

### Supplementary Fig. 1. Generation of Hs3st3a1;Hs3st3b1 DKO mice

**a** Sequence alignment of ZFN-induced deletions in *Hs3st3a1* sequence from three different founders compared to the WT sequence. Deletion length: B9=10bp, B14=26bp, D6=22bp. The red letters are the ZFN binding site and the underlined letters are the ZFN cut site. **b** Direct sequencing of the *Hs3st3a1* PCR amplicons from the founder line D6. **c** Genotyping for detection of *Hs3st3b1* PCR product based on detection of the WT allele (lower band) and the targeting vector (Neomycin cassette- upper band). **d-f** Mass spec analysis of HS disaccharides and tetrasaccharides in adult SMGs. Analysis of HS disaccharide (**d**) and tetrasaccharide (**e**) composition between WT and *Hs3st3a1* (3A1) and *Hs3st3b1* (3B1) single KO male SMGs.  $\triangle$ UA2S-GlcNAc6S not detected in *SMGs*.  $\triangle$ UA-GlcNS6S-IdoA2S-GlcNS3S6S not detected in *Hs3st3a1* (3A1) and *Hs3st3b1* (3B1) SMGs.  $\triangle$ UA-GlcNAc6S-GlcA-GlcNS3S6S not detected in *Hs3st1* KO. 3-4 glands were pooled together for each sample, *n*=3 samples per group and stacked graphs are showing average for each group. Paired two-tailed t-test performed. **f-g** Analysis of HS disaccharides (**g**) of adult female and male WT and DKO SMGs. For the HS analysis, 3-4 glands were pooled together for each sample, *n*=3 samples per group. Unpaired two-tailed t-test performed. **t-g** Analysis of HS disaccharides (**f**) and tetrasaccharides (**g**) of adult female and male WT and DKO SMGs. For the HS analysis, 3-4 glands were pooled together for each sample, *n*=3 samples per group. Unpaired two-tailed t-test performed. **t-g** Analysis of HS disaccharides (**f**) and tetrasaccharides (**g**) of each group. Unpaired two-tailed t-test performed. **t-g** Analysis of HS disaccharides (**g**) of adult female and male WT and DKO SMGs. For the HS analysis, 3-4 glands were pooled together for each sample, *n*=3 samples per group and graphs are showing average for each group. Unpaired two-tailed t-test performed. **t-g** Analysis of HS disaccharides (**g**) of adult female and male WT and DKO SMGs. For the HS analysis, 3-4 glands





# Supplementary Fig. 2. RNAseq analysis of female DKO SMGs also showed reduced MEC and duct gene expression and increased expression of acinar gene, while GO analysis suggests cell processes that may be affected.

**a** Heat maps of DEGs expressed by MEC, ductal and acinar cells in female DKO SMGs (n=3) compared to WT (n=3). The color scale represents scaled gene expression values. DEGs met the criteria for significance in our dataset (p-Value < 0.05 and fold change >2) obtained using a non-parametric Wald test with Benjamini-Hochberg adjustment.



#### Supplementary Fig. 3. LACE assay binding is HS-dependent and other FGF:FGFR complexes also increase binding to DKO HS.

**a** Binding of FGF10:FGFR2b-Fc complex overlapping with COLIV, a basement membrane protein, is increased in DKO female SMGs. Representative images of single confocal sections from WT and DKO SMGs showing FGFR2b-Fc (green), COLIV (magenta), and E-cadherin (ECAD, cyan). Scale bar: 10  $\mu$ m. **b** Quantification of A and B protein fluorescence intensity normalized to total nuclei and expressed as a fold change compared b WT. *n*=5 SMGs for each genotype. Error bars: SM. Unpaired two-tailed t-test compared to WT, LACE \*\**p*=0.0229, COLIV \**p* = 0.0450. **c** Heparinase III and chondroitinase ABC treatment confirms the binding of FGF10:FGFR2b-Fc is dependent on HS. Representative images of single confocal sections from WT and DKO SMGs showing FGF1:FGFR2b-Fc complex (green) binding on sections pretreated with heparinase III is abolished but not with chondroitinase ABC treatment. *n*=3 SMGs. Scale bar: 10  $\mu$ m. **d** Binding of FGF1:FGFR2b-Fc and FGF7:FGFR2b-Fc complexes, but not FGF1:FGFR1b-Fc, to basement membrane HS is increased in *Hs3st3* DKO male SMGs. Representative images of single confocal sections from WT and *Hs3st3* DKO SMGs showing FGFR2b-Fc (green). Scale bar: 10  $\mu$ m. **e** Quantification of protein fluorescence intensity normalized to total nuclei and expressed as a fold change compared to WT. *s*\*\**p* < 0.0001 for FGF7:FGFR2b-Fc, \*\* *p* < 0.0012 or not significant (ns). Source data are provided as Source Data file.



