝑥 𝑦
each intermediate trait tested. Finally, we used the network outputs to estimate the heritability𝑥
of each complex disorder on the liability scale, by scaling the outputs using Eq. (11) from (4).

Prioritized subgraph analysis
To interpret and prioritize the hidden nodes of our model, we aimed to build a

consensus, prioritized subgraph across the models learned for the same disorder across
multiple data splits. To do so, for each model, we fixed parameters and , representing the𝐴 𝐵
width and the branching factor of the reduced subnetwork, respectively. Then, for each
data-split, at each level of its respective model, we chose the nodes with the highest absolute𝐴
coheritability, and joined each of these to the nodes with the largest absolute connecting𝐵
weights (in ) on the previous level. We then used these skeleton networks to produce a𝑊

𝑙

consensus graph by successively overlaying the subgraphs from each data split in a
randomized order. Specifically, the nodes at the gene and cell-type embedding layers were
overlaid deterministically, since these have explicit semantics. For each hidden layer, when a
new graph was overlaid with the consensus graph, all permutations were performed of the𝐴!
hidden nodes, and the one resulting in the greatest number of overlapping edges with the
previous layer was selected (with ties broken arbitrarily). This process produced a weighted
consensus subgraph (where the edges are weighted by the number of model reductions in
which they appear), and a given internal node at a hidden layer in this consensus graph may be
interpreted as a higher-order feature, grouping together the units at lower levels within the
sub-tree below the selected node, allowing us to calculate salience and coheritability statistics
for selected latent nodes of the network (see fig. S80). The subgraph prioritization process is
summarized in Algorithm 1.
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Polygenic risk score calculations
As a baseline for comparing the performance of the LNCTP model, we used a

standardized pipeline (214) to calculate ASD, schizophrenia, bipolar disorder, and AD polygenic
risk scores (PRS) from sets of SNPs overlapping the eQTLs used as LNCTP inputs. We used
two sets of SNPs to calculate two AD PRS variants–one with AD-prioritized SNPs as inputs, and
the other with schizophrenia-prioritized SNPs as input. We first accessed summary statistics for
four recent large-scale GWAS studies for ASD, schizophrenia, bipolar disorder, and AD
(215–218). We removed SNPs with INFO scores <0.8 as well as ambiguous and duplicate
SNPs, and we further log-transformed the effect sizes of ASD SNPs. Next, we selected imputed
genotypes from the population-scale samples assessed in the model and filtered for SNPs in
eQTLs specific to ASD, bipolar disorder, and schizophrenia. After lifting the data over and fixing
alleles to hg38 reference genome coordinates (for all disorders except AD), we performed
strand-flipping using snpflip (https://github.com/biocore-ntnu/snpflip). SNPs with MAF<0.05,
Hardy-Weinberg equilibrium p-values<1✕10-6 , or missing in >1% of samples were removed,
and individuals missing >1% of genotype calls or with high or low rates of heterozygosity
(>|3SD| from the cohort mean) were also removed. An additional strand-flipping step was
performed to match alleles between the sample genotypes and summary statistic SNPs. Finally,
we used LDPred2 (auto mode) to calculate disease-specific PRS for each sample (219),
utilizing HapMap3-based haplotypes and 1,000 Genomes centimorgan map units to perform LD.
Due to lower power, calculations for AD models did not use maximum likelihood estimates for
alpha and variance components, did not allow for changing signs between iterations in the
Gibbs sampler, and used a shrinkage multiplication coefficient of 0.8 for the LD matrix. To
compare the PRS with the LNCTP models using the accuracy and liability metrics in table S13,
we used the same ten data splits as above, and set a threshold for each data split by
maximizing the accuracy on the training split and averaging over the test accuracies according
to the selected thresholds. The heritability on the liability scale was then estimated as above for
the LNCTP model.
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The following file detailing the LNCTP inputs, as well as the Docker image containing the
source code to run LNCTP, is available on the brainSCOPE portal:
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File: LNCTP_prioritzed_genes_celltypes.xlsx (data S30): Excel file listing the genes, cell types,
and network elements prioritized by the LNCTP model for schizophrenia, bipolar disorder, ASD,
and AD, including salience, coheritability, and p-values for each gene-cell type combination.
File: lnctp.tar: TAR file containing Docker image of source code used to perform the LNCTP
model analysis. This file is also available to download from the Docker repository at
https://hub.docker.com/r/icefirecloud/lnctp-server.

8.6 LNCTP Validation - In silico validation of LNCTP-prioritized genes and
drug targets

We approached the validation of the LNCTP-prioritized gene sets in four parallel ways.
First, we identified external support for the prioritized genes in the neuropsychiatric GWAS
results and published gene sets associated with schizophrenia, ASD, and major depressive
disorder (MDD). Second, we explored several of the visible (non-latent) components of the
imputation model to evaluate how these components may have contributed to the prioritization
of genes in the LNCTP. In doing so, we suggest some plausible sources of phenotypic
association for particular genes. Third, we used the imputed gene expression vectors as the
baseline and perturbed certain important categories of genes to quantify the downstream
impacts on the case-control status. This served as both validation and a showcase of the utility
of LNCTP for in silico experimentation. Finally, we performed an ablation analysis, where we
compared the performance of the model with and without certain components to assess the
importance of including them.

In most of these validation approaches, we primarily used a set of eight key genes
prioritized by LNCTP (disorders in which they are prioritized are shown in parentheses; see Fig.
8D and data S30): RORA (schizophrenia, bipolar disorder); TCF4 (schizophrenia, bipolar
disorder); MEF2A (schizophrenia, bipolar disorder); SF3B2 (schizophrenia);
ANKHD1-EIF4EBP3 (ASD); LINGO2 (bipolar disorder); ESRRG (bipolar disorder, ASD); and
ID1 (bipolar disorder). These genes have high saliency in the trait-prediction models and are
often found to be prioritized in multiple cell types. They cover all three neuropsychiatric
disorders considered in this work. Importantly, these genes also cover some of the classes of
genes described in the Discussion section of the main manuscript. Specifically:

Class 1: LNCTP-prioritized genes that are not found to be significantly
differentially expressed. If we allow for inclusion in both the single-cell (this work) and bulk DE
gene sets (100), MEF2A and ID1 fall into this class of not being differentially expressed.

Class 3: Genes prioritized in disorders by LNCTP with DE support but lacking
extensive prior literature support. While ANKHD1-EIF4EBP3 and RORA were prioritized in
the PEC 2018 DE gene analysis (100), there does not seem to be extensive additional literature
support for them.
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8.6.1 Prior literature- and GWAS-based analysis of prioritized genes
We used recent GWAS for schizophrenia to identify genes containing fine-mapping

SNPs (217). Through our investigation, we found that, among the eight key genes, TCF4
contained a fine-mapping SNP specifically associated with schizophrenia. Furthermore, TCF4
also exhibits associations with ASD (220) and developmental disorders (from the DDD study)
(221) based on rare variant analysis.

The genes related to the respective diseases (ASD, MDD, and schizophrenia) that we
compared were obtained from various sources. These sources were compiled in our previous
study, ( (222); data S33). Here, we classified these genes into 36 categories based on studies
focusing on genetics, differential expression, and co-expression related to the aforementioned
diseases (fig. S84A).

In addition to comparing the key-genes for GWAS fine-mapping and intersection with
disorder related genes in previous sources, we compared all prioritized genes in SCZ for such
enrichment. Hence, we ran hypergeometric tests for each prioritized gene in each cell-type
(and all prioritized genes) to look for the enrichment of fine-mapped and literature associated
genes within the prioritized set against the background of all genes in the SCZ model. The
results are shown in (fig. S84B), showing particularly enrichment in excitatory and inhibitory
neuronal gene sets.

8.6.2 Network analysis of prioritized genes
To establish the relationship between LNCTP and some of its main inputs, the GRNs, we

investigated the characteristics of the key highlighted TFs in Fig. 8D. We analyzed the patterns
of the degree statistics of the TFs in the bulk GRN. fig. S85N shows the degree distribution
(bottleneck connections and number of neighbors in the graph) of the TFs in the bulk GRN; all
TFs highlighted in Fig. 8D have a higher betweenness degree (fig. S85A), but a more
dispersed out-degree (fig. S85B).

8.6.3 DE analysis of prioritized genes
We further investigated whether the prioritization of genes by LNCTP draws upon

differential expression between disorder and control samples. Using the eight key genes as
examples, we found that only TCF4 is within the FDR-corrected significant DE gene set for any
cell type. However, several of the key genes had log2 fold-changes that are almost completely
positive or negative across all cell types in specific disorders, such as TCF4 and SF3B2 in
bipolar disorder, indicating consistent up- or down-regulation.

Next, we examined the occurrence of the key genes in the set of DE genes between
schizophrenia/bipolar disorder/ASD and controls in the PEC 2018 cohort (100). We identified
RORA and SF3B2 in the schizophrenia upregulated gene sets, LINGO2 in the schizophrenia
and bipolar disorder upregulated gene sets, ESRRG in the schizophrenia and ASD
downregulated gene sets, and ANKHD1-EIF4EBP3 in the ASD upregulated gene set.

Overall, while differential gene expression may contribute to the prioritization of some of
the genes, it is unlikely to be the sole characteristic of these genes.
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8.6.4 Perturbation analysis of prioritized genes and drug targets
The perturbation analysis consisted broadly of three steps (fig. S86A). First, we chose

which genes to perturb. We identified three gene sets of interest: the eight key genes prioritized
by LNCTP, a set of potential drug targets for the disorders at hand, and a set of background
genes whose perturbations can serve as a comparison against the prior two sets. Our gene sets
are summarized below:

1. Key genes: RORA, TCF4, MEF2A, SF3B2, ANKHD1-EIF4EBP3, LINGO2, ESRRG, and
ID1. These are genes meeting a p<0.01 threshold on the coheritability analysis, and
simultaneously occurring within a prioritized subgraph, as indicated in Fig. 8D.

2. Drug targets: NFKB1, CACNA1D, FOS, ATF1, CHRNA2, ATF6, ESRRG, NR3C2, JUN,
and TP53. These are genes sampled from the 494 targets of neuropsychiatric drugs
identified in DrugBank (102) that overlapped with the full gene sets for all three
neuropsychiatric disorders.

3. Background: NEU2, BUB1B.PAK6, CST6, F2, HARBI1, INO80E, ARHGAP1, and
TARS2. These are genes sampled from those having minimum rank across cell types of
at least 2,000 in the schizophrenia model (using saliency to rank the genes; the
maximum rank is 4,384, and 14 genes meet this threshold).

Second, we focused on one gene at a time in our chosen set, fixing it to either a high or
low value (depending on that gene’s difference of expression in cases as opposed to controls) in
the bulk GRN segment of the LNCTP imputation model. Lastly, we re-imputed expression
values for all other genes. To do this, we ran the imputation using a conditional form of the
LNCTP energy model. This is summarized below:

where the notation is as in Eq. 1, section 8.2, denotes the perturbed gene and cell(𝑐 *,  𝑔 *)
type, whose expression is set to 1 or -1, and is a delta function whose value is 0 ifδ(𝑎)
expression is true, and 1 otherwise.𝑎

Third, as a further validation step, we investigated whether the LNCTP-prioritized gene
perturbations drive the overall gene expression patterns of control samples towards more
“case-like” behavior. The underlying idea is that if we perturb individual key genes and observe
that the pattern of gene expression for control samples deviates in a manner that begins to
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resemble the expression patterns for a particular phenotype, then it adds to the evidence that
those genes are relevant for that particular phenotype. The saliency calculation is itself such a
quantification of how specific components of LNCTP contribute to the phenotype, but we want
an independent measure for this validation step. Accordingly, we chose a simpler approach
focused on imputed gene expression alone, which ignores the contributions of the latent layers
of the trait-prediction component within LNCTP and focuses exclusively on the outputs of the
imputation component.

The unperturbed z-scored gene expression vectors are fed into a support-vector
classifier (SVC, using the Python scikit-learn package (223)) that is trained to classify samples
into either phenotype cases or controls (fig. S86A). We use a linear kernel for the SVC,
resulting in a hyperplane separating the cases and controls. The unit normal to this hyperplane
broadly defines a direction of separation between controls and phenotypic cases. When the
perturbations shift the positions of expression vectors for all samples, we quantify the degree to
which the balance between the numbers of cases and controls is modified. The hypothesis is
that a perturbation of a key gene in the direction of case-like behavior should drive the entire
expression vector for the sample in the direction of case-like behavior, if the perturbed gene is
truly relevant to the disorder (fig. S86B).

The SVC training accuracies were 0.997 for schizophrenia, 0.857 for bipolar disorder,
and 1.0 for ASD (likely due to the smaller number of ASD samples). Note that the case and
control numbers are nearly balanced in the unperturbed cohort. Given the trained SVC, we
classified the perturbed samples as “cases” or “controls” for the forward and reverse
perturbations of the key genes, drug target genes, and background genes. When we measured
the net increase in the number of predicted schizophrenia cases upon perturbing the gene, we
found an increase in the numbers of predicted cases for the drug targets and key genes relative
to the increase in cases for the background genes, which are more evenly distributed around 0
(fig. S86C). We focus here on schizophrenia cases as they form the largest phenotypic group in
our cohort. Naturally, there are some caveats in this simple analysis. These results are to be
understood as limited by the relatively small numbers of genes considered. We only explored
the bulk gene expression in the perturbation process, rather than the cell-type-specific
expression. Furthermore, given the fact that the schizophrenia gene sets we start with are those
previously identified as high-confidence schizophrenia genes (4), it is difficult to identify a true
“background” set of genes. Nonetheless, the results are somewhat indicative of the disease
relevance of the key genes.

Files describing the results of the perturbation analysis are available on the brainSCOPE
portal. Each .zip file contains individual .csv files for results from forward and reverse gene
perturbations for background and drug target genes, with disease-specific reference files
included for comparison. The suffix of '_1' or '_-1' at the end of the .csv file names refers to
whether the given gene is perturbed up (_1) or down (_-1); it reflects whether that gene's
expression value was set to 1 or -1 in the model.

File: perturbed_expression.zip: ZIP file containing forward perturbation results of key genes
identified by the LNCTP model.
File: perturbed_expression_background.zip: ZIP file containing reverse perturbation results
of key genes identified by the LNCTP model.

80



File: perturbed_expression_background.zip: ZIP file containing forward perturbation results
of background genes.
File: perturbed_expression_background_reverse.zip: ZIP file containing reverse
perturbation results of background genes.
File: perturbed_expression_drugs.zip: ZIP file containing forward perturbation results of drug
target genes.
File: perturbed_expression_drugs_reversed.zip: ZIP file containing reverse perturbation
results of drug target genes.

8.6.5 CLUE analysis
Main manuscript reference: First supplementary reference in the seventh paragraph of

“Imputing gene expression and prioritizing disease genes across cell types with an integrative
model.”

We used the query tools available on Clue.io (42) to probe the Connectivity Map (CMAP)
for reference perturbagen signatures that counteract the effects of the perturbation. The Gene
Expression L1000 data, drawn from the platform's latest version, formed the basis of our query
parameters. Furthermore, we incorporated the top 150 upregulated genes as well as the top
150 downregulated genes (by log2-fold-change) from each cell type into our search. We
established a stringent statistical threshold by considering only those results as significant that
had a q-value less than 0.01 (q-values are provided by the database using methods outlined in
(42)). The significant findings are compiled and presented in a supplemental file (see below for
description), provided on the brainSCOPE portal.

