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Editorial note: This manuscript has been previously reviewed at another journal that is not 

operating a transparent peer review scheme. This document only contains reviewer 

comments and rebuttal letters for versions considered at Nature Communications. 

REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

I am satisfied with the author's response to my previous comments. I think the experimental 

results here furthers demonstrates the potential of their waveguide quantum emitter 

interface towards on-chip quantum information, particularly considering the complexity of 

introducing it into a technically demanding experimental apparatus. I find that the 

manuscript is appropriate for Nature Communications as is, and am happy to recommend 

publication. 

Reviewer #2 (Remarks to the Author):

The authors have thoroughly addressed all my comments. Consequently, I now recommend 

publication of the paper. 

Reviewer #3 (Remarks to the Author):

I have reviewed the responses to my previous comments and thank them for their efforts. 

As I wrote before, I acknowledge the high technical level of their results. In particular, I now 

understand that the present result has been achieved by high level techniques for the 

interferometric experiments. Unfortunately, however, I am still not fully convinced that the 

implications of this result over the previous results are clearly presented in the revised 

manuscript. I list below my concerns that make me hesitate to make a decision. 

1) If I understand correctly, the application for quantum information and networking in 

general requires the nonlinear phase shift over Pi. Since the theoretically achievable shift is 

smaller than Pi/2 in the QD waveguide system, there is a significant drawback compared to 



the QD cavity systems where Pi-shift has already been achieved. Do the authors think that it 

is necessary to finally implement chiral optics in their QD waveguide system, or are there 

specific applications where the phase shift is smaller than Pi/2? I recommend them to clarify 

this issue in the manuscript. In their last reply, they mentioned that the implementation of 

chiral optics to overcome this barrier seems rather difficult, which makes me wonder about 

the goal of this result. 

2) In the last review, I commented, "In this regard, it is not clear to me whether the result 

presented in Fig. 3 does have an impact against the previous reports in terms of 

nonlinearity", where I meant that the authors should compare this saturation behavior with 

the nonlinear shift of the single-photon level in the previous results, such as the saturation 

photon number, the saturation value of the shift, and the shape of the saturation curve, etc. 

3) As I pointed out earlier, although the title says "nonlinear phase shift", most of the 

present data is about linear shifts. If I understand correctly, the 0.19 Pi is the linear shift. I 

recommend that the authors should distinguish them, for example in the abstract, and 

clarify the value of the exact nonlinear shift in their experiment. My guess is that the 

nonlinear shift in Fig. 3 is smaller than 0.19 Pi. For the same reason, the saturation photon 

number is an important quantity. I recommend to show the saturation power in Fig. 3. 

Although they derived the photon number from fitting, the saturation power can be 

obtained independently from the input power in Fig. 3. This check would be worth showing 

to strengthen their result. 

4) The authors did not provide the response to my following comment. "In introduction, 

they mentioned that most previous works employ intensity measurements, and emphasized 

the importance of the interferometric measurements. However, there are many works of 

interferometric measurements in quantum optics with atoms and molecules. The phrase 

would be misleading." I still think that they should describe about previous interferometric 

measurements in quantum optics, and should show the technical difference. 

5) In response to my previous comment, they showed the value of the coupling efficiency. 



But they wrote that they did not measure it for their device. Since this value is important, 

they should present how they estimated the efficiency value exactly. 



Reviewer #3 (Remarks to the Author):

I have reviewed the responses to my previous comments and thank them for their efforts. As I 

wrote before, I acknowledge the high technical level of their results. In particular, I now understand 

that the present result has been achieved by high level techniques for the interferometric 

experiments. Unfortunately, however, I am still not fully convinced that the implications of this result 

over the previous results are clearly presented in the revised manuscript. I list below my concerns 

that make me hesitate to make a decision.

We thank the reviewer for their previous comments and for acknowledging the high technical 

quality of our results. We hope that our present reply and the changes made to the manuscript 

adequately address their concerns.

1) If I understand correctly, the application for quantum information and networking in general 

requires the nonlinear phase shift over Pi. Since the theoretically achievable shift is smaller than 

Pi/2 in the QD waveguide system, there is a significant drawback compared to the QD cavity 

systems where Pi-shift has already been achieved. Do the authors think that it is necessary to 

finally implement chiral optics in their QD waveguide system, or are there specific applications 

where the phase shift is smaller than Pi/2? I recommend them to clarify this issue in the manuscript. 