#### Supplementary Fig. 4. Analysis of saliva proteins from WT and DKO mice.

**a** Western blot showing phospho-Erk in total lysate of female DKO SMGs compared to WT. Representative blot of n=7 WT and n=9 DKO SMG lysates. Source data with full blots are provided as Source Data file. **b** Quantification of pERK staining in acini and ducts normalized to nuclei shown as fold change normalized to WT. Graph shows Mean  $\pm$  SM. n=9 (WT) and n=10 (DKO) SMGs. Unpaired two-tailed t-test compared to WT, \*\* p=0.0092. **c** Salivary flow rates in adult female mice collected after pilocarpine stimulation. Saliva flow normalized to the WT and shown as %. Mean  $\pm$  SM. n=15 WT and n=15 DKO mice. Unpaired two-tailed t-test, ns. **d** There are no obvious differences in protein expression profiles in DKO SMGs. Saliva (15 µl) from female and male mice were analyzed by 4-12% gradient SDS-polyacrylamide gels stained with Coomassie Blue. n=5 (WT-male), n=6 (DKO-male), n=6 (DKO-male), n=6 (DKO-female) mice saliva samples. Each lane represents individual biological sample. **e** Quantification of protein concentration in saliva assessed using BCA assay. Graph shows Mean  $\pm$  SM. n=10 (WT-male), n=12 (DKO-male), n=18 (DKO-female) mice saliva samples. No significant differences detected compared to WT samples using unpaired two-tailed t-test. Source data are provided as Source Data file.



### Supplementary Fig. 5. qPCR of E13 DKO SMGs does not reveal major transcriptional changes.

Gene expression changes in freshly dissected E13 DKO SMGs were normalized to WT control and *Rps29*. Error bars: SM. *n*=9 SMGs for WT except for *Hs3st3a1*, *Ndst1*, *Ndst2*, *Ndst3*, *Ndst4*: *n*=8, *Hs3st5*: *n*=7 and *Hs3st4*, *Hs3st6*, *Glce*, *Hs2st1*, *Hs6st1* and *Hs6st2*: *n*=4. *n*=10 SMGs for DKO except for *Hs3st3a1*, *Hs3st2*, *Hs6st3*, *Ndst1*, *Ndst2*, *Ndst3*, *Ndst4*: *n*=8, and *Hs3st4*, *Hs3st6*, *Glce*, *Hs2st1*, *Hs6st1* and *Hs6st2*: *n*=4. *n*=10 SMGs for DKO except for *Hs3st3a1*, *Hs3st2*, *Hs6st3*, *Ndst1*, *Ndst2*, *Ndst3*, *Ndst4*: *n*=8, and *Hs3st4*, *Hs3st6*, *Glce*, *Hs2st1*, *Hs6st1* and *Hs6st2*: *n*=4. Unpaired two-tailed t-test compared to WT, *Hs3st3a1* \*\*\* *p* < 0.0001, *Hs3st3b1* \*\*\* *p* < 0.0001. Source data are provided as Source Data file.



# Supplementary Fig. 6. P2 DKO MECs cultured on collagen IV for 7 days are similar to WT MECs in gene expression and appearance, but the RNA concentration is decreased.

**a** Dot plot of HSPGs and basement membrane expression from E16 SMG scRNA seq data (GSE150327). **b** Brightfield image of WT and DKO MEC cultured on collagen IV for 7 days. Scale bar: 50  $\mu$ m. Representative images of WT and DKO MEC cultured on collagen IV for 7 days stained with SMA (cyan), CNN1 (yellow) or NGF (green). Scale bar = 50  $\mu$ m. *n*=3 independent experiments. **c** Quantification of RNA is shown in %. Data for each experiment normalized to WT. WT *n*=13 and DKO *n*=13. Error bars: SM. Unpaired two-tailed t-test compared to WT, \*\*\**p* < 0.0001. Quantification of immunostaining showed similar protein expression levels in DKO compared to WT. Each datapoint is one area. Error bars: SM. **d** Gene expression of isolated P2 MEC cultured for 7 days on collagen IV in MEC growth media. Data for each experiment normalized to WT. WT *n*=6 with 16 total replicate wells and DKO *n*=5 with 19 total replicate wells. Error bars: SM. Unpaired two-tailed t-test compared to WT, ns. Source data are provided as Source Data file.

a) Weaned mice from Hs3st1 X Hs3st3b1

| Hs3st3b1 | Hs3st1<br>WT HET KO |    |    |
|----------|---------------------|----|----|
| WT       | 9                   | 14 | 11 |
| HET      | 20                  | 46 | 11 |
| КО       | 8                   | 17 | 0  |

E13 embryos from Hs3st1 X Hs3st3b1

|        | Hs3s <i>t3b1</i><br>WT HET KO |    |    |
|--------|-------------------------------|----|----|
| Hs3st1 |                               |    |    |
| WT     | 6                             | 12 | 3  |
| HET    | 6                             | 23 | 13 |
| KO     | 6                             | 3  | 1  |

E11.5 embryos from double HET Hs3st1 X Hs3st3b1

|          | <i>н</i><br>wт | √s3si<br>HET | t1<br>KO |
|----------|----------------|--------------|----------|
| Hs3st3b1 |                |              |          |
| WT       | 1              | 1            | 0        |
| HET      | 1              | 5            | 2        |
| КО       | 2              | 1            | 0        |