For the eight genes in the perturbation analysis in the eight cell types, we found 17,725
compounds and 566 peptides or other biological agents (such as cytokines) (table S17). Among
these, several well-known drugs used for neuropsychiatric disorders emerged, including
dopamine receptor antagonists, dopamine receptor agonists, glutamate receptor antagonists,
calcium channel blockers, GABA receptor agonists, and MAP kinase inhibitors.

In addition to these established drugs, our analysis revealed insights related to
molecular information and compounds with unknown effects. For instance, we observed that the
cytokine IL-1a shows potential in reversing the expression changes of the ID1 gene in microglia.
This finding supports previous studies (224) highlighting cytokine imbalances in schizophrenia,
thus strengthening these hypotheses.

Furthermore, we identified a compound called 10-DEBC, an AKT inhibitor, which exhibits
significant effects on reversing the forward perturbations of TCF4, ID1, RORA, SF3B2, and
ANKHD1-EIF4EBP3. A recent study (225) revealed that AKT inhibition in the central nervous
system can lead to signaling deficits, thereby triggering psychiatric symptoms. While our in silico
analysis suggests that 10-DEBC could potentially counteract the gene expression effects of
several key genes across multiple cell types, the aforementioned study suggests that AKT
inhibitors might have adverse psychiatric effects. Understanding and reconciling these
seemingly contradictory results in terms of the specific network effects induced by the drug
could lead to valuable insights.

Another intriguing discovery was the consistent occurrence of the bromodomain inhibitor
in the perturbation reversal results of all eight genes studied. Published research (226) indicates
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that treatment with the bromodomain inhibitor JQ1 significantly rectifies abnormal gene
expression in schizophrenia patient-derived neurons.

A file summarizing our CLUE analysis results is provided on the brainSCOPE portal:

File: clue_significant.xls: This file contains a list of perturbagens identified through CLUE that
elicit expression profiles opposing perturbations induced by key genes prioritized in LNCTP. A
summary table listing the number of perturbagens identified per perturbed gene and cell type is
also provided.

8.6.6 Network analysis of LNCTP perturbations
To understand how the LNCTP perturbation results are affected by GRNs, we calculated

the correlation of the genes’ proximities to the perturbed gene in the GRN with the magnitude of
the imputed expression results after perturbation. We hypothesized that the magnitude of the
imputed gene expression should be inversely correlated with the proximity of the gene to the
perturbed gene in the GRNs. The proximity of the genes in the GRNs could be measured by
different metrics: in-degree, out-degree, and PageRank scores (227). These metrics are not
available for all genes in the GRNs because the GRNs are directed; target genes in the GRNs
cannot have a non-zero out-degree or PageRank score when they themselves are the reference
nodes, as they are the dead-ends in the graph. Table S16 shows that all these metrics are
inversely correlated with the magnitude of the imputed gene expression after perturbation,
although some of them are not statistically significant (two-sided t-test, p ≤ 0.05).

We further compared PageRank scores of top- and bottom-ranked genes based on their
imputed gene expression. We ranked the genes by their absolute imputed expression values
and labeled the top and bottom 10% genes. We then compared PageRank scores of the bottom
and top affected genes using the Wilcoxon rank sum test. fig. S87 shows that the overall
magnitudes of the LNCTP imputations are inversely correlated with the PageRank scores;
hence LNCTP predictions are in line with our initial hypothesis that proximal genes to the
perturbed genes in the GRNs are affected to a greater extent by the perturbation.

8.6.7 Ablation analysis
In order to assess the contribution of each component to the LNCTP performance, we

compared the model with the following energy forms:

82



The first includes only the unary terms for the bulk expression imputation (this is
equivalent to a TWAS/Predixcan model with a LASSO penalty on the SNP-gene links), while the
second also includes the GRN connections, which allow us to impute the cell-type-specific
expression without the cell-to-cell network connections. The results are presented in table S13.

8.7 Independent CRISPR validation of LNCTP
Main manuscript reference: First supplementary reference in the last paragraph of

“Imputing gene expression and prioritizing disease genes across cell types with an integrative
model.”

8.7.1 Gene expression comparisons to CRISPR experiments
For an independent validation of the prioritized gene sets from our analyses, we

identified published CRISPR experimental data in human brain cell types. One such resource,
CRISPRbrain.org (103), consolidates data from multiple publications reporting on assays
targeting human brain cell types such as glutamatergic neurons, microglia, and astrocytes. We
focused on the CRISPRi (CRISPR interference) and CRISPRa (CRISPR activation) results from
one paper in this resource, Tian et al., (103). In this study, the authors ran both sets of CRISPR
assays in glutamatergic neurons differentiated from human induced pluripotent stem cells
(iPSCs) on specific target genes. Subsequently, they performed a transcriptome readout using a
method called CROP-seq. This involved obtaining transcriptome data from groups of single cells
containing guide RNAs for the target genes, and then determining differential expression relative
to cells with control guide RNAs. The experimental setup in this study is analogous to perturbing
genes in the LNCTP GRNs and observing the resulting gene expression patterns. Thus, we
compared the experimental differential gene expression patterns to those in LNCTP for
overlapping sets of genes. Additionally, we examined the agreement of the CRISPR
perturbations with the expected differences in expression of some target genes between
schizophrenia cases and controls, or whether the CRISPR perturbations on select genes push
gene expression patterns towards a more “case-like” or “control-like” behavior in agreement with
the fold-change differences observed for those select genes.

We selected 10 gene perturbations from the external CRISPR dataset, which
intersected with the genes included in our LNCTP network, representing both prioritized and
non-prioritized classes of genes in our analysis. The chosen genes/perturbations were MEF2C-i
(related to MEF2A which is in class 1: LNCTP prioritized genes that are not DE genes); GLIS3-a
and HSPA9-i (class 1: LNCTP prioritized genes that are not DE genes); PSAP-i and WNT3-a
(class 2: genes prioritized by cell-to-cell network analysis); ARHGAP20-a (class 3: LNCTP and
DE-prioritized gene without extensive prior support); ATXN7-a, ATXN-i, FOXC1-i, and SOX5-a
(non-prioritized genes). Here, we use -i and -a to denote interference and activation CRISPR
perturbations; see also section 8.6 and the Discussion for an in-depth discussion of these
classes of prioritized genes. We note that for certain target genes, the induced differential
expression in the CRISPR experiments might not align with the expected direction. For
example, in the CRISPRa assay targeting MEF2C, we observed that the expression of MEF2C
is actually reduced relative to the controls;   the log2 fold-change = -0.25. This is counter to the
expectation that the activation assay would increase the gene expression of the target gene.
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Nevertheless, we have included these genes under the assumption that there might be
biological and/or technical reasons (such as experimental noise) for this counterintuitive
behavior but the overall modification of cellular expression patterns would still be informative.

For each gene, we applied LNCTP perturbations in both positive (activation) and
negative (interference) directions, using the method described in section 8.6.4. Note that the
GRN expression values in LNCTP were quantified as z-scores. We applied these perturbations
separately to both the gene nodes in the bulk GRN network and the excitatory neuron GRN
network, reflecting the application of CRISPR perturbations in glutamatergic neurons. We
applied these perturbations to the individuals from each of the data splits for the LNCTP
schizophrenia model (combining training/validation/test partitions) and calculated the mean
(signed) change in z-score across all other genes in the respective bulk/excitatory GRN. We
then calculated the correlation of these z-score changes with the external CRISPR observed
log2 fold-change vectors for each data fold. Subsequently, we compared the distributions of the
Pearson’s correlations for matched perturbations vs. unmatched perturbations. fig. S88 shows
the results of this analysis, presenting both the case where the correlation is taken across all
other genes in the GRN, or only across the upper decile of genes, according to their absolute
z-score change in the LNCTP perturbed network. In addition, we consider the distribution across
all perturbations, and the restriction to perturbations involving genes with at least 10 neighbors
in the LNCTP network. As shown in panel A, the correlations of the LNCTP excitatory network
and CRISPR perturbations are higher when comparing matched perturbations, and the
difference in correlation values is enhanced when the upper decile is chosen (reaching r=0.81
correlation for GLIS3-a, as shown in Fig. 8F) and when distributions are compared for
perturbations involving highly connected genes. Panel B shows that a similar separation of
correlations in matched versus unmatched directions when considering perturbations in the
LNCTP bulk network, although these are slightly attenuated with respect to the excitatory
network perturbations (as expected, given that the CRISPR perturbations are in glutamatergic
neurons). Panel C then shows that, for the same perturbation and gene sets, by combining the
matched with the absolute values of the unmatched Z-score changes for the LNCTP
perturbations, we can calculate a ‘joint perturbation score’ (defined in the caption, and illustrated
in panel D), which achieves still higher correlation values with the CRISPR data (median r=0.56
and a maximum r=0.91, for the same perturbations and genes as in panel A, lower right).

For a closer one-to-one correspondence, we also converted the CRISPR expression
vectors into z-scores (using the log2 CPM counts and log2 fold-change vectors) and calculated
the Pearson’s correlations between the signed z-score differences for the CRISPR perturbations
and the LNCTP perturbations. In this case, we calculated the correlations for each individual in
each data split, resulting in (10*Number of individuals) data points, restricting the perturbations
to genes with at least 10 neigbors in the LNCTP network. The results, shown in fig. S89A, affirm
that the correlations are higher when the CRISPR and LNCTP perturbation directions are
matched relative to when they are not. However, we note that the absolute values of the
correlations, as well as their differences, are reduced with respect to fig. S88; plausibly, this
reflects the variation introduced by individual genetic backgrounds (including multiple disorder
types) in the LNCTP perturbations, while the population mean is better matched to the observed
perturbations in the in vitro CRISPR system, with a uniform genetic background. Further, we
compared the effect of network distance with respect to the perturbed gene on the accuracy of
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the LNCTP predictions. Panel B shows how the mean neighborhood size varies with network
distance in the LNCTP networks. Panel C shows that we observe an increase in the matched
correlation values and the matched versus unmatched difference when looking at the 1-hop and
2-hop neighbors to a given perturbed gene in the excitatory network; as expected, the
correlations are strongest for the immediate 1-hop neighbors, and gradually decrease with the
2-hop and larger neighborhoods, while a separation between matched and unmatched
conditions remains for all neighborhood sizes. Panel D replicates the analysis of panel C, but
uses the ‘joint perturbation score’ defined above, showing similar behavior.

We further investigated whether the CRISPR perturbation vectors for prioritized genes
preferentially align with the unit normal to a Support Vector Classifier (SVC) hyperplane,
representing a direction of separation between controls and phenotypic cases, as described in
section 8.6.4 above. We trained 100 such SVC models by bootstrapping the samples across
each of our 10 data folds (combined). For each CRISPR perturbation, we determined the
expected sign of its dot-product with the SVC unit normal by determining whether the perturbed
gene was empirically up or downregulated in our bulk RNA-seq data for schizophrenia cases.
For instance, since GLIS3 is upregulated in schizophrenia, a CRISPR-activation perturbation of
this gene is expected to produce a positive dot-product with the SVC normal vector. fig. S90
shows the results of this analysis across all genes, where (A) shows the distribution of dot
products for each gene along with the expected signs, and (B) shows that perturbations
expected to increase case-status exhibit higher dot-products than those expected to increase
control-status. Finally, (C) shows that the mean difference in dot-products for expected
case-enhancing vs. expected control-enhancing perturbations is greater for genes in the
prioritized classes noted above than for non-prioritized genes.

These results indicate a positive agreement between CRISPR experiments and the
perturbations induced in silico using the trained LNCTP network. The degree of agreement is
impacted by the fact that the CRISPR experiments were performed on a homogenous
population of glutamatergic neurons, subject to technical noise, while the perturbations on the
trained LNCTP were carried out for many individuals with unique genetic backgrounds. Despite
this disparity, the promising correspondence between the two gives us greater confidence in the
outputs of our computational approach.

Files describing the results of the perturbation analysis for CRISPR targets are available
on the brainSCOPE portal. The .zip files contain individual .csv files for results from gene
perturbations for CRISPR target genes, with disease-specific reference files included for
comparison. The suffix of '_1' or '_-1' at the end of the .csv file names refers to whether the
given gene is perturbed up (_1) or down (_-1); it reflects whether that gene's expression value
was set to 1 or -1 in the model. _exc suffixes in the .csv file names indicate that a gene was
perturbed in the excitatory neuron network as opposed to the bulk networks.

File: perturbation_crispr.zip: ZIP file containing results for perturbation of bulk and excitatory
networks with CRISPR target genes.
File: perturbation_crispr_ref.zip: ZIP file containing disease-specific reference expression
datasets used in perturbation of CRISPR targets.
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8.7.2 Gene regulatory network (GRN) overlaps with CRISPR differentially expressed
genes (DEGs)

We further evaluated the correspondence between our results and those of the CRISPR
experiments by examining the overlaps between target genes of TFs in our GRNs and the
DEGs in the CRISPR experiments (FDR < 0.05 from the authors’ original analysis (103)) where
those same TFs are perturbed. The basic hypothesis is that, if there is a strong correspondence
between our inferred networks and the CRISPR experiments, there should be an enrichment of
the DEGs among the downstream targets of TFs in our GRNs (relative to the upstream genes).
We followed two separate approaches to quantify the overlaps, with the results shown in table
S18.

8.7.2.1 Diffusion-network-based approach
We used the network diffusion approach (from Section 5.5 Unifying TF-target Regulons)

to create an excitatory-neuron-specific diffusion graph that combines all the weighted GRNs
from the excitatory subtypes (L2/3 IT, L4 IT, L5 IT, L6 IT, L6 IT Car3, L5 ET, L6 CT, L5/6 NP,
L6b). This is done to match the target glutamatergic cell types in the CRISPR experiments.
Next, for each of the 9 TFs in our GRNs that overlap with the CRISPR target gene set – GLIS3,
NR2F2, SOX5, PPARGC1A, TAF1, MEF2C, THAP1, EGR2, SPI1 – we found the strength of the
diffusion-based connections of the TF to all genes in our excitatory GRN. We then used several
quantile thresholds to determine which genes are ‘downstream’ of the TF (higher diffusion
scores) or ‘upstream’ of the TF (lower diffusion scores). We compared the overlaps of CRISPR
DEGs (FDR<0.05, determined in (103)) with the downstream genes versus those with the
upstream genes using a Fisher’s exact test to determine if there is a significant (nominal p<0.05)
enrichment of CRISPR DEGs in the downstream gene set from our diffusion network. The
approach used the upstream genes as a background set for the estimation of the statistical
significance of the enrichment in the downstream gene set.

