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I. TRANSMISSION OF THE
EMITTER-WAVEGUIDE SYSTEM

The quantum dot is modeled as a two-level system
(TLS) with ground-and excited states |g⟩ and |e⟩. The
Hamiltonian describing the light-emitter interaction can
be written as[1]:

Ĥ = −ℏ∆σ̂egσ̂ge + ℏωpf̂
†(r)f̂(r)− d̂ · Ê(r) (1)

The first term describes the emitter dynamics with ∆ =
ω−ωTLS as the detuning between the driving field of fre-
quency ω and the two-level system resonance ωTLS. σ̂ij =
|i⟩ ⟨j|, where i, j ∈ {|g⟩ , |e⟩} are the transition operators
of the TLS. The second term in the Hamiltonian accounts
for the photon field at position r with the bosonic annihi-
lation operators f̂(r). Finally, the last term accounts for
the light-matter interaction between the emitter dipole
d̂ and the electric field Ê(r) = Ê+(r) + Ê−(r). The
response of the TLS can be expressed by the partially
traced density matrix giving the elements ρij . In the
rotating wave approximation and solving for the steady
state solution ( ˙̂ρ = 0) we obtain the elements:

ρee =
2γ2Ω

2

γ(γ2
2 +∆2 + 4(γ2/γ)Ω2)

ρge = − Ω(iγ2 +∆)

γ2
2 +∆2 + 4(γ2/γ)Ω2

(2)

Where γ is the total emission rate that together with
the pure dephasing rate γdp constitutes γ2 = γ/2 + γdp.
While the population is also dependent on the driving
field amplitude through Rabi frequency Ω = d ·E/ℏ.

In a single-mode conventional waveguide, the resulting
transmitted ”output” electric field can be expressed in
terms of the input driving field[1, 2]:

Ê+
out(r) = Ê+

in(r) + i
βγ

2Ω
Ê+

in(r)σ̂ge (3)

Where waveguide-emitter coupling efficiency is gov-
erned by the ratio β = γWG

γ . Here γWG is the rate of

decay into the waveguide mode. The coupling factor is
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divided by 2 as equal coupling to both directions of prop-
agation is assumed i.e. the coupling is isotropic. From
this we define the corresponding transmission coefficient
t that transforms the input electric field Ê+

in(r) to Ê+
out(r)

through the photonic waveguide. Using equation 3, re-
sults in:

t =
⟨Ê+

out(r)⟩ss
⟨Ê+

in(r)⟩ss
= 1 + i

βγ

2Ω
ρeg (4)

Inserting the density matrix element ρeg = ρ∗ge of equa-
tion (2), we obtain:

t = 1− βγ

2

(γ2 + i∆)

γ2
2 +∆2 + 4(γ2/γ)Ω2

(5)

Finally, the normalized intensity of the transmitted light
can be calculated as:

It =
⟨Ê−

out(r)Ê
+
out(r)⟩ss

⟨Ê−
in(r)Ê

+
in(r)⟩ss

= 1− βγγ2(2− β)

2(γ2
2 +∆2 + 4(γ2/γ)Ω2)

(6)

We emphasize that It ̸= |t|2.

A. Maximal phase shift

The maxima of the phase shift with respect to the de-
tuning can be found, at low power (Ω ≪ 1) and in the
absence of dephasing, by solving:

∂arg(t)

∂∆
(∆±) =

2βγ
(
(β − 1)γ2 + 4∆2

±
)(

γ2 + 4∆2
±
) (

(β − 1)2γ2 + 4∆2
±
) = 0

(7)
which corresponds to

∆± = ±γ

√
1− β

2
(8)

Plugging this back in the expression of the argument, one
can find :

|ϕ|max = |arg(t(∆±)|

= arg

((
2− i

√
1− β

)
β − 2

β − 2

)

= tan−1

(
β

2
√
1− β

) (9)
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B. Transmission for a chirally coupled emitter

In a waveguide with chiral light-matter coupling the
interaction is directionally dependent. Similar to before,
the total electric field in transmission is

Ê+
out(r) = Êin(r) + i

βdirγ

Ω
Ê+

in(r)σ̂ge (10)

where we define the directional coupling efficiency
as βdir = γt/γ, by differing the emission rate in
transmitted(t) or reflected modes(r). Following the same
method as for conventional waveguide, we have:

tdir = 1− βdirγ(γ2 + i∆)

γ2
2 +∆2 + 4(γ2/γ)Ω2

Itdir
= 1 +

2βdirγγ2(βdir − 1)

γ2
2 +∆2 + 4(γ2/γ)Ω2

(11)

Note that in the case of an isotropic, conventional
waveguide (γt = γr = γWG/2), we recover the equation
for an emitter coupled isotropically to waveguide modes.