E11.5 embryos from Hs3st1-/-;Hs3stsb1+/- X DHET

|          | Hs3st1 |     |    |
|----------|--------|-----|----|
|          | WΤ     | HET | ко |
| Hs3st3b1 |        | _   |    |
| WT       | 0      | 0   | 0  |
| HET      | 4      | 4   | 1  |
| КО       | 5      | 5   | 3  |



## Supplementary Fig.7. Hs3st1; Hs3st3b1 DKO mice die at ~E11.5

**a** Analysis of breeding crosses to obtain Hs3st1;Hs3st3b1 DKO embryos. **b** Hs3st1;Hs3st3b1 DKO embryos develop until ~11.5. Two sagittal sections of each genotype stained with H&E suggest that heart development is disrupted, which may lead to embryonic lethality. Representative images of n=3 embryos. Scale bar: 500 µm.

## Supplementary Table 1a. KEGG pathways in male Hs3st3a1; Hs3st3b1 DKO SMGs (related to Fig. 2).

| Term                               | P-value  | # Genes | Genes                                                                                                                                                                           |
|------------------------------------|----------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Renin-angiotensin system           | 4.57E-10 | 12      | KLK1B11;KLK1B8;KLK1B22;KLK1B21;KLK1B9;KLK1;KLK1B26;KLK1B3;KLK1B24;KLK1B5;KLK1B1;AGT                                                                                             |
| Endocrine and calcium reabsorption | 9.35E-08 | 12      | KLK1B8;KLK1B11;KLK1B22;KLK1B21;KLK1B9;KLK1;KLK1B26;KLK1B3;KLK1B24;FXYD2;KLK1B5;KLK1B1                                                                                           |
| PI3K-Akt signaling pathway         | 8.73E-07 | 30      | LAMA2;ITGB3;LPAR1;TNC;PDGFA;TGFA;FGF1;THBS1;HSP90B1;KLK1B4;FGF9;CREB3L4;CREB3L1;PDGFD;GNG7;AKT3;CH<br>AD;ITGB6;EIF4B;PCK2;YWHAH;NGFR;LAMB3;EGF;NGF;PRLR;VEGFA;NR4A1;COL6A2;SGK1 |
| Focal adhesion                     | 1.09E-06 | 21      | JUN;SHC2;PPP1R12A;LAMA2;LAMB3;EGF;ITGB3;TNC;PDGFA;THBS1;MYL12A;MYLK;VEGFA;PAK1;PDGFD;COL6A2;AKT3;<br>CHAD;FLNA;ITGB6;MYL9                                                       |
| MAPK signaling pathwa y            | 5.04E-05 | 23      | DUSP4;NGFR;JUN;TGFB2;GADD45A;EGF;PDGFA;TGFA;FGF1;NGF;VEGFA;MAPK13;NR4A1;PAK1;CACNB3;KLK1B4;FGF9;P<br>DGFD;AKT3;RPS6KA1;FLNA;CD14;MAPT                                           |
| Thyroid hormone synthesis          | 8.27E-05 | 10      | TTR;HSPA5;CREB3L4;CREB3L1;FXYD2;DUOXA2;GPX7;DUOX2;PDIA4;HSP90B1                                                                                                                 |
| Synaptic vesicle cycle             | 1.31E-04 | 11      | UNC13B;ATP6V1G1;SLC6A9;STXBP1;SLC1A2;SLC1A3;STX3;ATP6V1E1;ATP6V0E;ATP6V1C2                                                                                                      |
| Collecting duct acid secretion     | 1.48E-04 | 6       | ATP4A;ATP6V1G1;ATP6V1E1;SLC12A7;ATP6V1C2;ATP6V0E                                                                                                                                |
| ECM-receptor interaction           | 2.45E-04 | 10      | SV2C;LAMA2;LAMB3;ITGB3;COL6A2;CHAD;TNC;ITGB6;THBS1;CD44                                                                                                                         |
| Protein digestion and absorption   | 4.75E-04 | 10      | KCNK5;DPP4;SLC15A1;SLC7A7;COL6A2;FXYD2;SLC3A2;SLC1A5;KCNN4;SLC38A2                                                                                                              |
| Glutathione metabolism             | 7.90E-04 | 8       | GSTM2;GCLC;NAT8;GSTO1;NAT8F1;G6PDX;GPX7;GGT1                                                                                                                                    |
| Regulation of actin cytoskeleton   | 0.0013   | 16      | PPP1R12A;EGF;ITGB3;LPAR1;PDGFA;FGF1;MYL12A;MYLK;PAK1;FGF9;PDGFD;TMSB4X;ITGB6;EZR;MYL9;PFN2                                                                                      |
| Glycine, serine and threonine      |          |         |                                                                                                                                                                                 |
| metabolism                         | 0.0014   | 6       | SHMT2;PSAT1;SARDH;PHGDH;PSPH;GNMT                                                                                                                                               |
| Phagosome                          | 0.0016   | 14      | ATP6V1G1;ITGB3;STX7;THBS1;DYNC1U2;TUBB2B;TUBA1A;TUBB2A;CTSL;CD14;NOS1;ATP6V1E1;ATP6V1C2;ATP6V0E                                                                                 |
| Proteoglycans in cancer            | 0.0017   | 15      | TGFB2;CAMK2D;PPP1R12A;ITGB3;THBS1;VEGFA;MAPK13;PAK1;CTSL;AKT3;FLNA;EZR;CD44;EIF4B;WNT4                                                                                          |
| Adrenergic signaling               | 0.0022   | 12      | CACNB3;CAMK2D;CREB3L4;CREB3L1;TPM2;FXYD2;AKT3;TPM1;ADRA1A;SCN1B;AGT;MAPK13                                                                                                      |