The results are provided in table S18A. The CRISPR results themselves show
considerable variation between the 9 TFs studied: the number of DEGs (FDR<0.05) varies, from
1,997 for SOX5 to 3 for MEF2C (row 1 of table S18A); the effect size on the TF itself is not
uniformly significant in terms of FDR value (Row 3 of table S18A). In fact, some of the target
TFs are not even observed in the experiments where their expression is modified (EGR2, SPI1;
both are CRISPRa experiments). With regard to the latter point, we have noted above that in
some cases (such as MEF2C), the gene expression of the intended target of the CRISPR
experiment does not change significantly. This could be because of dataset noise or other
regulatory feedback processes that compensate for the induced changes in expression.
However, both these sources of variability play a role in explaining the correspondence between
our GRN downstream genes and CRISPR DEGs.

Overall, we find, for diffusion score quantile thresholds of 0.5-0.8, that the
downstream-DEG overlap is significant at the nominal p<0.05 (one-sided Fisher’s exact test for
greater enrichment in downstream genes) level for SOX5, NR2F2, TAF1, and GLIS3.
PPARGC1A is marginally significant (nominal p<0.1 across all thresholds). For the other TFs,
the overlap is not significant. The significant TFs are those for which the number of DEGs is
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higher and for which the effect sizes in the CRISPR experiment are very significant or
near-significant (the table is ranked from right to left in terms of the effect sizes). Thus, it seems
to be the case that we get high correspondence with the CRISPR results when a combination of
the numbers of DEGs and the effect sizes are high. We believe that these results provide strong
independent corroboration of our networks, especially given that we are comparing our results
to single-cell CRISPR experiments on induced glutamatergic neurons derived from stem cells
(and not tissue-derived neurons from a diversity of individuals).

8.7.2.2 Hop-distance-based approach
We applied a similar overlap analysis to a discrete version of the network, which we term

the ‘hop-distance-based approach’. The network in this case was generated by calculating the
distances between TFs and target gene with the distances function in the R igraph package
(228, 229) applied to a combined excitatory neuron GRN, which in turn was created as the
union of all the GRN connections in the excitatory subtypes. In the network, “downstream” and
“upstream” directions are determined by whether a target gene is reachable from a TF by
following the directed connections in the GRN (downstream) or if the TF is reachable from the
gene (upstream); the distance between a TF and up-/down-stream genes are found as the total
number of steps needed within the GRN to reach the target (a gene in the downstream case,
the TF in the upstream case). We chose to consider all genes within a hop-distance of 2 as≤
downstream, and pooled all the downstream genes with hop-distance > 2 and all upstream
genes together as “upstream”. This is because the high interconnectedness of the network
meant that most genes were labeled as downstream in igraph. Since the goal is to observe
whether more proximal downstream genes show an enrichment in CRISPR DEGs, we chose a
hop-distance cutoff of 2 as reasonable.

We note that although the concept of the ‘hop’ distance does implicitly play a role in the
network diffusion approach, a multi-hop path between a TF and a target gene may also produce
a strong diffusion score as long as there is a high probability of observing those connections in
the GRN. That is why we consider both approaches here, even though the correlation between
the two is expected to be high.

The results are shown in table S18B. The TFs are ordered as in table S18A and the
patterns of significance (at the p<0.05 and p<0.01, one-sided Fisher’s exact test for greater
enrichment in downstream genes) are essentially the same as in the diffusion-network-based
approach: SOX5, NR2F2, TAF1, GLIS3, and PPARGC1A are significant at the p<0.05 level,
while THAP1 overlaps demonstrate a p-value of 0.058. The same conclusions as above hold,
where CRISPR experiments with greater impacts on the target TFs and with more DEGs tend to
show significant enrichment in the downstream gene set of our networks.
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Supplementary Figures

Fig. S1. Demographic metadata for samples in the brainSCOPE cohort.
(A) Table shows sample counts in the brainSCOPE Resource cohort by data modality, biological
sex, ancestry, and disease. Sample ancestries were predicted using Peddy software based on
1,000 Genomes datasets (113). (B) Bar plot shows the distribution of samples by demographic
metadata. (C) Box plot shows the distribution of sample ages. (D) Table shows sample sizes per
cohort with available next-generation sequencing data (WGS and exome) for rare variant and
SV calling. (E) Scatter plots show sample PCs denoted by ancestry. Translucent points in the
background are genotype PCs from 1,000 Genomes samples.

More detail in the supplementary section "Dataset Overview." This supplementary figure
relates to Fig. 1 and main text section "Constructing a single-cell genomic resource for 388
individuals.''
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Fig. S2. Dependency graph for all datasets in the manuscript.

Blue nodes indicate new single-cell sequencing data and metadata generated for this
manuscript, and brown nodes indicate bulk sequencing data used for imputing our single-cell
data in a population context. Yellow nodes represent key resources generated from our
analyses, while green nodes represent additional datasets available on the brainSCOPE portal.
Orange nodes represent functional experiments from the PEC validation group used to validate
our results; gray nodes represent external databases used for in silico validation.

More details on the input and output files can be found in data S3.

Further details are described in the supplementary section "Dataset Overview." This
supplementary figure relates to Fig. 1 and main text section "Constructing a single-cell genomic
resource for 388 individuals.''
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Fig. S3. Screenshots from the brainSCOPE portal.
Screenshots of the portal hosting output files and links to raw files and data visualization tools,
available at http://brainscope.psychencode.org and https://brainscope.gersteinlab.org. (A)
shows the landing page to the brainSCOPE portal, and (B) shows an excerpt of the webpage
highlighting selected key resource files. (C) shows an excerpt of the webpage that links to all
output files described in the supplement, and (D) shows an excerpt of the webpage that links to
all raw datasets used in the manuscript (including protected-access datasets).

Further details on the portal are described in the supplementary section "Portal Overview." This
supplementary figure relates to Fig. 1 and main text section "Constructing a single-cell genomic
resource for 388 individuals.''
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Fig. S4. Screenshots from the PsychSCREEN data visualization portal.
This figure shows screenshots of the online visualization tool for key brainSCOPE resources,
available at https://psychscreen.wenglab.org/psychscreen/single-cell. (A) Integrated genome
browser shows (top to bottom) tracks for genes, cell-type-specific snATAC-seq peaks, enhancer
and promoter regions within cell-type GRNs (arcs represent links between enhancers and
promoters), and links between eGenes and eSNPs for cell-type-specific scQTLs. Page available
at https://psychscreen.wenglab.org/psychscreen/single-cell/datasets/scATAC-Seq-peaks. (B)
Panel shows interactive UMAP tool used to visualize expression of SOX4 across cells in the
SZBDMulti-Seq cohort, and a dot plot visualizing SOX4 expression across all subcohorts per
cell type. Page available at https://psychscreen.wenglab.org/psychscreen/gene/SOX4.

Further details on PsychSCREEN are described in the supplementary section "Portal
Overview." This supplementary figure relates to Fig. 1 and main text section "Constructing a
single-cell genomic resource for 388 individuals.''
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Fig. S5. Screenshots from the protected-access repository for raw brainSCOPE datasets.

Screenshot of the PsychENCODE knowledge portal for storage of protected raw sequencing
data. This page is available at https://www.synapse.org/#!Synapse:syn51111084.5 at the time of
publication.

Further details on the data portal are described in the supplementary section "Portal
Overview." This supplementary figure relates to Fig. 1 and main text section "Constructing a
single-cell genomic resource for 388 individuals.''
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A

B

Fig. S6. Pegasus snRNA-seq workflows.
Schematic diagrams for (A) single-cell processing workflow and (B) analysis in Pegasus.

More detail in the supplementary section "snRNA-seq Processing.'' This supplementary figure
relates to Fig. 1 and main text section "Constructing a single-cell genomic resource for 388
individuals.''
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Fig. S7. Schematic for per-study-based single-cell analysis.
More detail in the supplementary section "snRNA-seq Processing.'' This supplementary figure
relates to Fig. 1 and main text section "Constructing a single-cell genomic resource for 388
individuals.''
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Fig. S8. Genotype processing and rare variant calling pipeline.
(A) Workflow for brainSCOPE cohort genotype processing, QC, imputation, and PC/ancestry
calculation. (B) Workflow for detecting rare SNVs, indels, and SVs in samples with available
WGS data.

More detail in the supplementary section "Genotype Processing." This supplementary figure
relates to Fig. 1 and main text section "Constructing a single-cell genomic resource for 388
individuals.''
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Fig. S9. Hybrid cell annotation scheme.
Outline of methods used to generate the hybrid cell annotation scheme, merging neuronal types
from the BICCN and the non-neuronal types from (19).

More detail in the supplementary section "snRNA-seq Processing." This supplementary figure
relates to Fig. 1 and main text section "Constructing a single-cell genomic resource for 388
individuals.''
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Fig. S10. UMAPs based on the CMC and UCLA-ASD snRNA-seq cohorts.
The UMAPs for two study cohorts are shown with the corresponding cell types annotated over
the clusters. The same processing and annotation scheme is used as for the SZBDMulti-Seq
cohort (shown in Fig. 1B). Since we did not generate a unified UMAP across all study cohorts
due to expected inter-study batch effects, we present a few examples here. Note that the cell
types are well-represented in multiple independent annotation results. Results are shown for the
(A) CMC and (B) UCLA-ASD cohorts.

More detail in the supplementary section "snRNA-seq Processing." This supplementary figure
relates to Fig. 1 and main text section "Constructing a single-cell genomic resource for 388
individuals.''
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Fig. S11. BICCN PFC subclass taxonomy.
The schematic shows the taxonomy used in the harmonized cell annotation scheme to label the
neuronal subclasses (128). The top panel shows a taxonomy of neuronal and non-neuronal
subclasses in the PFC. The second panel indicates the fractional contributions of the donors to
the total number of cells in each subclass. The third panel indicates the spatial distribution of the
subclasses (or the proportion of cells in each subclass that were dissected from the respective
cortical layers based on Smart-seq v4 profiling). The fourth panel indicates the abundance of
each subclass within each cell class (excitatory neurons, inhibitory neurons, and non-neuronal
cells) where each donor is represented by a separate point.

More detail in the supplementary section "snRNA-seq Processing." This supplementary figure
relates to Fig. 1 and main text section "Constructing a single-cell genomic resource for 388
individuals.''
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Fig. S12. Correlation between snRNA-seq cell-type fraction and deconvolved
bulk-RNA-seq cell-type fraction.
Each dot represents a cell type. The red line is the diagonal (y=x) line. The correlation of the
cell-type fraction of common samples estimated by snRNA-seq and CMC bulk RNA-seq is 0.97
with p=4.2x10-15. The p-value is based on a correlation test.

More detail in the supplementary section "Cell-type Fractions." This supplementary figure
relates to Fig. 1 and main text section "Constructing a single-cell genomic resource for 388
individuals.''
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Fig. S13. Single-cell fractions by cell type and primary diagnosis.
(A) Single-cell cell-type fraction distribution for different cell types. (B) Comparison of single-cell
cell-type fractions for schizophrenia and control samples. (C) Comparison of single-cell cell-type
fraction for ASD and control samples. (D) Comparison of single-cell cell-type fraction for bipolar
disorder and control samples. Points represent individual samples. Asterisks denote a
significant difference based on two sided Welch’s t test and an FDR
Benjamini–Hochberg-corrected adjusted p-value <0.05.
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More detail in the supplementary section "Cell-type Fractions." This supplementary figure
relates to Fig. 1 and main text section "Constructing a single-cell genomic resource for 388
individuals.''
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Fig. S14. Cell-fraction distributions for individuals in the SZBDMulti-seq cohort.
Cell fractions per individual (72 individuals along the x-axis) in the SZBDMulti-seq cohort are
shown for 27 cell types (note that the RB cell type does not appear in any individuals in this
cohort).

More detail in the supplementary section "Cell-type Fractions." This supplementary figure
relates to Fig. 1 and main text section "Constructing a single-cell genomic resource for 388
individuals.''
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Fig. S15. Volcano plots show DE genes for schizophrenia, ASD, and bipolar disorder.
(Left) DE genes between schizophrenia and control samples. (Middle) DE genes between ASD
and control samples. (Right) DE genes between bipolar disorder and control samples. Genes
with an abs(log2fold) > 0.1 and adjusted p < 0.05 are defined as DE genes. Each dot represents
one DE gene in each cell type, colored following the color code shown in Fig. 1A. Values where
-log(p) are >8 are shown as an “x”.

More detail in the supplementary section "DE analysis." This supplementary figure relates to
Fig. 1 and main text section "Constructing a single-cell genomic resource for 388 individuals.''
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Fig. S16. Comparison of schizophrenia DE Genes from DESeq2 and Dreamlet.
Scatter plots show inner join of genes with p-value < 0.05 calculated by two methods, DESeq2
and Dreamlet. x-axis represents the log2 fold change calculated by Dreamlet. y-axis represents
the log2 fold change calculated by DESeq2. Pearson correlations, p-values, and gene counts in
each quadrant are labeled in each panel.
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More detail in the supplementary section "DE analysis." This supplementary figure relates to
Fig. 1 and main text section "Constructing a single-cell genomic resource for 388 individuals.''
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Fig. S17. Comparison of ASD DE Genes from DESeq2 and Dreamlet.
Scatter plots show inner join of genes with p-value < 0.05 calculated by two methods, DESeq2
and Dreamlet. x-axis represents the log2 fold change calculated by Dreamlet. y-axis represents
the log2 fold change calculated by DESeq2. Pearson correlations, p-values, and gene counts in
each quadrant are labeled in each panel.

More detail in the supplementary section "DE analysis." This supplementary figure relates to
Fig. 1 and main text section "Constructing a single-cell genomic resource for 388 individuals.''
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Fig. S18. Comparison of bipolar DE Genes from DESeq2 and Dreamlet.
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Scatter plots show inner join of genes with p-value < 0.05 calculated by two methods, DESeq2
and Dreamlet. x-axis represents the log2 fold change calculated by dreamlet. y-axis represents
the log2 fold change calculated by DESeq2. Pearson correlations, p-values, and gene counts in
each quadrant are labeled in each panel.

More detail in the supplementary section "DE analysis." This supplementary figure relates to
Fig. 1 and main text section "Constructing a single-cell genomic resource for 388 individuals.''
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Fig. S19. Comparison of aging DE Genes between schizophrenia patients and healthy
individuals.
(A) Number of up (yellow) and down (gray) regulated aging DE genes (old vs. young) in each
cell type in healthy individuals. The number of up (blue) and down (red) regulated aging DE
genes in the schizophrenia patient group is smaller than in the control group. Number of

109



samples used in the calculation is showed at the bottom. (B) For a permutation analysis, we
dropped five samples in each comparison group (control young, control old, schizophrenia
young, schizophrenia old) and recalculated the aging DE genes. We observed a similar pattern,
where schizophrenia patients have less aging DE genes compared with healthy groups. The
number of samples used in the permutation analysis is presented at the bottom.

In addition to the permutation analysis, we explored technical and biological covariates that
might potentially affect the results. We explored the distribution of the number of cells per
individual and the UMI count. (C-D) Technical metrics for the CMC snRNA-seq cohort as a
function of age and schizophrenia diagnosis. The groups of individuals are: controls in the
younger (age < 70 yr) age group, “control_Younger”; controls in the older (age >= 70 yr) age
group, “control_Older”; individuals diagnosed with schizophrenia in the younger age group,
“Schizophrenia_Younger”; individuals diagnosed with schizophrenia in the older age group,
“Schizophrenia_Older". (C) Distributions of the number of cells in the expression matrices for
each individual (across all cell types). (D) Distributions of the number of UMI counts in all cells in
the expression matrices for each individual (across all cell types). P-values for comparisons in C
and D are obtained from the Wilcoxon rank-sum test. We did not observe a substantial change
in the number of cells between different groups. We do observe a difference in UMI counts per
individual among the groups. Differences in the UMI counts among groups could be due to
biological or technical reasons; thus, we included this as a covariate when we characterized the
aging DE genes.