II. MACH-ZEHNDER INTERFEROMETRY

The intensity of the output modes in a Mach-Zehnder
interferometer is affected by the difference in phase, δϕ,
between the two paths in the interferometer:

I = sin2(δϕ/2) (12)

When light at frequency f travels through each arm of
the Mach-Zender interferometer (1,2), it experiences a
phase shift of ϕ1,2 = 2πfL1,2/cn1,2, where the speed of
light is c and the index of refraction n may be different in
the two arms with respective distances L1,2. Addition-
ally, there may be an environmental fluctuation phase
difference δϕenv. Only one path (path 1) is affected by a
phase change ϕQD = arg(t) induced by the quantum dot
waveguide system. Therefore, the final interferometric
phase difference can be expressed as

δϕ = ϕ1 − ϕ2 =
2πfδL

c
+ δϕenv + ϕQD (13)

δL is the interferometric path length difference. The in-
terferometric signal obtained when sweeping the laser
detuning is displayed in Fig. 1(b). The Fourier trans-
form(FFT) of these interferometric fringes is displayed
in Fig. SM SM1. Using Equations 12 and 13, we identify
the main frequency component of the Fourier transform
as f = δL/c and we estimate the full path length differ-
ence of our interferometer to be δL ≈ 2.78m.

The interferometer was stabilized by mounting a mir-
ror in one of the Mach-Zehnder arms on a piezoelectric
transducer(PZT). This allowed upon the application of
a voltage to modulate the optical path length difference
and thus correct for any fluctuation or drift. This Mir-
ror/PZT system was found to have its first frequency
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Fig. SM 1: Normalized Fourier transformation of the
interferometric signal as function of δL in meters with

the QD turned off.
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Fig. SM 2: Normalized and background subtracted
fringe signal seen on the oscilloscope of the modulated

interferometer(blue) and output of the stabilized
interferometer (black)

harmonic at around 4KHz. By modulating the PZT volt-
age at 3.1 KHz with a small amplitude, a lock-in ampli-
fier was used to gain a signal that looks roughly like the
first derivative of the interferometric signal. Using this
as the error signal for feedback PID loop to lock at the
zero value of the lock-in output resulted in a top-of-fringe
locking[3]. FIG.SM2 show in blue the normalized fringes
signal recorded by modulating the PZT with a ramp sig-
nal. In the recorded range, the signal shows that the
mirror was displaced roughly 4 wavelengths. Compared
to this in black is the top-of-fringe locked signal taken in
a subsequent measurement.
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Fig. SM 3: Visualization of the effect of transition 2
(colored dots), and its corresponding fit (dashed black

line) in a phasor diagram as a function of the
normalized detuning ∆/γ. For comparison, solid
colored lines from inner to outer curves represent
calculations for increasing directional coupling

efficiencies βdir = {0.5, 0.8, 1}.

III. MODELING THE EXPERIMENTAL DATA

A. Phase and Intensity

We simultaneously fit the phase and intensity data of
the two dipoles’ response displayed in Fig. 2(c) and (d).
We assume here for simplicity identical dephasing rates
for both dipoles. Furthermore, we assume only pure de-
phasing, while in reality also slow noise processes (spec-
tral diffusion) are influencing, however an unambiguous
separation of these two processes is outside the scope of
the present work; for more information, see [4]. As a
consequence, the extracted pure dephasing rates will be
overestimated. We adjusted the displayed data by taking
into account the constant offset ϕ0 caused by weak Fano
resonances, which are a result of partial reflection from
the outcoupling gratings of the waveguide. (More infor-
mation can be found in the references [4, 5]) We find the
parameters to be:

Dipole 1 Dipole 2
β 0.94± 0.03 1

γ (ns−1) 9.4± 0.2 12.3± 0.2.
γdp (ns−1) 3.9± 0.1
ϕ0 (rad) −0.25± 0.02

We present the data of dipole transition 2, and the corre-
sponding model fit in a phasor diagram in Fig. SM SM3

B. Saturation Characterization

In the following, we focus only on transition (2). We fit
all the transmission spectra series with power presented
in Fig. 3 simultaneously using a nonlinear least-squares
regression based on our model:

ϕ(∆,Ω) = arg

[
1− βγ(γ2 + i∆)

2 (∆2 + γ2
2 + 4Ω2γ2/γ)

]
(14)

Since we do not know the exact Rabi frequency we define
the mapping efficiency constant η to the power as Ω =√
ηP . We obtain the single set of parameters:

β 0.99 [0.57, 1]
γ (ns−1) 12.6 [7.7, 17.4]
γdp (ns−1) 3.4[0, 7.4]
ϕ0 (rad) −0.26 [−0.31,−0.2]

η (rad.s−1.mW−1) 5 [2.3, 7.7]

Those values are in good agreement with the data of
the two dipoles in Figure 2. At resonance, the satu-

ration parameter is defined as S = 4Ω2

γγ2
(where ρee =

S
2(S+1) = 1/4 at S = 1). By using the fitted param-

eters, this gives: Psat =
γ(γ/2+γdp)

4η ≈ 0.15 mW (indi-

cated by a full line in Fig. 3(b)). Similarly, we can
estimate the critical photon flux from the fitted parame-

ters as: nc =
1+2βγdp/γ

4β2 ∼ 0.39[0.25, 0.73] [4, 5]. This

is comparable to previously measured values for solid
states: quantum dots: nc ∼ [0.81[5], 0.33[4], 1.6[6]] in
weak coupling and nc ∼ 0.4− 0.6 in strong coupling [7];
and Organic Molecules:nc ∼ 25[8] in weak coupling and
nc ∼ 0.44[9] in strong coupling. An atom strongly cou-
pled to a resonator has demonstrated even lower values,
with nc ∼ 0.02[10]. At each power we also perform an in-
dependent fit with free parameters, to extract accurately
the maximal, experimentally measured phase shift from
the data. Those are the data points |ϕmax| displayed
in Fig.3(b). By directly fitting by a general decay model
|ϕmax| = AeP/P∗

sat+B, we find P ∗
sat = 0.14mW[0.11, 0.16].

This P ∗
sat is the saturation power of the maximal phase

shift, and is indicated by a dotted line in Fig. 3(b).

IV. QD AND WAVEGUIDE SYSTEM

Initial experimental measurements consisted of investi-
gating the transmission response of the photonic crystal
waveguide and identifying an optical transition from a
quantum dot embedded in the waeguide. A widefield
image of a waveguide system leading through a photonic
waveguide crystal is shown in FIG.SM4(a). Here the light
can be coupled in/out of the waveguide via the couplers
at the ends. The larger area along the waveguide is the
photonic crystal consisting of a regular lattice with a pe-
riodicity of 250nm with hole sizes of 70nm. By collecting
the transmitted signal we can obtain the transmission
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response by scanning the laser frequency. The resulting
transmission response is shown in FIG.SM4(b). The red
and blue lines show respectively the laser frequency of the
on-resonance laser and locking laser . When the band of
the transmission was known, finer ranges of frequencies
were scanned until the transmission dip of a quantum
dot was found. By Scanning the frequency for different
voltages we are able to build the transmission map as
shown in FIG.SM5. The voltage for the experiment was
set at 1.24V for the ”on” mode i.e. we have turned on
the optical transition. In contrast, the ”off” mode had
the voltage set to 0.8V sufficiently far from an optical
transition.
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Fig. SM 4: (a) Widefield image of the sample with the
photonic waveguide, with the laser spot next to it. (b)
Unormalized transmission spectra of the laser as a
function of the wavelength in the waveguide. The
bandgap can be easily localized and is around 318.3

THz. The red and blue line marks the frequency of the
on-resonance and locking laser, respectively.
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Fig. SM 5: Normalized transmission of the laser
through the waveguide as function of the frequency and

the voltage applied on the sample. The two dipole
transitions can be identified.
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