## Supplementary Table 1b. KEGG pathways in female *Hs3st3a1; Hs3st3b1* DKO SMGs (Related to Fig. 2).

| Term                                | P-value  | # Genes | Genes                                                                                                   |
|-------------------------------------|----------|---------|---------------------------------------------------------------------------------------------------------|
| Renin-angiotensin system            | 1.35E-12 | 13      | KLK1B11;KLK1B22;KLK1B21;MME;KLK1B26;KLK1B24;LNPEP;AGT;KLK1B8;KLK1B9;KLK1B3;KLK1B5;KLK1B1                |
|                                     |          |         | CSF3R;ITGA4;MME;ITGB3;CD3G;IL6RA;H2-AA;H2-EA-PS;H2-DMB2;CD4;CD8A;KITL;KIT;H2-OB;CD37;IL7R;CD22; H2-     |
| Hematopoietic cell lineage          | 1.20E-11 | 18      | AB1                                                                                                     |
|                                     |          |         | CD274;VCAM1;ITGA4;SDC2;SDC3;H2-Q4;ITGAL;H2-AA;ICAM1;H2-EA-PS;H2-DMB2;CD4;CD8A;H2-                       |
| Cell adhesion molecules (CAMs)      | 3.99E-08 | 19      | OB;ITGA8;SIGLEC1;H2-D1;CD22;H2-AB1                                                                      |
| Staphylococcus aureus infection     | 7.77E-08 | 14      | C1QB;C1QA;CFH;FGG;ITGAL;H2-AA;ICAM1;C4B;H2-EA-PS;H2-DMB2;C1S1;FCGR4;H2-OB;H2-AB1                        |
| Malaria                             | 2.48E-07 | 10      | VCAM1;LRP1;SDC2;HBA-A2;HBB-BT;HBA-A1;HBB-BS;ITGAL;THBS2;ICAM1                                           |
| Aminoacyl-tRNA biosynthesis         | 5.43E-07 | 11      | CARS;NARS;YARS;VARS;RARS;MARS;SARS;TARS;GARS;EPRS;AARS                                                  |
| Endocrine and calcium reabsorption  | 7.74E-07 | 10      | KLK1B8;KLK1B11;KLK1B22;KLK1B21;KLK1B9;KLK1B26;KLK1B3;KLK1B24;KLK1B5;KLK1B1                              |
| Th1 and Th2 cell differentiation    | 8.92E-06 | 12      | H2-EA-P5;H2-DMB2;CD4;MAF;NOTCH1;LCK;IL2RB;H2-OB;CD3G;H2-AA;H2-AB1                                       |
| Viral myocarditis                   | 8.92E-06 | 11      | H2-EA-P5;H2-DMB2;LAMA2;H2-OB;H2-Q4;FYN;ITGAL;H2-AA;H2-D1;ICAM1;H2-AB1                                   |
|                                     |          |         | COLEC12;ITGB3;H2-Q4;CYBB;THBS2;H2-AA;H2-EA-PS;SEC61A1;H2-DMB2;FCGR4;MRC1;H2-OB;ATP6V0A4;TLR6;H2-        |
| Phagosome                           | 9.66E-06 | 16      | D1;H2-AB1                                                                                               |
| Antigen processing and presentation | 1.24E-05 | 11      | H2-EA-P5;H2-DMB2;CD74;CIITA;CD4;CD8A;H2-OB;H2-Q4;H2-AA;H2-D1;H2-AB1                                     |
| Rap1 signaling pathway              | 1.66E-05 | 17      | PDGFRA;EGF;ITGB3;PIK3CD;CALML3;PIK3R1;ITGAL;NGF;ADCY7;RAP1GAP;KLK1B4;KITL;KIT;P2RY1;LCP2;SKAP1;EPHA2    |
| Natural killer cell cytotoxicity    | 3.32E-05 | 12      | VAV3;TYROBP;KLRK1;FCGR4;LCK;PIK3CD;LCP2;FYN;PIK3R1;ITGAL;H2-D1;ICAM1                                    |
| Focal adhesion                      | 3.37E-05 | 16      | VAV3;PDGFRA;PPP1R12A;ITGA4;LAMA2;EGF;ITGB3;PIK3CD;PIK3R1;THBS2;MYLK;ITGA8;FLNA;FYN;MYL9;VCL             |
| Human T-cell leukemia virus 1       |          |         | H2-Q4;PIK3CD;CD3G;PIK3R1;ITGAL;ADCY7;H2-AA;ICAM1;H2-EA-P5;H2-DMB2;CD4;CREB3L4;LCK;CREB3L1;IL2RB;H2-     |
| infection                           | 3.70E-05 | 18      | OB;H2-D1;H2-AB1                                                                                         |
| Systemic lupus erythematosus        | 5.17E-05 | 13      | C1QB;C1QA;H2-AA;C4B;H2-EA-PS;H2-DMB2;C1S1;FCGR4;H2AFJ;H2-OB;TRIM21;HIST1H2BC;H2-AB1                     |
| Leukocyte migration                 | 1.23E-04 | 11      | VAV3;ITK;VCAM1;ITGA4;CYBB;PIK3CD;PIK3R1;ITGAL;MYL9;VCL;ICAM1                                            |
| T cell receptor signaling pathway   | 1.86E-04 | 10      | VAV3;ITK;CD4;CD8A;LCK;PIK3CD;CD3G;LCP2;FYN;PIK3R1                                                       |
| Th17 cell differentiation           | 2.02E-04 | 10      | H2-EA-PS;H2-DMB2;CD4;LCK;IL2RB;H2-OB;CD3G;IL6RA;H2-AA;H2-AB1                                            |
|                                     |          |         | PDGFRA;CSF3R;ITGA4;LAMA2;EGF;ITGB3;PIK3CD;IL6RA;PIK3R1;NGF;THBS2;KLK1B4;CREB3L4;KITL;CREB3L1;KIT;IL2RB; |
| PI3K-Akt signaling pathway          | 2.12E-04 | 21      | EIF4EBP1;ITGA8;IL7R;EPHA2                                                                               |
| Rheumatoid arthritis                | 2 13F-04 | 9       | H2-FA-PS:H2-DMB2:H2-OB:ATP6//044:LTB:LTG4L:H2-AA:LCAM1:H2-AB1                                           |