More details in supplementary section 7.3 "Aging DE." This supplementary figure relates to Fig.
1 and main text section "Constructing a single-cell genomic resource for 388 individuals.''
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Fig. S20. Pseudotime trajectory patterns for three significant genes in the SZBDMulti-seq
cohort.
UMAP plot shows predicted trajectory for excitatory IT neurons in adult control samples from the
SZBDMulti-Seq cohort. The predicted trajectory proceeds along the cortical layer dimension
from L2/3 to L6 in the PFC. Smoothed line plot insets highlight log-normalized gene expression
in cells along the pseudotime axis for three genes: SEMA6A, PROX1, and SOX6. Significance
was assessed as FDR < 0.05 (Wald test) and overlapped across 5 cohorts.

More detail in the supplementary section "Trajectory Analysis." This supplementary figure
relates to Fig. 1 and main text section "Constructing a single-cell genomic resource for 388
individuals.''
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Fig. S21. Pseudotime trajectory patterns for ribosomal genes in the SZBDMulti-seq
cohort.
Gene expression profiles for seven ribosomal protein genes whose expression significantly
varies along the trajectory line across IT neurons. Dashed pseudotime plots and scatter plots of
gene expression in individual cells are shown for individuals in the SZBDMulti-seq cohort.
Significance was assessed as FDR < 0.05 (Wald test) and overlapped across 5 cohorts.

More detail in the supplementary section "Trajectory Analysis." This supplementary figure
relates to Fig. 1 and main text section "Constructing a single-cell genomic resource for 388
individuals.''
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Fig. S22. Bulk-tissue gene expression patterns from BrainSpan for select trajectory
analysis genes, as a function of developmental stage.
Shown are the bulk-tissue expressions of genes (in Transcripts Per Million) for samples ordered
along the developmental trajectory. The sample ages at time of death range from 8
Post-Conception Weeks (PCW) to 40 years of age. On each panel, we mark a few points along
the developmental trajectory. Note the different scales for each panel. (A) Genes related to
translation: EEF1A1, RPS23, RPL26, RPL32, RPL19, RPS27A, FAU, and RPS24, where the
last seven are ribosomal protein-encoding genes (see also fig. S21). (B) TF-encoding genes:
SOX6 and RUNX2. (C) Additional genes from the significant trajectory gene set with notable
changes in expression along the developmental trajectory: APOE, CRYAB, CXCL14, and
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IGFBP7. Significance was assessed as FDR < 0.05 (Wald test) and overlapped across 5
cohorts.

More detail in the supplementary section "Trajectory Analysis." This supplementary figure
relates to Fig. 1 and main text section "Constructing a single-cell genomic resource for 388
individuals.''
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Fig. S23. snMultiome joint UMAP.
Comparison of cell-type clustering across individual samples in the snMultiome datasets. Each
UMAP shows one sample in the dataset with circled cells representing the cell types found
using the corresponding marker genes. Red boxes denote UMAPs with suboptimal snATAC-seq
resolution where some or all of the cell types could not be distinguished.

More detail in the supplementary section "snATAC-seq Processing." This supplementary figure
relates to Fig. 2 and main text section "Determining regulatory elements for cell types from
snATAC-seq.''
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Fig. S24. snMultiome integrated UMAP.
UMAP visualization of the integrated snMultiome dataset using only snATAC-seq information
with latent semantic indexing.

More detail in the supplementary section "snATAC-seq Processing." This supplementary figure
relates to Fig. 2 and main text section "Determining regulatory elements for cell types from
snATAC-seq.''
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Fig. S25. scCRE distributions by cell types.
Distribution of scCRE locations colored by promoter or non-promoter (distal) and grouped by the
seven major cell types.

More detail in the supplementary section "snATAC-seq Processing." This supplementary figure
relates to Fig. 2 and main text section "Determining regulatory elements for cell types from
snATAC-seq.''
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Fig. S26. LDSC analysis results for all brain-related traits.
This plot shows -log(p-value) LDSC enrichment scores (y-axis) for 333 brain-related traits that
we collected from UKBB, PGC, and PASS (x-axis), against snATAC-Seq peaks for Exc, Astro,
Endo, Inh, Micro, Oligo, and OPC cells, as well as b-cCREs and cCREs (colored dots). Data are
sorted according to the -log(p-value) of snATAC-Seq for Exc neurons. See data S9 and S10 for
a list of enrichment values for all traits.

More detail in the supplementary section "LDSC." This supplementary figure relates to Fig. 2
and main text section "Determining regulatory elements for cell types from snATAC-seq.''
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Fig. S27. Additional footprints for top TFs.
Subfigures A-K show additional footprints of the TFs shown in Fig. 2F, drawn in a similar way
as the selected footprints in Fig. 2G. Note that these plots include an additional cell type
(immune) not shown in Figs. 2F-2G.

More detail in the supplementary section "snATAC-seq Processing." This supplementary figure
relates to Fig. 2 and main text section "Determining regulatory elements for cell types from
snATAC-seq.''
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Fig. S28. Variation partition over three different brain regions.
Using a similar strategy as in Fig. 3A-C, we considered the partitioning of variation among
individuals, different brain regions (PFC, parietal lobule, and occipital lobule), and cell types.
The box plot shows the distribution of variation fraction explained by individuals (green), brain
region (yellow), and cell type (blue) within each group of genes. Due to the constraint of the
number of samples, only six individuals with snRNA-seq data for three brain regions collected
from the same donor (from Gandal-UCLA and UCLA-ASD cohorts) were included in this
analysis.

More detail in the supplementary section "Variance Partition." This supplementary figure
relates to Fig. 3 and main text section "Measuring transcriptome and epigenome variation
across the cohort at the single-cell level.''

120



Fig. S29. Variation partition.
(A) Overall distribution of inter-individual and inter-cell type variation across all genes in the
transcriptome. (B) Breakdown of transcriptome variation across all genes for cell type,
individual, covariates (cohort, diagnosis, and sex), and residual. (C) Breakdown of transcriptome
variation across all genes, including covariates in (B) as well as age.

More detail in the supplementary section "Variance Partition." This supplementary figure
relates to Fig. 3 and main text section "Measuring transcriptome and epigenome variation
across the cohort at the single-cell level.''
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Fig. S30. Comparing cell-type variation using different numbers of cell types.
(A) Transcriptome variation partition shows increased overall cell type variation when using
fewer cell types (three major cell types: Exc, Inh, Non-neuronal) as compared to all cell types.
(B) Histogram of cell-type-specific genes. Of the 3,216 genes that have the majority of their
variation coming from cell type variation, 423 are cell-type-specific (meaning expressed in only
one cell type). X-axis represents [1 - fraction of cell types in which a gene is expressed], with a
larger number representing a more cell-type-specific gene.
More detail in the supplementary section "Variance Partition." This supplementary figure
relates to Fig. 3 and main text section "Measuring transcriptome and epigenome variation
across the cohort at the single-cell level.''
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Fig. S31. Serotonin-related gene variation.
(A) Breakdown of expression variation in gene sets relating to neurotransmitters (grouped by
GO annotations) and selected genes highlighted in Fig. 3C. (B) Total expression variance and
breakdown of variance for select genes and gene families/categories highlighted in Fig. 3C. (C)
Serotonin genes HTR2A and HTR2C demonstrate cell-type variation, and their transcriptomic
profiles across cell types are shown in example UMAPs.

More detail in the supplementary section "Variance Partition." This supplementary figure
relates to Fig. 3 and main text section "Measuring transcriptome and epigenome variation
across the cohort at the single-cell level.''
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Fig. S32. Cell-type and individual variability for drug targets.
(A) Comparison of inter-individual and inter-cell-type variation for the whole transcriptome (red)
and drug target genes (blue). (B) Assessment of inter-individual and inter-cell-type variation for
two drug target genes, CNR1 and HSPA5, relative to the distribution of 280 CLUE database
drug targets. Dashed red line represents CNR1, dashed blue line represents HSPA5, and
dashed black line represents mean value across 280 drug target genes. (C) UMAP of two
additional example drug target genes (ADRA1A and ADRA1B) with high cell-type variation but
distinct patterns across which cell types show high expression.

More detail in the supplementary section "Variance Partition." This supplementary figure
relates to Fig. 3 and main text section "Measuring transcriptome and epigenome variation
across the cohort at the single-cell level.''

124



Fig. S33. Relationships between conservation and coding regions, bulk ATAC-seq peaks,
and variability.
(A) Conservation and variation of protein-coding genes and bulk ATAC-seq peaks. A: random
sample of genes; B: genes varying by cell type; C: genes varying by individual. (B) Number of
cell types (cell specificity) versus decreasing population-scale variability for open chromatin
regions. (C) Gini index of open chromatin regions for male and female samples shows
increasing variability during aging. (D) Cell-type-specific open chromatin regions from
snATAC-seq data show relatively balanced covariates (age, diagnosis, and biological sex).

More detail in the supplementary section "Conservation." This supplementary figure relates to
Fig. 3 and main text section "Measuring transcriptome and epigenome variation across the
cohort at the single-cell level.''
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Fig. S34. Conservation and gene expression patterns.
(A) Scatter plots compare gene conservation with gene expression variation (left), chromatin
conservation with gene expression variation (middle), and gene conservation with matched
chromatin conservation (right). (B) Left scatter plot shows gene conservation versus total
variation in gene expression. Genes deviating from expected patterns of variation are colored in
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red. Right shows GO analysis of genes within the red and black clusters, demonstrating
enrichment in brain functional pathways among genes with abnormal variation patterns.

More detail in the supplementary section "Conservation." This supplementary figure relates to
Fig. 3 and main text section "Measuring transcriptome and epigenome variation across the
cohort at the single-cell level.''
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Fig. S35. Cell-type specificity, variability, and conservation of snATAC-seq peaks.
(A) Conservation versus cell-type specificity of snATAC-Seq peaks. (B) Fraction of peaks that
correspond to 1 to 7 cell types (ordered by decreasing cell specificity). Red box denotes
cell-type-specific peaks unique to a single cell type. (C) Number of peaks associated with
number of cell types. (D) Relationship between cell-specific b-cCREs (defined by overlaying
snATAC-seq peaks with b-cCREs) and population coverage (bulk ATAC-seq).

More detail in the supplementary section "Variance Partition." This supplementary figure
relates to Fig. 3 and main text section "Measuring transcriptome and epigenome variation
across the cohort at the single-cell level.''
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Fig. S36. Number of eQTLs among cell types and sc-eQTL power estimation.
(A) Distribution of the number of scQTLs that are shared among exactly k cell types (with k in
the range of 1 to 19 cell types, inclusive). (B) Aggregation of power analysis results. For each
cell type, random subsets were selected of varying sizes, and the number of eGenes was
recorded (see supplementary section 4 for details on significance testing). The results for all
subsets in all cell types are shown. (C) Counts of identified eGenes from the Bayesian-based
scheme for QTL detection, compared with counts from the primary scQTL analysis. (D) Power
calculation estimates for scQTL studies. The statistical power for finding a significant scQTL
(p<0.05, one-way unbalanced ANOVA) at 0.5 error rate increases to >0.8 for n=200 samples at
>50 cells/sample, as calculated using the powerEQTL software. (E) Number of eGenes
identified as a function of the number of expression PCs.

More detail in the supplementary section "scQTLs." This supplementary figure relates to Fig. 4
and main text section "Determining cell-type-specific eQTLs from single-cell data.''
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Fig. S37. scQTL identification using Bayesian linear mixed effects models.
(A) The posterior distribution p(βg|dataset) of the effect size is such that the value βg = 0 lies
within a high-density region of the distribution. Such a posterior distribution suggests the
absence of a strong scQTL. (B) The posterior distribution p(βg|dataset) of the effect size is such
that the value βg = 0 lies within a very low-density region of the distribution (very far away from
βg = 0). Such a posterior distribution more likely suggests a strong scQTL.

More detail in the supplementary section "Bayesian scQTLs." This supplementary figure
relates to Fig. 4 and main text section "Determining cell-type-specific eQTLs from single-cell
data.''
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Fig. S38. Comparisons across different methods for scQTL calling (standard linear
regression, Bayesian linear mixed effects models, conditional calling, and linear
regression with LD-pruned variants).

The UpSet plot represents the extent to which scQTLs (aggregated across all cell types) are
identified by four different calling methods. In this analysis, a given scQTL is defined as a
distinct eSNP-eGene pair.

More detail in the supplementary section "scQTLs." This supplementary figure relates to Fig. 4
and main text section "Determining cell-type-specific eQTLs from single-cell data.''

132



Fig. S39. Comparison of gene-level p-values from different numbers of permutations.
Shown are the gene-level p-values from 1,000 permutations compared to those derived from
10,000 permutations when calculating significant eGenes associated with scQTLs.

More detail in the supplementary section "scQTLs." This supplementary figure relates to Fig. 4
and main text section "Determining cell-type-specific eQTLs from single-cell data.''
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Fig. S40. IsoQTL calculation.
(A) Bar plots show the distribution of samples and nuclei assessed for isoQTLs after QC
filtering. (B) Bar plots show the distribution of nominally significant (beta distribution permuted
p<0.05 without FDR correction) isoGenes (green) and isoSNPs (yellow) per cell type. (C) Bar
plots show the counts of significant isoQTLs in each cell type with nominal beta distribution
permuted p<0.05 at different FDR thresholds. (D) Bar plots show the distribution of significant
(beta distribution permuted FDR<0.05) isoGenes (green) and isoSNPs (yellow) per cell type.

More detail in the supplementary section "Isoform QTLs." This supplementary figure relates to
Fig. 4 and the main text section "Determining cell-type-specific eQTLs from single-cell data.''
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Fig. S41. IsoQTL characterization.
(A) UpSet plot shows the overlap of significant isoQTLs that pass multiple-testing correction
(FDR<0.05, beta-distribution permuted p-values) between cell types. Blue bars represent
isoSNPs that are observed in multiple cell types. (B) Venn diagram shows the overlap of all
significant isoQTLs with isoQTLs identified from bulk RNA-seq in the adult brain (4). (C) Bar
plots show the proportion of significant isoQTLs by genomic location. (D) Manhattan plot shows
identified isoQTLs within immune cells. isoSNPs for three significant isoGenes (FDR<0.05) are
highlighted.

More detail in the supplementary section "Isoform QTLs." This supplementary figure relates to
Fig. 4 and main text section "Determining cell-type-specific eQTLs from single-cell data.''
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Fig. S42. Example of alternative isoform usage due to an isoQTL.
Sashimi plot shows alternative splicing of RNF212 in immune cells due to the isoSNP
rs4166214. Red box highlights an RNF212 isoform with increased expression among individuals
with the alternate allele (blue, heterozygous; green, homozygous alternate) vs. those
homozygous for the reference allele (orange). Sashimi plot was generated using the ggsashimi
package (183).