The *p*-values for KEGG analysis tables are derived using right-tailed Fisher's exact t-test followed by a Benjamini-Hochberg adjustment.

### Supplementary Table 2

| REAGENT/RESOURCE                                                                                                         | SOURCE                                                                              | IDENTIFIER     | Dilution                         |
|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------|----------------------------------|
| Antibodies                                                                                                               | SUCKEL                                                                              |                | Dilution                         |
| HS4C3V single-chain HS Ab                                                                                                | Toin H. van Kuppevelt<br>(Radboud University<br>Medical Center, The<br>Netherlands) | N/A            | 1:50                             |
| Anti-VSV glycoprotein-Cy3                                                                                                | Sigma                                                                               | C7706          | 1:100                            |
| Antithrombin III labeled with<br>Alexa Fluor 488 (AT488)                                                                 | Dr. Nicholas Shworak<br>(George Washington<br>University)                           | N/A            | 100 nM                           |
| Anti-heparan sulfate<br>proteoglycan (perlecan)                                                                          | Millipore Sigma                                                                     | mAb1948        | 1:200                            |
| Anti-E-cadherin (2AE10)                                                                                                  | Cell Signaling                                                                      | mAb#3195       | 1:100                            |
| Anti-E-cadherin                                                                                                          | BD Biosciences                                                                      | #610182        | 1:200                            |
| Anti-Smooth muscle actin                                                                                                 | Millipore Sigma                                                                     | A2547          | 1:200                            |
| Anti-Aquaporin 5                                                                                                         | Alomone Labs                                                                        | AQP-005        | 1:100                            |
| Acinar-1 antibody                                                                                                        | DSHB                                                                                | 3.7A12         | 1:100                            |
| Anti-calponin (CNN1)                                                                                                     | Abcam                                                                               | ab46794        | 1:100                            |
| Anti-keratin 14                                                                                                          | BioLegend                                                                           | PRB-155P       | 1:2000                           |
| Anti-Mucin 13                                                                                                            | Santa Cruz<br>Biotechnology                                                         | Sc-390115      | 1:100                            |
| Anti-Mucin10 (Prol1)                                                                                                     | Everest Biotech                                                                     | EB10617        | 1:200                            |
| Anti-Collagen TIV                                                                                                        | Millipore Sigma                                                                     | AB769 (goat)   | 1:200                            |
| Anti-Collagen TIV                                                                                                        | Millipore Sigma                                                                     | AB756 (rabbit) | 1:200                            |
| Anti-NGF                                                                                                                 | Alomone Labs                                                                        | AN-240         | 1:100                            |
| Anti-agrin                                                                                                               | R & D                                                                               | AF550          | 1:100                            |
| Anti-beta-actin                                                                                                          | Santa Cruz<br>Biotechnology                                                         | Sc-47778       | 1:5,000                          |
| p44/p42 (Erk1/2)                                                                                                         | Cell signaling                                                                      | #9102          | 1:2000                           |
| phospho-p44/p42 MAPK<br>(Erk1/2) (Thr202/Tyr204)                                                                         | Cell signaling                                                                      | #4370          | 1:1000 (WB)<br>1:100 (IF)        |
| tight junction protein 1 ZO-1                                                                                            | Invitrogen                                                                          | 339100         | 1:200                            |
| anti-Delta-heparan sulfate 3G10                                                                                          | Asmbio LLC                                                                          | 370260-1       | 1:2000 (WB) 1:200<br>(IF)        |
| Anti-EGF                                                                                                                 | Dr. Edward W.Gresik                                                                 |                | 1:100                            |
| All dye-conjugated secondary antibodies                                                                                  | Jackson<br>ImmunoResearch<br>Laboratories                                           |                | 1:200                            |
| Alexa Fluor® 488 AffiniPure<br>F(ab') <sub>2</sub> Fragment Donkey Anti-<br>Human IgG, Fcγ fragment<br>specific antibody | Jackson<br>ImmunoResearch<br>Laboratories                                           | 709-546-098    | 1:200                            |
| Anti-mouse IgG, HRP-linked antibody                                                                                      | Cell Signaling                                                                      | #7076          | 1:10,000                         |
| Anti-rabbit IgG, HRP-linked<br>antibody                                                                                  | Cell Signaling                                                                      | #7074s         | 1:10,000                         |
| Beta-actin (13E5) Rabbit mAb<br>(HRP conjugate)                                                                          | Cell Signaling                                                                      | #51258         | 1:1,000                          |
| Chemicals, recombinant<br>proteins, and enzymes                                                                          |                                                                                     |                |                                  |
| DAPI (Dihydrochloride)                                                                                                   | Millipore Sigma                                                                     | 268298         | 1:10000                          |
| Hoechst                                                                                                                  | Jackson Immunoresearch<br>Laboratories                                              | 715-165-150    | 1:10,000                         |
| Recombinant mouse FGFR1<br>beta (IIIb) Fc chimera protein                                                                | R & D Systems                                                                       | 765-FR-050     | 50 nM (LACE)<br>125nM (Pulldown) |