More detail in the supplementary section "Isoform QTLs." This supplementary figure relates to
Fig. 4 and main text section "Determining cell-type-specific eQTLs from single-cell data.''
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Fig. S43. eQTL UpSet plot.
UpSet plot for core scQTLs showing singleton scQTLs (scQTLs unique to a given cell type),
universal scQTLs (core scQTLs in all 17 cell types in which scQTLs occur, highlighted in blue),
and the top 44 combinations of cell types with the largest numbers of shared scQTLs.

More detail in the supplementary section "scQTLs." This supplementary figure relates to Fig. 4
and main text section "Determining cell-type-specific eQTLs from single-cell data.''
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Fig. S44. Comparison of scQTL and bulk eQTL.
Density map of the scQTL effect sizes (y-axis) against matched bulk cis-eQTL effect sizes
(x-axis). The dashed red line denotes the plot's diagonal (ie, "x = y") line.

More detail in the supplementary section "scQTLs." This supplementary figure relates to Fig. 4
and main text section "Determining cell-type-specific eQTLs from single-cell data.''
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Fig. S45. Distance to TSS.
Distance between eGenes and their respective eSNPs for each individual cell type (scQTLs
FDR < 0.05).

More detail in the supplementary section "scQTLs." This supplementary figure relates to Fig. 4
and main text section "Determining cell-type-specific eQTLs from single-cell data.''
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Fig. S46. Aggregated distances between eGenes and eSNPs.
(A) Aggregated distances (among 17 cell types with scQTLs) between eGenes and their
respective eSNPs for each individual cell type (scQTL FDR < 0.05). (B) Smoothed distribution
profiles of the distances between eGenes and their respective eSNPs for scQTLs in all
individual cell types. (The cell type PC is omitted from this graph.)

More detail in the supplementary section "scQTLs." This supplementary figure relates to Fig. 4
and main text section "Determining cell-type-specific eQTLs from single-cell data.''

140



Fig. S47. Quantifying the modulation of enhancer activity by mutSTARR-seq.
Box plots show the log2fc STARR-seq signal change before and after mutation of target SNPs.
Highlighted in red are two key significant SNPs based on scQTLs and validated enhancers
tested, both demonstrating increasing STARR-seq assay signal after mutation. Asterisks
represent p<0.005 (Chi-squared test). We note that the mut-STARR-seq experiments were done
in NPC cells.

More detail in the supplementary section "mut-STARR-Seq." This supplementary figure relates
to Fig. 4 and main text section "Determining cell-type-specific eQTLs from single-cell data.''

141



Fig. S48. Validation of scQTLs using STARR-seq and MPRA.
(A-B) Fold-change signal distribution of the STARR-seq candidate regions across two
replicates; gray regions denote the selected candidate regions serving as the control set. (C)
Distribution of the absolute values of the ratio between RNA and DNA-1 in MPRA experiments.
Red regions denote the selected candidate regions serving as the active enhancer set, while
gray regions denote the candidate regions serving as the control set. Distributions are shown for
all peaks, defined enhancers, defined silencers, and non-enhancer/silencer peaks. (D)
Comparison of the ratio of eSNPs in active (red) or control (gray) regions as defined by MPRA
experiments. **** indicates p-value <1.0x10-4, Mann-Whitney Wilcoxon test.

More detail in the supplementary section "STARR-seq and MPRA Validation." This
supplementary figure relates to Fig. 4 and main text section "Determining cell-type-specific
eQTLs from single-cell data.''
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Fig. S49. Matching concordance between allele-specific expression data and scQTLs.
Plot showing numbers of concordant (eQTL effect size < 0 and ALT haplotype fraction < 0.5, or
eQTL effect size > 0 and ALT haplotype fraction > 0.5) and discordant (eQTL effect size < 0 and
ALT haplotype fraction > 0.5, or eQTL effect size > 0 and ALT haplotype fraction < 0.5)
eQTL-ASE eGene pairs found in the MultiomeBrain cohort samples (see Fig. 4F).

More detail in the supplementary section "Allele-specific expression." This supplementary
figure relates to Fig. 4 and main text section "Determining cell-type-specific eQTLs from
single-cell data.''
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Fig. S50. Enrichment of eGenes in scQTLs for disease-associated gene sets.
Volcano plot shows the enrichment of eGenes found across all cell types in the primary scQTL
dataset for disease trait annotations. Plot was generated using the WebGestalt gene set
enrichment toolkit (230) for genes annotated for disease association in the GLAD4U database
(231). Labeled diseases on the plot show select disorders with significant (FDR<0.05, Fisher’s
exact test) enrichment among the eGenes. Circle color indicates the number of eGenes
annotated for each disease category.

Related to the supplementary section "scQTLs." This supplementary figure relates to Fig. 4 and
main text section "Determining cell-type-specific eQTLs from single-cell data.''
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Fig. S51. GO enrichment analysis for scQTLs.
(A) Summary scatter plot for GO terms with significant enrichment among the identified eGenes.
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The y-axis shows -log10(padj) (p-values calculated as in (170)). (B-D) Tables list GO terms for
biological process (B), molecular function (C), and cellular component (D) that are the most
enriched among eGenes. BP = biological process; MF = molecular function; CC = cellular
component.

Related to the supplementary section "scQTLs." This supplementary figure relates to Fig. 4 and
main text section "Determining cell-type-specific eQTLs from single-cell data.''
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Fig. S52. Pseudo-time trajectory-dependent dynamic scQTL analysis.
(A) Schematic of Poisson regression model for pseudo-time trajectory-dependent dynamic
scQTL analysis. We used this model to assess the interaction between genotype and the
continuous pseudo-time. The plots show an example of an eSNP whose effect size increases
over pseudo-time, represented by violin plots showing expression in cells of individuals who
have homozygous reference (blue), heterozygous (orange), and homozygous alternate (green)
genotypes at the eSNP locus. (B) Bar plot illustrates the number of top eQTLs for IT neurons
(L2/3, L4, L5, and L6) that were successfully replicated by the PME model in the
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SZBDMulti-Seq cohort. The x-axis represents the number of cell types where the scQTL was
detected using the conventional pseudo-bulk method. (C) Bar plot illustrates the quantity of
eQTLs associated with varying numbers of expression PCs. The orange labels signify the
number of eQTLs with significant interaction terms (significance was determined by the
likelihood ratio test). (D) Bar plot illustrates the number of eGenes for IT neurons (L2/3, L4, L5,
and L6) that were identified with the pseudo-bulk approach. The x-axis represents the number
of cell types in which the eGene was detected. The bars colored in blue indicate cases where
eGenes were not detected in all four cell types. The top eQTLs corresponding to these eGenes
were extrapolated using the PME model. (E) UMAP plot shows predicted trajectory for excitatory
neurons in samples from the SZBDMulti-seq cohort. Box plots highlight the expression of
MGAM2, stratified by eSNP genotype in each sample, for cell types in each cortical layer; effect
size (𝛃) values for the eSNP increase over pseudotime.

More detail in the supplementary section "Dynamic scQTLs." This supplementary figure relates
to Fig. 4 and main text section "Determining cell-type-specific eQTLs from single-cell data.''
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Fig. S53. Dynamic scQTLs.
This figure acts as a "shadow figure" for Fig. 4H, showing additional detail regarding the
trajectory used for dynamic scQTLs. UMAP illustrates (A) the trajectory line; (B) the trajectory
pseudo-time; and (C) batch correction conducted with SCALEX.

More detail in the supplementary section "Dynamic scQTLs." This supplementary figure relates
to Fig. 4 and main text section "Determining cell-type-specific eQTLs from single-cell data.''
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Fig. S54. Summary of cell-type GRNs.
(A) Distribution of edge sources (TF-target gene links) in the final GRNs with bars colored
uniquely for each of the three sources used to construct the GRNs. Red bars show common
distal (snATAC-seq) and proximal (SCENIC + scGRNom) edges. (B-D) Plots show the
distribution of TFs (B), target genes (C), and enhancers (D) in the cell-type GRNs, colored
according to three broad cell type groups. Dashed black lines represent the average number of
elements identified in all cell types.

More detail in the supplementary section "GRN evaluation." This supplementary figure relates
to Fig. 5 and main text section "Building a gene regulatory network for each cell type.''
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Fig. S55. GRN visualization and evaluation.
(A) Evaluation of SCENIC runs to determine edge-trimming threshold. The bar plot shows the
precision (true positives/true positives + false positives; y-axis) of SCENIC runs at various edge
weight thresholds (fraction of all predicted edges selected) using TF promoters identified in
snATAC-seq as the benchmark. (B) Heatmap shows that cell types with the same parent class
annotations are more similar to each other than those with different parent classes. The
similarity between every possible pair of GRNs is estimated as the Jaccard Index and shaded
along a low-to-high red gradient with darker colors showing greater similarity.

More detail in the supplementary section "GRN evaluation." This supplementary figure relates
to Fig. 5 and main text section "Building a gene regulatory network for each cell type.''
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Fig. S56. Overlaps between cell-type GRNs.
For every pair of cell-type GRNs, the overlap between predicted edges was calculated as the
fraction of all predicted edges that are common in both GRNs. The overlap is expressed as a
percentage shown on the y-axis of the violin plot colored red, green, and blue for inhibitory,
excitatory, and glial cell types, respectively. The dots in the jitter plots represent individual cell
types. The black dashed line corresponds to the mean overlap across all GRNs.

More detail in the supplementary section "GRN evaluation." This supplementary figure relates
to Fig. 5 and main text section "Building a gene regulatory network for each cell type.''
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Fig. S57. GRN stability.
(A-F) Scatter plots show statistically significant (t-test) Pearson’s correlation coefficient between
the RSS scores from SCENIC across three random splits of the CMC cohort.

More detail in the supplementary section "GRN evaluation." This supplementary figure relates
to Fig. 5 and the main text section "Building a gene regulatory network for each cell type.''
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Fig. S58. GRN stability.
The plot shows the mean overlap between hub TFs identified across the three splits of the CMC
cohort.

More detail is available in the supplementary section "GRN evaluation." This supplementary
figure relates to Fig. 5 and the main text section "Building a gene regulatory network for each
cell type.''
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Fig. S59. Excerpts of the unified GRN diffusion score file.
(A) An excerpt of the unified GRN diffusion score file. (B) An excerpt of the unified GRN
diffusion score file that shows the up-regulators of the EGFR gene.

More detail in the supplementary section "Unifying TF-target Regulons." This supplementary
figure relates to Fig. 5 and the main text section "Building a gene regulatory network for each
cell type.''
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Fig. S60. Upregulators of the EGFR gene, leveraging log-base-ten diffusion scores.
(A) Upregulators in the cell-type-specific GRNs. Left to right, TFs are ordered in descending
order by their diffusion score. (B) Top 10 upregulators in the unified GRN.

More detail in the supplementary section "Unifying TF-target Regulons." This supplementary
figure relates to Fig. 5 and main text section "Building a gene regulatory network for each cell
type.''
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Fig. S61. Experimental design for biological replicates in CRISPR enhancer KO
experiments.
Schematic of biological replicates and experimental design for CRISPR experiments in phNPCs.

More detail in the supplementary section "CRISPR Validation." This supplementary figure
relates to Fig. 5 and main text section "Building a gene regulatory network for each cell type.''
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Fig. S62. Network-based regression.

Network-based regression was used to estimate the average percentage of gene expression
variance (y-axis) explained by the cell-type GRN models (x-axis). The dotted lines colored blue,
purple, and red show the average across enhancer, promoter, and merged edges, respectively.

More detail in the supplementary section "GRN evaluation." This supplementary figure relates
to Fig. 5 and main text section "Building a gene regulatory network for each cell type.''
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Fig. S63. Effect of LOF variants in TF on regulon gene expression.
Heatmap showing the average absolute z-score changes in expression of target genes in 112
regulons whose TFs are affected by LOF variants (y-axis) across cell types (x-axis). Gray boxes
indicate that a particular TF does not have an active regulon in the cell type. z-scores were
calculated by comparing expression of target genes in the regulon among individual cells from
samples with and without the LOF variant in the regulon TF.

More detail in the supplementary section "Genotype processing." This supplementary figure
relates to Fig. 5 and main text section "Building a gene regulatory network for each cell type.''
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Fig. S64. Unified GRN.
The barplot illustrates the proportion of edges shared among different cell types within the
unified GRN, which is constructed by merging individual cell-type-specific GRNs. The y-axis
represents the percentage of edges (corresponding to TF-target gene links) shared across
varying numbers of cell types, as indicated on the x-axis.

More detail in the supplementary section "Network Characterization." This supplementary
figure relates to Fig. 5 and main text section "Building a gene regulatory network for each cell
type.''
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Fig. S65. Comparison with bulk co-expression.
The barplots show the enrichment of bulk disease co-expression modules from (100) Gandal et
al., 2018, within our cell-type GRNs. Within each cell type shown on the y-axis, the number of
regulons enriched with co-expression modules for ASD, bipolar disorder (BD), and
schizophrenia (SCZ) are shown on the x-axis.

More detail in the supplementary section "Network Characterization." This supplementary
figure relates to Fig. 5 and main text section "Building a gene regulatory network for each cell
type.''
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Fig. S66. Comparison of cell-type GRNs with tissue-naive GRNs.

The percentage overlap (y-axis) between each of the cell-type GRNs with different scoring
criteria of tissue-naive GRNs in the DoRothEA database shows the largest overlap with
predicted edges.

More detail in the supplementary section "GRN evaluation." This supplementary figure relates
to Fig. 5 and main text section "Building a gene regulatory network for each cell type.''
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Fig. S67. Comparison of GRN centralities and GO targets of bottlenecks.
(A) Similarity between centralities across cell types. For each cell-type GRN, the first decile TFs,
ranked based on the centrality scores (out-degree or betweenness), were selected. The y-axis
of the stacked bar plot shows the fraction of TFs within each cell type that are shared with other
cell types. Lighter shades show more uniqueness and darker shades indicate more
commonness. (B) GO biological process (y-axis) enrichment results of bottleneck TFs identified
across all cell types (x-axis). Cells of the heatmap are shaded along a gradient representing
corrected p-values resulting from the hypergeometric tests used for testing enrichment. Darker
shades indicate stronger enrichment and vice versa.

More detail in the supplementary section "Network Characterization." This supplementary
figure relates to Fig. 5 and main text section "Building a gene regulatory network for each cell
type.''

164



Fig. S68. Summary of the gene module analysis.

(A) The left facet of the bar plot shows the number of modules identified within cell-type GRNs
(y-axis) and the right facet shows the number of genes within those modules. (B) Normalized
mutual information (NMI; x-axis) is used as a metric to gauge similarity between cell-type
modules and bulk disease modules (left facet: ASD; middle facet: bipolar disorder [BD]; right
facet: schizophrenia [SCZ]).

More detail in the supplementary section "Network Characterization." This supplementary
figure relates to Fig. 5 and the main text section "Building a gene regulatory network for each
cell type.''