| Recombinant mouse FGFR2<br>beta (IIIb) Fc chimera protein   | R & D Systems       | 708-MF-050           | 50 nM (LACE)                     |
|-------------------------------------------------------------|---------------------|----------------------|----------------------------------|
| Recombinant mouse FGFR2<br>alpha (IIIb) Fc chimera protein  | R & D Systems       | 663-FR-050           | 125nM (Pulldown)                 |
| Recombinant human FGF1 protein                              | R & D Systems       | 232-FA-025           | 50 nM (LACE)<br>125nM (Pulldown) |
| Recombinant human FGF2 protein                              | R & D Systems       | 233-FB-025           | 125nM (Pulldown)                 |
| Recombinant human FGF7 protein                              | R & D               | 251-KG-050           | 50 nM (LACE)<br>125nM (Pulldown) |
| Recombinant human FGF10<br>protein                          | R &D                | 345-FG-025           | 50 nM                            |
| Heparinase III (heparitinase 1)<br>Flavobacterium heparinum | Amsbio LLC          | AMS.HEP-ENZ<br>III-S | 0.020 IU/mL                      |
| Chondroitinase ABC                                          | Amsbio LLC          | AMS.E1028-02         | 0.040 IU/mL                      |
| proteinase K solution                                       | Bioline             | BIO-37084            | 0.5 mg/mL                        |
| Xylene substitute                                           | Millipore Sigma     | A5597                |                                  |
| Mouse on Mouse blocking reagent                             | Vector Laboratories | MKB-2213-1           | 1:12.5                           |

| Primers  |                                   |                                |
|----------|-----------------------------------|--------------------------------|
| Gene     | Forward primer                    | Reverse primer                 |
| Acta2    | GCATGGATGGCATCAATCAC              | ACCTATCTGGTCACCTGTATGTA        |
| Agr2     | ACCCTTGCGGCTCACACA                | CCGAGAGTCCTTTGGGTCCTTT         |
| Agrn     | CCCACCCTCCGAGCCTACCACAC           | ACAGAGCCAGAGCCAGGAAATCTTTGC    |
| Agt      | CCGACTAGATGGACACAAGGT             | AGCCTGGAGCAGTGAAGAG            |
| Aqp5     | TCTACTTCTACTTGCTTTTCCCCTCCTC      | CGATGGTCTTCTTCCGCTCCTCTC       |
| Bhlha15  | TCGCTGACCGCCACCATACTTAC           | CTGCTGCTGCTGCTGCTGTTG          |
| (Mist1)  |                                   |                                |
| Ccnd1    | CTTAATGTGATTACCGCTGTATTCC         | CCTGACTGCTGTGATGCTATG          |
| Ceacam10 | AACTGGAACCGAACTCTGGGAAAG          | GGTGGAAGGAGGTGAAGCAAGGC        |
| Cldn10   | CGGGAACCAGCGAGAGCG                | ATGGAGACTACGAAGGCGACGATT       |
| Cnn1     | CGCACAACTACTACAACTC               | CCCAAACCGTAACCCTATA            |
| Col4a1   | GGTGTTGATGGCTTGCCTGGAGAG          | GCCTGGTTGCCCTTTGAGTCCTG        |
| Col4a2   | GCAGCCTGGTGTACTCGGTCTTCC          | TGGTCGCCTTTGGGTCCTTTGGG        |
| Col9a2   | GCAATCAATGGCAAGGATGG              | TGAGGCGAGCAGAGGTATAG           |
| Col18a1  | CCCACCCTCTCACTTGCTCATACTC         | CCACGGCTCGGGCTTGCTG            |
| Ctgf     | GCGTCCAGACACCAACCT                | ACCAAGGCGAGGCTGATG             |
| Egf      | CACTGGTCCTGCTGCTCCTCTTGG          | CTGCTGCTCACACTTCCGCTTGG        |
| Erbb3    | ATGTGACGGGCTCTGAGGCTGAAC          | ACGGGAGTAAGCAGGCTGTGTCG        |
| Etv4     | CGCACAGACTTCGCCTACGACTCAG         | CATAGCCATAACCCATCACTCCATCACCTG |
| Etv5     | AAGCCCTTCAAAGTGATAGCGGAGAC        | GTGTCCACAAACTTCCTCTTTCTGTCAATC |
| Fgfl     | GCACCGTGGATGGGACAAGGGACAGGAG      | CACTTCGCCCGCACTTTCCGCACTGAG    |
| Fgf7     | CAGCCCCGAGCGACACACCAGAAGTTATG     | TCCTGGGTCCCTTTCACTTTGCCTCGTTTG |
| Fgf9     | GATAGCCAAACCACTCTCTC              | CATGTCCTTCAACACTGCTT           |
| Fgf10    | TCTTCCTCCTCCTCGTCCTTCTCCTCCTCCTCC | CCGCTGACCTTGCCGTTCTTCTCAATCG   |
| Fgfr1b   | AGAGCGGGGGAGTATGTGTGTAAGGTTTC     | TGGTGACAGTGAGCCACGCAGAC        |
| Fgfr2b   | TGGCTCTGTTCAATGTGACGGAGATGGATG    | AGGCGCTTGCTGTTTGGGCAGGAC       |
| Glce     | CATTTCTTGAGAGGGAGTGAGCATTTGTTG    | GCTTATGTATGTGACCGTGAAACCTGAAC  |
| Gpc3     | GAGACTGCGGTGATGATG                | TTCTGATTTCCATGCTGCT            |
| Hs3st1   | CCATCCGCCTGCTGCTTATCCTGAG         | AGCCGACCGTCCCGCATTAGG          |
| Hs3st2   | TCCCTCGGTCCTCTGTGCCCTAC           | TTCATCTCAGCCAATGTCGTTTCTAAGTCC |
| Hs3st3a1 | GGTGATGTCTCCTCCCTTCCCTGTC         | CGTGCTCCTCGCTAAACCAATTTAATTCC  |
| Hs3st3b1 | GCGGGCATTGCTGGAGTTCCTG            | GGGTTCTGGGCATCAAGTCTCGGTAC     |
| Hs3st4   | ACCCAGATGTCATCCATAGACTTCG         | TCACTTATCACCCTCTTCCTGTTCC      |
| Hs3st5   | CCTCACTGACTGTTGCTCTT              | GGAGGAGGTTCGCATTCT             |
| Hs3st6   | GCCATTCAACCGCAAGTTCTACCAG         | GTGAGCCAGCAGACAGACATAAATTAAAGG |
| Hs2st1   | GCTCTGCTGTCACCTTCCTGCTG           | GCCATCTTCCTTAGTCCTCACAACATCC   |
| Hs6st1   | TGAGAGGAATTTGTTTAGATGCCCAGTTTAG   | TGACAGAAGCAGCAGCAACCAAC        |
| Hs6st2   | CGGCGGTGGTGGATGGCAAG              | GGCTTTGTGGAGGATGGAGAGTTGG      |