165



Fig. S69. Schematic showing analysis of disease-gene co-regulatory subnetworks.
For each cell type, the directed unweighted TF→target gene interactions in GRNs are converted
to undirected weighted TG→target gene ‘co-regulatory’ networks based on the similarity
between the pair’s predicted regulators (TFs). This similarity is measured as the Jaccard Index.
Then, for a given list of disease-risk genes, a subnetwork consisting of only those genes is
extracted. The weighted density of the subnetwork is recorded and used as a proxy for
‘coregulation’. The p-value is calculated based on randomly picking disease genes 1,000 times
and counting the number of times the random density is greater than or equal to the observed
density. The -1*log10(p-values) are used to generate the heatmap.

More detail in the supplementary section "Network Characterization." This supplementary
figure relates to Fig. 5 and main text section "Building a gene regulatory network for each cell
type.''
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Fig. S70. Spatial locations of specific snRNA-seq-labeled cell types.
Shown are the spatial locations of specific snRNA-seq-labeled cell types, showing layer
specificity. We obtained the specific cell type through both cell-type-specific and sample-specific
normalization (details in section 6.3). Examples show specifically “excit_l3”, “excit_l5”, “excit_l6”,
and “oligo” annotated cells.

More detail in the supplementary section "Cell-to-Cell Network." This supplementary figure
relates to Fig. 6 and the main text section "Constructing a cell-to-cell communication network.''
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Fig. S71. Cell-to-cell communication analysis.
(A) Dysregulated ligand-receptor signaling pairs in bipolar disorder (BPD). (B) Dysregulated
ligand-receptor signaling pairs in schizophrenia (SCZ). (C) Cell-type-specific differential
interaction in the EGF signaling pathway for bipolar disorder and schizophrenia individuals. (D)
Cell-type-specific differential interaction in the IGF signaling pathway for bipolar disorder and
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schizophrenia individuals. (E) Cell-type-specific differential interaction in the FGF signaling
pathway for individuals with bipolar disorder or schizophrenia.

More detail in the supplementary section "Cell-to-Cell Network." This supplementary figure
relates to Fig. 6 and the main text section "Constructing a cell-to-cell communication network.''
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Fig. S72. Co-phenetic and silhouette scores for various ranks of NMF.
We calculated co-phenetic and silhouette scores repeatedly for different pattern numbers in
control, bipolar disorder, and schizophrenia individuals to determine the optimal scores. We also
wanted to further clarify NMF latent patterns (Fig. 6B). For example, we see that the inhibitory
Vip cell type and the Vip signaling pathway (specifically, VIP-VIPR1) both belong to pattern 2.
The pattern represents a hidden underlying structure to the cell-to-cell communication network
that is directly observed through cell-type and signaling pathways. The fact that both belong to
pattern 2 makes sense, as the VIP interneurons are predominantly characterized by the Vip
gene and its associated signaling pathway.

More detail in the supplementary section "Cell-to-Cell Network." This supplementary figure
relates to Fig. 6 and the main text section "Constructing a cell-to-cell communication network.''
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Fig. S73. Ligand-target risk gene regulation in bipolar disorder.
Shown are the predicted likelihoods that ligand genes in non-neuronal cells (y-axis) regulate
bipolar disorder-associated risk genes (x-axis) in neuronal cell types, with the neurological risk
gene FOXP1 highlighted in red.

More detail in the supplementary section "Cell-to-Cell Network." This supplementary figure
relates to Fig. 6 and the main text section "Constructing a cell-to-cell communication network.''
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Fig. S74. STEM analysis.
STEM clustering analysis was applied to model gene expression changes across age for each
cell type. Each cell type exhibited a variety of gene expression patterns. The x-axis represents
six aging intervals (25-40, 40-50, 50-60, 60-70, 70-80, and 80-90 years old); the y-axis depicts
gene expression levels characterized as steady, increasing, or decreasing.

More detail in the supplementary section "Aging STEM." This supplementary figure relates to
Fig. 7 and main text section "Assessing cell-type-specific transcriptomic and epigenetic changes
in aging.''

174



Fig. S75. A simple aging classification model.
(A) Age distribution of individuals used in a simple aging classification model. (B) Schematic of
a simple classification model for aging based on the single-cell transcriptome. (C) AUC
performance of the simple aging model by cell type. Comparisons are shown for permuted
baseline, covariates, sampled transcriptome, and aging DE genes.

More detail in the supplementary section "Aging Model." This supplementary figure relates to
Fig. 7 and main text section "Assessing cell-type-specific transcriptomic and epigenetic changes
in aging.''
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Fig. S76. Aging prediction SHAP plot.
(A) SHAP values of the aging prediction model for the top nine genes in L2/3 IT neurons across
individuals. (B) SHAP values of the aging prediction model for the top nine genes in
oligodendrocytes across individuals. The last row displays the sum of SHAP values for other
assessed genes and covariates.

More detail in the supplementary section "Aging Model." This supplementary figure relates to
Fig. 7 and main text section "Assessing cell-type-specific transcriptomic and epigenetic changes
in aging.''
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Fig. S77. Clustering of cell-specific open chromatin regions reveals distinct clusters
based on age.
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UMAPs of chromatin accessibility by age (Fig. 7D) for each cell type, as well as boxplots
showing age distribution for each distinct UMAP cluster, are shown. These highlight open
chromatin region signals that show patterns of clustering for each age group.

More detail in the supplementary section "Aging Chromatin." This supplementary figure relates
to Fig. 7 and main text section "Assessing cell-type-specific transcriptomic and epigenetic
changes in aging.''
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Fig. S78. TF binding motif enrichment analysis for aging.
(A) Line plot shows TF binding motif enrichment (top 50) in different age groups demonstrating
increasing enrichment from young to old. (B) Line plot shows TF binding motif enrichment (top
50) showing decreasing enrichment from young to old. (C) Relative fraction of peaks
represented in each cell type for ATAC-seq peaks across age. (D) Total number of open
chromatin peaks per cell type across age.

More detail in the supplementary section "Aging Chromatin." This supplementary figure relates
to Fig. 7 and main text section "Assessing cell-type-specific transcriptomic and epigenetic
changes in aging.''
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Fig. S79. AD modeling.
(A) Diagram provides an overview of the deep learning model for prediction of AD phenotype
(Braak Score) from deconvolved cell fraction, methylation, and gene expression datasets. (B)
The addition of cell fraction data helps improve the performance of cell-type signature
(methylation) towards the prediction of AD phenotypes. The diagonal lines represent AUC
scores (0.5) based on random guess.

More detail in the supplementary section "AD Model." This supplementary figure relates to Fig.
7 and main text section "Assessing cell-type-specific transcriptomic and epigenetic changes in
aging.''
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Fig. S80. LNCTP-prioritized subgraphs for schizophrenia.
Diagrams show prioritized consensus subgraphs of the schizophrenia LNCTP model, using the
approach in Algorithm 1, where all links in the subgraphs appear in at least 4 out of 10 trained
models (edge thickness corresponds to number of models containing link). Shown are the
salience, coheritability, and p-value (Pearson correlation) of the intermediate phenotype
corresponding to the activation of the upper-most node in each subgraph. Further annotated on
levels 2 and 1 are the cell types and cell-type gene-module assignments of nodes, respectively.
Gene modules are defined in the WGCNA analysis in (100). Graphs 1 and 2 in the upper row
are those shown in Fig. 8D for schizophrenia prioritization.

More detail in the supplementary section "LNCTP Interpretation." This supplementary figure
relates to Fig. 8 and the main text section "Imputing gene expression and prioritizing disease
genes across cell types with an integrative model.''
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Fig. S81. Comprehensive network connections and Information flow for cell-type-specific
GRNs and bulk GRNs in LNCTP.
This supplementary figure serves as an extension to Fig. 8D. The dotted lines represent the
consistency potential links for specific genes, illustrating the flow of information from the bulk
QTLs through the network. This flow traces from the bulk SNPs to cell-specific expression
levels, culminating in high-level trait prediction. While this supplementary figure captures all
connections, including the less important ones between cell-type-specific GRNs and bulk GRNs,
the primary figure, which is a subgraph of this supplementary figure, includes only the strongest
connections between individual cell types and bulk networks. We note that the highlighted
genes here may be prioritized in the cell-type-specific networks and/or the bulk network (see
also Fig. 8E). The bulk prioritized genes are thus based on the same LNCTP models as the
other prioritized genes in our analyses; they are also based on the same training data (including
both bulk and single-cell cohorts), and their salience arises through their combined effect across
cell types.
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More detail in the supplementary section "LNCTP Interpretation." This supplementary figure
relates to Fig. 8 and the main text section "Imputing gene expression and prioritizing disease
genes across cell types with an integrative model.''
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Fig. S82. LNCTP enrichment of GO and KEGG terms for prioritized genes.
Heatmaps show -log(p) values (green and blue indicate high and low, respectively) for the
enrichment of GO biological process terms and KEGG pathways in prioritized gene sets for
LNCTP models across cell types for (A) schizophrenia, (B) bipolar disorder, and (C) ASD.

More detail in the supplementary section "LNCTP Interpretation." This supplementary figure
relates to Fig. 8 and the main text section "Imputing gene expression and prioritizing disease
genes across cell types with an integrative model.''
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Fig. S83. LNCTP-prioritized genes overlap with sc-eQTLs and DE genes.
(A) Permutation tests for significant overlap of LNCTP prioritized genes with scQTLs (top) and
DE genes (bottom) per disorder (one-sample, two-tailed t-tests). Green dotted lines show the
number of overlapping scQTLs or DE genes, and box plots show distribution of overlap counts
when cell-type labels are permuted 40 times. p-values shown are the fraction of the latter that
are greater than the former. In all tests, scQTLs are selected with adjusted p<0.05 (see
supplementary section 4.1 for statistical testing), DE genes are selected with adjusted p<0.2,
and LTCTP prioritized genes are selected with p<0.1. (B) shows the intersection of salient
genes with DE genes, and uniquely occurring LNCTP and DE genes for schizophrenia only
(thresholds are the same as above).

More detail in the supplementary section "LNCTP Interpretation." This supplementary figure
relates to Fig. 8 and main text section "Imputing gene expression and prioritizing disease genes
across cell types with an integrative model.''
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Fig. S84. Prior literature support for LNCTP-prioritized genes.
(A) Results of hypergeometric tests to compare the enrichment of prioritized genes in each cell
type (as well as bulk and all prioritized genes combined) for fine-mapped GWAS genes in
schizophrenia and ASD datasets (blue) and prior literature support (red). (B) Graph showing
GWAS and prior literature support for eight key genes towards disease relevance (ASD,
schizophrenia, and MDD) in a curated set of references (see data S33 for abbreviations and
citations). COG: co-expressed gene; DEG: DE gene; Genetics: genetic evidence for
association.

More detail in the supplementary section "LNCTP Validation." This supplementary figure
relates to Fig. 8 and main text section "Imputing gene expression and prioritizing disease genes
across cell types with an integrative model.''
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Fig. S85. Interpretation of LNCTP-prioritized genes.
Boxplots show the betweenness degree (A) and out-degree (B) distributions of the TFs that
exist in the bulk GRN. Values for the eight key genes are highlighted in red.

Related to the supplementary section "LNCTP Validation." This supplementary figure relates to
Fig. 8 and the main text section "Imputing gene expression and prioritizing disease genes
across cell types with an integrative model.''
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Fig. S86. In silico perturbation analysis of trained LNCTP models.
(A) Flowchart describing the gene-expression perturbation and downstream analyses. The
flowchart represents two branches, one for the SVC-based analysis and the other for the
CLUE-based drug analysis. (B) A simplified schematic explaining how the SVC analysis helps
define “case-like” behavior and how the “Increase in Cases” metric is defined. (C) Boxplots of
the “Increase in Cases” distributions as a function of the gene sets considered: Drug+Key genes
with the forward (“case-like”) perturbation; Drug+Key genes with the reverse (“control-like”)
perturbation; Background genes with the forward (“case-like”) perturbation; Background genes
with the reverse (“control-like”) perturbation. P-values calculated using one-tailed two-sample
t-tests,

More detail in the supplementary section "LNCTP Validation." This supplementary figure
relates to Fig. 8 and the main text section "Imputing gene expression and prioritizing disease
genes across cell types with an integrative model.''
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Fig. S87. Network effects of LNCTP perturbations.
(A-C) Plots for MEF2A, RORA, and TCF4 show the PageRank score distribution of bottom (B)
and top ranked genes (T) for each cell type with respect to perturbed genes in the GRNs.
Imputed genes are ranked by their magnitude of imputed gene expression change. (D) The
aggregated distribution of the PageRank scores for bottom and top-ranked genes. Left to right
distributions are for the MEF2A, RORA, and TCF4 perturbed genes.

More detail in the supplementary section "LNCTP Validation." This supplementary figure
relates to Fig. 8 and the main text section "Imputing gene expression and prioritizing disease
genes across cell types with an integrative model.''
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Fig. S88. Comparing LNCTP and CRISPR perturbations.
Graphs compare the Pearson correlation values for LNCTP and CRISPR-interference/
CRISPR-activation perturbation vectors for 10 genes, where the perturbation directions are
matched vs. unmatched (LNCTP z-score changes are correlated with CRISPR fold-change
vectors for all genes other than the perturbed gene). (A) shows the correlations resulting from
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perturbations in the excitatory neuron GRN. Left vs right shows all genes vs. the upper decile of
genes according to the absolute LNCTP z-score changes; top vs bottom shows all perturbations
vs perturbations whose target gene has at least 10 connected genes in the GRN (5
perturbations). (B) shows the correlations resulting from perturbations in the bulk GRN using
the upper decile genes. (C) compares Pearson correlations of the matched and joint
perturbation scores with the CRISPR perturbations for the upper decile genes; calculated as

, where , and are the LNCTP matched, unmatched and𝑐𝑜𝑟𝑟(𝐽, 𝑋) 𝐽 = 0. 5(𝑀 − 𝑈) 𝑀, 𝑈,  𝑋,  𝐽 
CRISPR experimental perturbation vectors and joint perturbation score respectively, shown
schematically in (D). The bottom-right graph in (A) corresponds to Fig. 8F. p-values calculated
using one-tailed paired and one-sample t-tests, in (A-B) and (C) respectively, *p<0.05.

More detail in the supplementary section "Independent CRISPR validation of LNCTP." This
supplementary figure relates to Fig. 8 and the main text section "Imputing gene expression and
prioritizing disease genes across cell types with an integrative model.''

196



Fig. S89. Effects of genetic background and neighborhood size on LNCTP perturbation
effects.
(A) Box plots compare Pearson’s correlations between LNCTP and CRISPR perturbations
analogously to fig. S88, but comparing LNCTP perturbations across all individuals. Here,
correlations are calculated using the signed z-score differences in both the CRISPR and LNCTP
perturbations. Left vs right shows the correlations using LNCTP perturbations in the bulk and
excitatory GRNs respectively (perturbed genes have at least 10 connected genes in the GRN).
(B) shows how neighborhood size varies with distance in bulk and excitatory GRNs. (C) plots
the Pearson correlations between LNCTP and CRISPR perturbations analogously to fig. S88 in
the excitatory GRN, restricted to the genes within neighborhoods of varying size of the
perturbed target gene, and (D) shows joint perturbation scores for the same neighborhood
sizes. p-values are calculated using one-tailed Wilcoxon rank-sum tests (A) and t-tests (B-D),
*p<0.05.