| Hs6st3       | CCTGGCTCTTCTCCCGCTTCTCC        | AATTCCTGGTGTGGCTGTGGGTTGC        |
|--------------|--------------------------------|----------------------------------|
| Ndst1        | TGGCTGGTTTCTGTTTGGATTCTGTTTCTG | AATGGCTGGTGGACACTGGACTGG         |
| Ndst2        | ACAGAAGACAGGCACCACGGCTATTC     | TGGCATTGGAAGGAACAGGGAAGAAGTC     |
| Ndst3        | AGTCTCTGGGCGGGCTTCGG           | TCGTAATGATGTCTTGACCAAGGGATGAG    |
| Ndst4        | TCTGGTGCCTGGGTGGTATGC          | GGTGTAACTCCTAGAAACTTCTGGACTTC    |
| Hspg2        | CAGCCGCAGCAAGGACTTCAT          | CGATGCCACTCGCCGTCATTG            |
| Kit          | CCTCAGCCTCAGCACATAGC           | GAACACTCCAGAATCGTCAACTC          |
| Kitl         | TCATCCTTACCTGTTCTTGCTACC       | GTTCTTGTCCCTATCATCACTTGC         |
| Klk1b21      | TGTTACTACGCCTCAGCAAGCCT        | GGGATTTGCCATTTCGTGGGTGTA         |
| Klk1b24      | CTCACTGCCTGCTGCTCCTG           | GAATCCTCCAACCACACGAGACTG         |
| Krt5         | TCCTGTTGAACGCCGCTGAC           | CGGAAGGACACACTGGACTGG            |
| Krt14        | GCTGCTACATGCTGCTCAGGCTTAGG     | CCAGGAAGGACAAGGGTCAAGTAAAGAGAGTG |
| Krt19        | GCCACCTACCTTGCTCGGATTG         | GTCTCTGCCAGCGTGCCTTC             |
| Lama3        | GCGAGAACTGTCCAGATCGGGTGGCAAAGC | AGCATCCACAGCACAACGCACCAGCTCATC   |
| Lama5        | GCCGCCAGCAAGGTCAAGGTGTCCATGAAG | GGCAGTGTACGCAGCAAGGTCGGCAAGG     |
| Lamb1        | AGATTCCAGCCAGCAGCCGATGTG       | AACCTCACCGTGTAGTTCATTCCCTTCTC    |
| Lamb2        | GCCCACACCCTGAGCCTGACG          | GCTGCCCATCTTCATCCCGACATC         |
| Lamb3        | TCAGTGCTATCCCAGACCAAACAAGACATC | CCGACCACATCATCTACCTGCCCTTC       |
| Lamc2        | ATTTCTCTATGTTCCAGCCGTCTCTCCAC  | AGTAGTCTTCCAAACTGAGGTCCCAATGC    |
| Lpo          | TGACCTTGCTCCAGACTG             | CCTTGACCTCTTCCACTGT              |
| mKi67        | TTGCCTCCTAATACACCACTGA         | CCGTTCCTTGATGATTGTCTTGA          |
| Mmp2         | CCTGGTGCTCCACTCTTCTGGTTCTTC    | CAGTGCCCTCCTAAGCCAGTCTCTATTAAC   |
| Mmp14        | CCCTCCCTCCAGCCTCCCTTCTC        | GACCGTCTTCTGCTCAGCCCTCAAG        |
| Mmp15        | CAAGTGGTGGATTCTTATAG           | GCTGATTATCTACAGAACTAA            |
| Mmp16        | TGATGGACCAACAGACCGAGATAAAGAAGG | GGCCAAGATGCAGGGAATGACAATAGC      |
| Mucl1        | CCTGGCACTCCTTGTGTTGCTTGG       | TGTCTCCGCGTCCTCAGTTCCA           |
| Muc13        | AGTGAAGCATCATTGAGTGGACA        | GGTAGCAGGTGGCGTCTT               |
| Мус          | GGAGTGAGCGGACGGTTGGAAGAG       | AGCGGCGGCGAGGGTTGC               |
| Myh11        | GTCAGGAGCCACAGTCACCAGCAA       | GGCAGGCAGGAAAGGGAAGGGAAT         |
| Mylk         | CCATCCTGCGGTGTCTCA             | AATGTCCTCCTTGCTGTAACTCA          |
| Ndst1        | TGGCTGGTTTCTGTTTGGATTCTGTTTCTG | AATGGCTGGTGGACACTGGACTGG         |
| Ngf          | TTGATCGGCGTACAGGCAGAACC        | CGGAGGGCTGTGTCAAGGGAATG          |
| Ngfr         | TCCACACTCCTTCTCTTACACATA       | TTGACGCCCTCATTCAGAAAG            |
| Nrgl         | GCTCATCACTCCACGACTGTCACC       | CTGCTGTGCCTGCTGTTCTCTACC         |
| Ntf5         | CGACGACGACAACTATGA             | GGACTCACACCTTACATTAG             |
| Ntrk2        | GACACGCACTCCGACTGACT           | CCAAGACCAGCAGGCATAAGC            |
| Pdgfa        | CGCCTCTGCCTTCCTGTGTTCCT        | ATCTCTGTCATGTCTCCATGCTGCCATAGA   |
| Postn        | CGAGAAATCATCCAACCAGCAGAG       | GCTCCCTTTCTTCGCTAGTCATTC         |
| Prol1        | ACC ACA CCA GCA ACA ACC ACA A  | TGG CTG TAG AGG TGC TAG GCT TAG  |
| Rps29        | GGAGTCACCCACGGAAGTTCGG         | GGAAGCACTGGCGGCACATG             |
| Tagln        | GGTGAGCCAAGCAGACTT             | TTGTGGACTGGAAGGAGAG              |
| Tgfb1        | CTCCGCATCCCACCTTTG             | CGTCAGCACTAGAAGCCA               |
| Tgfb2        | CATCTACAACAGTACCAGGGACTT       | AAGCGGACGATTCTGAAGTAGG           |
| Tgfb3        | CGGGTCAGGGTGTATTCTC            | GCCGAGTCATCATGTCAGA              |
| Thbs1        | CACCGCCAAACAACCTCTGACAT        | AGTACCGAACAGCTCCTCCACATT         |
| Hs3st3a1 ZFN | CTGGCCTTACTTCTGGACGA           | CAAGGGAGAAGAACGGGAG              |
| Hs3st3b1 KO  | TCACAGCTCCGAATGAGACATC         | CCCAGCGCCTACTGTCTTATC            |