More detail in the supplementary section "Independent CRISPR validation of LNCTP." This
supplementary figure relates to Fig. 8 and the main text section "Imputing gene expression and
prioritizing disease genes across cell types with an integrative model.''
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Fig. S90. Comparing case/control-like effects of CRISPR perturbations for LNCTP
prioritized genes vs. non-prioritized genes.
(A) Plot shows the distribution of dot products of the CRISPR fold-change vectors for 10
gene-perturbation pairs with 100-unit normal SVC vectors, reflecting the direction of maximum
discrimination of case/control status, along with the expected sign of the dot product (via DE
analysis). Plots compare (B) the distribution of dot products for those pairs whose expected
change is positive vs. negative, and (C) the mean z-score change for positive and negative
pairs in different classes of genes. (D) Table summarizes the CRISPR gene-perturbation pairs
belonging to each prioritization class (Classes 1, 2, and 3 correspond to LNCTP prioritized and
not DE genes, cell-to-cell network prioritized, and LNCTP and DE gene prioritized without
extensive prior support, respectively; see section 8.7 for further details). p-values calculated
using one-tailed t-tests.
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More detail in the supplementary section "Independent CRISPR validation of LNCTP." This
supplementary figure relates to Fig. 8 and the main text section "Imputing gene expression and
prioritizing disease genes across cell types with an integrative model.''
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Supplementary Tables
Table S1. Summary of the snATAC-Seq/snMultiome processing and filtering for each of
the cohorts with snATAC data.

Study
No. of cells after
initial processing

No. of cells after QC
filtering

UCLA-ASD snATAC-Seq 88,677 66,946

Girgenti snMultiome 295,434 125,991

MultioneBrain snMultiome 181,374 80,565

Total snATAC-Seq 565,485 273,502

More detail in the supplementary section "snMultiome Dataset." This supplementary table
relates to Fig. 2 and main text section "Determining regulatory elements for cell types from
snATAC-seq.''
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Table S2. Dataset-by-dataset numbers of cells that remain after important steps in the
snRNA-seq processing.

Study

No. of cells after
initial processing
and QC

No. of cells after
cluster-based filtering
of unannotated cells

No. of cells after
Seurat-based
annotation and
reconciliation of the
two annotations

SZBDMulti-Seq 616,032 605,360 484,249

CMC 519,887 505,442 502,021

UCLA-ASD 704,548 509,101 448,524

IsoHuB 45,388 30,270 29,675

DevBrain-snRNAseq 131,237 108,708 102,936

PTSDBrainomics 226,099 200,427 198,572

LIBD 93,165 58,659 52,214

MultiomeBrain-DLPFC 160,439 140,361 134,645

Velmeshev 75,409 63,925 63,635

AMP-AD_ROSMAP 70,594 63,962 63,228

Ma-Sestan 247,415 206,269 201,574

Girgenti-snMultiome 311,200 291,074 276,018

Total snRNA-Seq 3,201,413 2,783,558 2,557,291

Table shows (1) numbers of cells after the initial processing and QC filtering; (2) numbers of
cells remaining after the removal of cells that were unannotated in the cluster-based annotation
step; and (3) numbers of cells remaining after cell-by-cell annotation using the Seurat label
transfer pipeline viausing the BICCN and Ma-Sestan schemes, and subsequent reconciliation
between the schemes. The last column represents the final numbers of cells used in the
downstream analyses.

More detail in the supplementary section "snRNA-seq Processing." This supplementary table
relates to Fig. 1 and main text section "Constructing a single-cell genomic resource for 388
individuals.''
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Table S3. Cell types and their full titles and abbreviations.

Class Cell Types Expanded title (if applicable) Abbreviation

Excitatory L2/3 IT Layer 2/3 Intratelencephalic projecting L2/3 IT

L4 IT Layer 4 Intratelencephalic projecting L4 IT

L5 IT Layer 5 Intratelencephalic projecting L5 IT

L6 IT Layer 6 Intratelencephalic projecting L6 IT

L6 IT Car3 Layer 6 Intratelencephalic projecting Car3 L6 IT Car3

L5 ET Layer 5 Extratelencephalic projecting L5 ET

L5/6 NP Layer 5/6 Near-projecting L5/6 NP

L6b Layer 6b L6b

L6 CT Layer 6 Corticothalamic projecting L6 CT

Inhibitory SST SST

SST CHODL SST CHODL

PVALB PVALB

Chandelier Chlr

LAMP5 LHX6 LAMP5 LHX6

LAMP5 LAMP5

SNCG SNCG

VIP VIP

PAX6 PAX6

Non-neuronal Astro Astrocytes Ast

Oligo Oligodendrocytes Oli

OPC Oligodendrocyte Precursor Cells OPC

Micro Microglia Mic

Endo Endothelial cells End

VLMC Vascular Leptomeningeal Cells VLMC

PC Pericytes PC

SMC Smooth Muscle Cells SMC

Immune Immune cells Imm

RB Red Blood lineage cells RB

Related to the supplementary section "snRNA-seq Processing." This supplementary table
relates to Fig. 1 and main text section "Constructing a single-cell genomic resource for 388
individuals.''
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Table S4. Subclasses/cell types and the color schemes used in the manuscript (including
hex codes).
Class color
scheme for
Figs. 1-4,

5-8 Cell Type
Subclass color scheme

for Figs. 1-4, 5-8 Color scheme for Fig. 6

Hex code Color Hex code Color
Exc L2/3 IT #078d46 #3954a4

#078d46 L4 IT #0073ab #384fa1

L5 IT #fbdbe6 #1562a0

L6 IT #8ecda0 #36b44a

L6 IT Car3 #ba9c66 #51b949

L5 ET #d388b1 #2f50a2

L5/6 NP #7b4c1e #0b8281

L6b #004d45 #6bbd46

L6 CT #29348c #13a060

Inh SST #6b6a64 #f37d21

#bb2028
SST

CHODL #bc2025 #f7901e

PVALB #5066b0 #f05726

Chandelier #64cce9 #ec2327

LAMP5
LHX6 #ae98a1 #f26f51

LAMP5 #a1b6de #ec2928

SNCG #f175aa #f16a23

VIP #35bba0 #f9a31f

PAX6 #67be62 #f26f51

Non-Neur Astro #f5ed1f #f2799c

#f3eb1a Oligo #fdfded #37ba88

OPC #869c98 #34c1d2

Micro #92575d #5fbb46

Endo #d490bf #f39528

VLMC #717c33 #d47eb4

PC #29471f #46b1e4

SMC #413c42 #af91c3

Immune #f15c5a #bdb235

RB #050304 #050304

Related to the supplementary section "snRNA-seq Processing." This supplementary table
relates to Fig. 1 and the main text section "Constructing a single-cell genomic resource for 388
individuals.''
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 Table S5. List of genes identified as significant (FDR < 0.05, Wald test, overlapped
across 5 cohorts) in the IT neuron trajectory analysis.

PENK ANKRD62 APOE CCN2

CDH19 ARHGAP6 RXFP2 DENND2A

RPL26 FAT4 ELN CNGA3

TACR3 PRSS12 TFEC PLSCR4

CCN4 TMEM132C SLC6A1 CAMKMT

SOX6 ZFHX4 RASGEF1B IGSF1

BCHE CRYAB RASSF6 FAU

RPS27A RPS23 SLC5A8 EEF1A1

CARD18 CA8 DPP4 ROR1

NPNT SKAP1 RERG ENPP1

PTGER3 CXCL14 RPL19 DOCK8

RPS24 FBXL7 EYA4 RUNX2

VAV3 IGFBP7 SCN7A RGS22

ADAMTS6 LRIG3 SEMA6A GPR149

LONRF3 MAF OR3A2 SLFN11

SLC7A2 VRK2 HIF3A RYR3

RPL32 TOX3 NXPH2 SCML4

DSP PROX1 BTNL9 CCDC178

MYO1E CNDP1 ERG EMCN

Related to the supplementary section "Trajectory Analysis." This supplementary table relates
to Fig. 1 and the main text section "Constructing a single-cell genomic resource for 388
individuals.''
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Table S6. LDSC enrichment table for the top 15 brain-related traits.

LDSC enrichment against snATAC-seq peaks in Exc neurons, cCREs, and b-cCREs, with a
scale of -log(p-value). The top 15 (sorted according to the enrichment in Ex) brain-related traits
among UKBB, PGC, and PASS are listed. Values for all traits are available on the brainSCOPE
portal.

More detail in the supplementary section "LDSC." This supplementary table relates to Fig. 2
and main text section "Determining regulatory elements for cell types from snATAC-seq.''
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Table S7. scQTL counts per cell type (without LD pruning).

Summary statistics on the scQTL callset without LD pruning (FDR < 0.05). For each cell type
(column 1), this table lists the sample size used in scQTL calling (column 2), the number of
expression PCs used among the covariates (column 3), the number of significant eGenes
discovered at an FDR of 0.05 (column 4), the total number of scQTLs (column 5), and the
average number of eSNPs per eGene (column 6) (see supplementary section 4 for significance
determination testing).

More detail in the supplementary section "scQTLs." This supplementary table relates to Fig. 4
and main text section "Determining cell-type-specific eQTLs from single-cell data.''
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Table S8. Number of Bayesian scQTLs per cell type.

Table summarizing the number of Bayesian scQTLs in each of 24 cell types (including very rare
cell types). These data are also plotted within fig. S36C.

Related to the supplementary section "scQTLs." This supplementary table relates to Fig. 4 and
main text section "Determining cell-type-specific eQTLs from single-cell data.''
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Table S9. scQTL counts per cell type (with LD pruning).

Summary statistics on the scQTL callset with LD pruning (r2 = 0.5; FDR < 0.05). Details on how
LD pruning was performed are provided in supplementary section 4.1 (scQTLs -
Cell-type-specific eQTL analysis). For each cell type (column 1), this table lists the sample size
used in scQTL calling (column 2), the number of expression PCs used among the covariates
(column 3), the number of eGenes discovered at an FDR of 0.05 (column 4), the total number of
scQTLs (column 5), and the average number of eSNPs per eGene (column 6).

More detail in the supplementary section "scQTLs." This supplementary table relates to Fig. 4
and main text section "Determining cell-type-specific eQTLs from single-cell data.''
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Table S10. Comparison of scQTLs and bulk eQTLs.

(A) Enrichment statistics associated with the overlap of scQTL eSNPs and bulk cis-eQTL
eSNPs. (B) Per-cell-type summary statistics on the overlap between scQTLs and bulk
cis-eQTLs.

Related to the supplementary section "scQTLs." This supplementary table relates to Fig. 4 and
main text section "Determining cell-type-specific eQTLs from single-cell data.''
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Table S11. Pooling of snRNA-seq cell types to agree with spatial data annotations.

Spatial (Validation) snRNA-seq (Own)

opc OPC

excit_l4 L4 IT

astro Astro

inhib (all) Inhibitory Neurons

endomural Endo, SMC, PC

excit_l3

excit_l5_6 L5/6 NP

excit_l2_3 L2/3 IT

micro Micro

oligo Oligo

excit_l5 L5 IT, L5 ET

excit_l6 L6 IT, L6 IT Car3, L6 CT, L6b

excit_l3_4_5

VLMC, Immune

The table represents how we harmonized spatial transcriptomic and snRNA-seq cell-type
annotations to perform validations of our cell-to-cell communication network.

More detail in the supplementary section "Cell-to-Cell Network." This supplementary table
relates to Fig. 6 and the main text section "Constructing a cell-to-cell communication network.''
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Table S12. Correlation and significance for spatial C2C validation.

Coef Pval

Pearson -0.179 0.06

Kendall -0.158 0.01

Spearman -0.241 0.01

This table represents the correlation coefficients and their significance between the spatial
distances and the communication strengths across all pairs of cell types. The negative
correlation values validate the spatial requirement of our communication network. Specifically,
the farther apart the cell types are, the less likely they are communicating with one another.

More detail in the supplementary section "Cell-to-Cell Network." This supplementary table
relates to main figure 6 and main text section "Constructing a cell-to-cell communication
network.''
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Table S13. Model accuracy and associated common SNP heritability estimates for LNCTP
models.

Model PRS (232) PrediXcan
(92)

DBM(4) LNCTP (w/o
c2c)

LNCTP (full) DBM (4)

Gene
Expression

None Continuous+
imputed

Binarized+
imputed

Continuous+
imputed

Continuous+
imputed

Binarized +
Ground truth

Networks
(GRN/C2C)

None None Bulk Bulk +
Single-cell

Bulk +
Single-cell +
Cell-to-cell

Bulk

SCZ 56.9 (0.009) 54.3 (0.003) 59.0 (0.018) 60.2 ± 0.047
(0.0287)

60.8 ± 0.065
(0.0593)

73.6 (0.328)

BPD 57.0 (0.069) 51.7 (0.0026) 67.2 (0.107) 70.6 ± 0.091
(0.161)

72.8 ± 0.055
(0.136)

76.7 (0.374)

ASD 50.0
(0.0001)

50.0 (0.0) 58.8 (0.032) 65.8 ± 0.092
(0.174)

64.0 ± 0.086
(0.104)

68.3 (0.113)

AD 58.0 (0.013) – – 69.3 ± 0.032
(0.192)

69.5 ±
0.0203
(0.108)

–

Table compares predictive accuracy of LNCTP with polygenic risk score (PRS), PrediXcan, and
deep Boltzmann machine (DBM) models (4, 92, 232). Table shows model accuracy on a
balanced test set for classification of case/control status (chance performance = 0.5). All
datasets are balanced for covariates as in (4) and averaged across 10 data splits, as described
in Supplementary Methods section 8.4. Classification accuracy is shown ± SD values for LNCTP
models; additionally, associated estimates of heritability on the liability scale are quoted in
brackets. Results for the DBM models are quoted directly from (4). SCZ = schizophrenia, BPD =
bipolar disorder, ASD = autism spectrum disorder, AD = Alzheimer’s disease.

More detail in the supplementary section “LNCTP validation." This supplementary table relates
to main figure 8 and main text section "Imputing gene expression and prioritizing disease genes
across cell types with an integrative model.''

212



Table S14. Comparison of activation functions for LNCTP (schizophrenia prediction).

Table compares performances of LNCTP models using different activation functions for the MLP
layers. Shown are the mean accuracy and the standard deviation across 10 balanced data
splits, as described in table S13.

More detail in the supplementary section "LNCTP Motivation." This supplementary table relates
to main figure 8 and main text section "Imputing gene expression and prioritizing disease genes
across cell types with an integrative model.''

213



Table S15. Comparison of LNCTP (AD prediction) and other related works.

Paper ID (233) (234) (234) (235) (236) Ours

Data Source Unspecified ADNI
ANM2
(GSE63061) IGAP dataset ROSMAP ROSMAP Genotypes

Data Types

Gene Expr.
+ DNA
Methylation

Gene
Expression ` Genotypes

Gene
Expr. Genotypes

Classifiers Used RF DNN ` CPRS JDINAC LNCTP

AUC (Internal
Validation) 0.683 0.657 0.804 0.78 0.84 0.72

AUC (External
Validation) N/A

0.697 (ANM1),
0.764 (ANM2)

0.655 (ADNI),
0.859
(ANM1)

82% in ADNI,
90%
sensitivity in
high-risk
group N/A N/A

Dataset Size

20,376 AD,
11,178
controls

11,276 gene
probes

22,338 gene
probes

17,008 AD,
37,154
controls,
87,000
variants

193 AD,
172 NCI,
158 genes 366 AD, 179 control

Cell-type-
Specific Insights N/A N/A -

Yes - via
cited papers N/A Yes

Multi-Omics Dual-omics No - Yes No Tri-omics

Interpretability

Feature
Selection
Methods

Feature
Selection
Methods,
Pathway
Analysis - N/A

Identified
Hub
Genes,
Gene pairs

Hierarchical Linear
Architecture,
Feature Selection
Methods,
Highlighted Omics
Data Contribution,
etc.

Multi-tasks
Robustness N/A N/A -

Claimed for
potential N/A

ASD, BPD, SCZ, and
AD

Potential Utility in
Medicine

AD
diagnosis

Early AD
diagnosis -

Candidate
selection for
clinical traits

Identify
genes for
AD

Tailored therapeutic
strategies guides

This table summarizes key information from various studies focused on using computational
methods for AD research. Metrics such as AUC for internal and external validations, the dataset
sizes, potential utilities in medicine are included, as well as various qualitative traits.

Related to the supplementary section "LNCTP Training." This supplementary table relates to
main figure 8 and main text section "Imputing gene expression and prioritizing disease genes
across cell types with an integrative model.''
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Table S16. Network analysis of LNCTP perturbations.
Disease Perturbed Gene Proximity Type Correlation p-value

ASD ANKHD1-EIF4EBP3 Shortest Path (In) -0.19 0.09

BPD LINGO2 Shortest Path (In) -0.05 0.57

SCZ SF3B2 Shortest Path (In) -0.05 0.27

BPD MEF2A

PageRank -0.13 0

Shortest Path (Out) -0.1 0

Shortest Path (In) -0.08 0.15

SCZ RORA

PageRank -0.18 0

Shortest Path (Out) -0.17 0

Shortest Path (In) 0 0.95

SCZ TCF4

PageRank -0.18 0

Shortest Path (Out) -0.14 0

Shortest Path (In) -0.13 0.03

This table shows the correlation of different network proximity metrics of the perturbed genes to
the magnitude of the LNCTP-imputed gene expressions in the cell-type-specific GRNs.

More detail in the supplementary section "LNCTP Validation." This supplementary table relates
to main figure 8 and main text section "Imputing gene expression and prioritizing disease genes
across cell types with an integrative model.''
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Table S17. CLUE analysis of LNCTP perturbations.

Gene Bulk Astro Endo Exc Inh Micro Oligo OPC

ANKHD1 797 234 15 405 375 13 1808 253

ESRRG 184 52 105 403 89 413 325 206

ID1 400 402 756 389 119 9073 594 1005

LINGO2 431 791 346 25 16 1688 492 1454

MEF2A 335 283 118 8 11 2670 661 349

RORA 242 196 301 156 79 1289 673 4605

SF3B2 176 100 1101 421 1014 4688 774 722

TCF4 489 185 7 253 96 1063 347 385

This table shows the number of significant results (calculated using the Computing similarities
by Weighted Connectivity Score (WTCS) (42)) per gene per cell type (or bulk datasets).

More detail in the supplementary section "LNCTP Validation." This supplementary table relates
to main figure 8 and main text section "Imputing gene expression and prioritizing disease genes
across cell types with an integrative model.''
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Table S18. Significance of overlaps between CRISPR differentially expressed genes
(DEGs) and genes that are downstream of the 9 target TFs in (A) our weighted diffusion
network and (B) a hop-distance-based network.

(A) Diffusion-network-based results

TF → GLIS3 NR2F2 SOX5 PPARGC1
A

TAF1 MEF2C THAP1 EGR2 SPI1

DEGs in
CRISPR

data

218 642 1997 39 456 3 86 87 75

Overlaps
out of
11,489
genes

189 538 1643 26 364 2 60 62 55

-Log10(FDR)
of TF in

experiment

33.5 26.8 16.8 1.8 0.55 0.003 0.002 N/A N/A

Downstrea
m Overlaps

/ Total
(Quantile =

0.5)

128/5745

p-value:
0.0

341/5745

p-value:
0.0

1067/5745

p-value:
0.0

17/5745

p-value:
0.084

233/5745

p-value:
0.0

1/5745

p-value:
0.75

36/5745

p-value:
0.077

30/5745

p-value:
0.649

22/5745

p-value:
0.948

Downstrea
m Overlaps

/ Total
(Quantile =

0.6)

110/4596

p-value:
0.0

272/4596

p-value:
0.0

924/4596

p-value:
0.0

15/4596

p-value:
0.052

196/4596

p-value:
0.0

0/4596

p-value:
1.0

28/4596

p-value:
0.177

29/4596

p-value:
0.168

15/4596

p-value:
0.983

Downstrea
m Overlaps

/ Total
(Quantile =

0.7)

89/3447

p-value:
0.0

229/3447

p-value:
0.0

731/3447

p-value:
0.0

14/3447

p-value:
0.009

147/3447

p-value:
0.0

0/3447

p-value:
1.0

20/3447

p-value:
0.331

23/3447

p-value:
0.14

11/3447

p-value:
0.966

Downstrea
m Overlaps

/ Total
(Quantile =

0.8)

59/2298

p-value:
0.0

151/2298

p-value:
0.0

471/2298

p-value:
0.0

9/2298

p-value:
0.059

108/2298

p-value:
0.0

0/2298

p-value:
1.0

13/2298

p-value:
0.424

18/2298

p-value:
0.057

9/2298

p-value:
0.798

(B) Hop-network-based results

TF → GLIS3 NR2F2 SOX5 PPARGC1A TAF1 MEF2C THAP1 EGR2 SPI1

Downstrea
m DEG

Overlap /
Downstrea
m genes

vs
Total

Overlap /
Total genes

131/6846
vs

191/1166
7

p-value:
0.003

297/5160
vs

549/1170
8

p-value:
0.0

515/2573
vs

1680/11799

p-value:
0.0

14/3812
vs

26/11769

p-value:
0.019

261/6884
vs

368/11682

p-value:
0.0

2/9841
vs

2/11564

p-value:
0.724

42/6925
vs

60/11673

p-value:
0.058

32/6610
vs

63/11682

p-value:
0.855

42/8699
vs

56/11613

p-value:
0.565

The nine TFs (column headings) were selected based on intersecting our GRN TFs with the TFs
that were targets in the CRISPR experiments (103).

(A) For each target TF in our GRNs and in the CRISPR experiments, the diffusion scores to all
genes were calculated using the weighted GRNs for the 9 excitatory cell types as layers in a
framework that combines cross-layer information to get net “excitatory” diffusion scores for TF to
gene pairs. The scores for each of the 9 TFs were then thresholded at quantile values ranging
from 0.5 to 0.8 to determine which genes are “upstream” and which are “downstream” (see rows
4-7). We indicate how many downstream genes overlap with the DEGs out of the total number
of downstream genes. Also, shown are the total numbers of DEGs in the CRISPR experiments;
the numbers of those DEGs that are found in our 11,489 GRN genes; and the -Log10(FDR) value
for the DEG effect size (log2 Fold-change) for the target TF in the CRISPR experiment. The
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columns are ordered based on decreasing values for the -Log10(FDR), which indicates the
degree to which the intended CRISPR effect (either activation or interference) was observed.
(B) We used the hop-distance network generated by applying the igraph program on a
combined excitatory neuron GRN, which in turn was created as the union of all the GRN
connections in the excitatory subtypes: “downstream” and “upstream” directions are determined
by whether a target gene is reachable from a TF by following the directed connections in the
GRN (downstream) or if the TF is reachable from the gene (upstream); the distance between a
TF and up-/down-stream genes are found as the total number of steps needed within the GRN
to reach the target (a gene in the downstream case, the TF in the upstream case). We chose to
consider all genes within a hop-distance of 2 as downstream, and pooled all the downstream≤
genes with hop-distance > 2 and all upstream genes together as “upstream”. This is because
the high interconnectedness of the network meant that most genes were labeled as downstream
in igraph. Since the goal is to observe whether more proximal downstream genes show an
enrichment in CRISPR DEGs, we chose a hop-distance cutoff of 2 as reasonable.

The numbers of overlaps between the DEGs and the diffusion-based downstream genes in our
network, versus those in the total upstream+downstream list are then tested for significance
using the one-sided Fisher’s exact test (testing for a greater effect size in downstream genes).
We color-coded results as: p-values < 0.05 in red; p-values < 0.1 in blue; the remaining in black.

More detail in the supplementary section "LNCTP Validation." This supplementary table relates
to main figure 8 and main text section "Imputing gene expression and prioritizing disease genes
across cell types with an integrative model.''
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Supplementary Data Files
Data files related to Fig. 1 and main text section "Constructing a single-cell genomic
resource for 388 individuals'':

Data S1. Clinical and demographic metadata, cohort, and data modalities for all samples.

Data S2. Mapping of uniform IDs for each sample across sub-cohorts and data
modalities.
This file includes mapping between different IDs across snRNA-Seq, snATAC-Seq, and
genotype datasets.

Data S3. brainSCOPE input datasets and output resources generated for main and
supplemental figures.

Data S4. Normalized cell counts and fractions per individual from snRNA-Seq data.
Columns indicate cell type, cell counts, cell fraction, and relevant meta-data for each individual.

Data S5. Normalized cell fractions per individual from deconvolved bulk RNA-Seq data.

Data S6. Correlations between deconvolved and single-cell derived cell type fractions.

Data S7. Cell-type-specific DE genes for ASD, schizophrenia, and bipolar disorder.
This file lists significant (p<0.05, DESeq2 likelihood ratio test)DE genes in each comparison
(across all cell types for individuals with a particular disorder vs. control individuals); full results
are available on the brainSCOPE portal.

Data S8. Gene ontology functions of genes identified in pseudotime analysis.

Data files related to Fig. 2 and main text section "Determining regulatory elements for cell
types from snATAC-seq'':

Data S9. LDSC enrichment of UKBiobank GWAS traits for cCREs, b-cCREs, and scCREs.
The file is indexed by trait ID and includes -log(p-value) from the LDSC test. The column ‘UK
Biobank trait’ refers to the trait name/description in UKBB. The column ‘HPO phenotype
category’ refers to the phenotype ontology category. The column ‘brain’ refers to whether the
trait is brain-related. File .

Data S10. LDSC enrichment of PGC and PASS GWAS for cCREs, b-cCREs, and scCREs.
The file is indexed by trait ID and includes -log(p-value) from the LDSC test. The column ‘brain’
refers to whether the trait is brain-related.

Data S11. Enrichment Z-scores of TF binding motifs in distal and proximal scCREs.
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Data files related to Fig. 3 and main text section "Measuring transcriptome and
epigenome variation across the cohort at the single-cell level'':

Data S12. Total expression variation and variation from sample and cell type from
VariancePartition.
Note that this includes ~13k genes that meet the minimum QC requirements.

Data S13. Total expression variation and variation from sample, cell type, and brain
region from VariancePartition.

Data S14. Mapping between genes and gene families for variation analysis.

Data files related to Fig. 4 and main text section "Determining cell-type-specific eQTLs
from single-cell data'':

Data S15. Single-cell eGenes for 17 cell types from the core scQTL analysis.
This gene set was used for QTL-related functional analyses. The full set of scQTLs and eSNPs
are available on the brainSCOPE portal.

Data S16. Single-cell isoSNPs for 22 cell types from the isoQTL analysis.
isoSNPs were filtered for isoGene-specific nominal p-value thresholds (permuted beta
distribution-derived p<0.05 filter).

Data S17. Annotation of core scQTL eGenes for brain-related diseases and traits.
Diseases and traits include ASD, schizophrenia, bipolar disorder, and Alzheimer’s
disease/aging. “X” annotations in each of the four disease columns indicate if an eGene is
associated with a disease.

Data S18. Dynamic eQTLs identified with the PME model for SNP terms only.

Data S19. Dynamic eQTLs identified with the PME model for SNP and interaction terms.

Data files related to Fig. 5 and main text section "Building a gene regulatory network for
each cell type”:

Data S20. SCENIC-derived scores for regulons in 24 cell types.
Scores for regulons (TF and all target genes) were used as inputs for constructing the final
GRNs.

Data S21. Overlap of scQTLs with enhancer and promoter elements in GRNs.

Data S22. Validation of GRN-predicted enhancers in targeted CRISPR knockout
experiments.
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This file details expression of the target genes before and after CRISPR knockout of the linked
enhancers, as predicted by peak2gene linkages.

Data S23. Cell-type-specific "in-hub", “out-hub”, and “bottleneck” genes in GRNs.
The matrix lists whether a TF was identified as an in-hub, out-hub, or bottleneck (1) or not (0) in
each cell type.

Data S24. Gene ontology enrichment for bottleneck genes in cell-type-specific GRNs.
Columns represent gene ontology terms, p-value, FDR, signature, gene set count, overlap
count, background, count cell type, TF, and enrichment score.

Data files related to Fig. 6 and main text section "Constructing a cell-to-cell
communication network”:

Data S25. Ligand-receptor signaling patterns across cell types for control, schizophrenia,
and bipolar disorder.
File lists all interactions between ligand-receptors in different cell types, along with the strength
of interaction and annotations for interaction type and pathway.

Data S26. Signaling pathway patterns across cell types for control, schizophrenia, and
bipolar disorder.
These files contain sets of ligand-receptor signaling patterns across cell types, summarized by
signaling pathway. File lists all signaling pathway interactions in different cell types, along with
the strength of interaction and annotations for interaction type.

Data files related to Fig. 7 and main text section "Constructing a cell-to-cell
communication network”:

Data S27. Correlation and linear model associations between cell-type fraction and age.
File lists correlations and p-values/FDRs from GLMs (with age, biological sex, and genotype
ancestry covariates) comparing age and cell-type fractions from bulk RNA-Seq deconvolution
(table A) and scRNA-Seq (table B).

Data S28. Comparison of cell-type-specific DE genes in aging and AD.
File contains an inner join of cell-type-specific aging DE genes (identified in this study) and AD
DE genes from (115).

Data S29. Performance of AD model predictions by cell type and data modality.
File contains AUPRC values for cell types and data modalities (rf.meth=methylation,
rf.expr=expression) from the AD model predictions.
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Data files related to Fig. 8 and main text section "Imputing gene expression and
prioritizing disease genes across cell types with an integrative model”:

Data S30. Salience and coheritability estimates for LNCTP prioritized genes by disorder.
File contains gene lists with salience and coheritability values for schizophrenia, bipolar
disorder, ASD, and AD (p-values based on Pearson Correlation).

Data S31. Salience and coheritability estimates for prioritized cell types by disorder.
P-values in the file are based on Pearson Correlation.

Data S32. Salience and coheritability estimates for prioritized cell-to-cell interactions by
disorder.
P-values in the file are based on Pearson Correlation.

Data S33. Prior literature and GWAS support for LNCTP prioritized genes.
This file contains citations for literature supporting LNCTP gene prioritization results as follows:
(100, 237–249)
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