In their last reply, they mentioned that the implementation of chiral optics to overcome this barrier 

seems rather difficult, which makes me wonder about the goal of this result.

We appreciate the reviewer's insightful question. It is true that π phase shifts have been achieved 

in cavity systems. However, waveguides, while relatively new, offer the advantage of operating 

over a much broader wavelength range, though they are more sensitive to decoherence in the 

absence of the Purcell effect. Additionally, in cQED, large phase shifts often require strong coupling 

(as demonstrated in the seminal work by Volz et al.[1]). In contrast, in wQED, we operate in the 

weak coupling regime.

Regarding the phase shift, achieving a π phase shift is ideal, but there are applications where even 

moderate phase shifts, well below π/2  are sufficient. For instance, protocols like Bell 

measurements can be implemented with phase shifts up to π/4 (as discussed by Ewaniuk et al., 

[2].)

As for integrating chiral optics into our QD waveguide system, we think that it is a promising 

direction. Nonetheless, developing protocols that are more tolerant to the inherent decoherence in 

quantum systems is also crucial. This dual approach can help maximize the potential of emitters 

in waveguides in practical quantum information applications.

We had previously written a perspective on this in the end of the article : “Additionally, the quantum 

emitter phase shift may be applied as the quantum nonlinear operation required in quantum optical 

neural networks [1], where even moderate nonlinear phase shifts have been shown to suffice for 

improving the implementation of Bell-state detectors[3,2].”

[1] olz, J., Scheucher, et al. Nonlinear π phase shift for single fibre-guided photons interacting with 

a single resonator-enhanced atom. Nature Photon 8, 965–970 (2014).



[2] J. Ewaniuk, et al., Imperfect Quantum Photonic Neural Networks. Adv Quantum Technol. 2023, 

6, 2200125.

[3] A. Pick, et al.,  Boosting Photonic Quantum Computation with Moderate Nonlinearity, Phys. 

Rev. Applied 15, 054054 (2021)

[4]: Steinbrecher, et al. Quantum optical neural networks. npj Quantum Inf 5, 60 (2019)

Changes in the Revised Manuscript:

We have added the following sentences in the introduction to precise this : 

“In the waveguide geometry, a narrow-band single-photon wavepacket is deterministically reflected 

upon resonant interaction with a highly coherent two-level quantum emitter, while two-photon 

wavepackets are partly transmitted due to the saturation of the emitter [7,8], allowing for realizing 

deterministic quantum operations such as photon sorters [9,10].

In contrast to optimal π phase shift operations, even moderate non-linear interactions have 

been proposed as a way to boost measurement-based quantum computing [11] and for the 

implementation of quantum neural networks [3,12]. ”

2) In the last review, I commented, "In this regard, it is not clear to me whether the result presented 

in Fig. 3 does have an impact against the previous reports in terms of nonlinearity", where I meant 

that the authors should compare this saturation behavior with the nonlinear shift of the single-

photon level in the previous results, such as the saturation photon number, the saturation value of 

the shift, and the shape of the saturation curve, etc.

We thank the reviewer for these suggestions.

The critical photon flux for a waveguide coupled emitter may be calculated according to !" =# (1 +
2$%&'#/%)/4$*#[1], which, in the limit of Fourier transform-limited emitters and perfect waveguide-

coupling, reduces to !" = 1/4 . From the parameters extracted from the fitting of the saturation, 

we find a critical photon flux !" = 0.39[0.25,0.73]#.#We can compare to this to previous 

measurements:

1. Quantum dots in waveguides: (weak coupling regime) :

Javadi et al., Nature Communications 6, 8655 (2015) !"~0.81
Thyrrestrup et al., Nano Lett., 18, 3, 1801–1806 (2018) !"~1.6
Le Jeannic et al., Phys. Rev. Lett. 126, 023603 (2021) !"~0.33

2. Organic molecule in free space (weak coupling regime):

M. Pototschnig et al., Phys. Rev. Lett. 107 (2011) !"~25 (- = $ = 0.1)

3. Quantum dot in cavity: (strong coupling regime)
Fushman et al., Science 320, 5877 pp. 769-772 (2008) !"~0.4 : 0.6

4. Atom coupled to a resonator:(strong coupling regime)
Volz et al., Nature Photonics volume 8, p. 965–970 (2014) !" = %*/(2;*) #< 0.02

5. Organic molecule in cavity: (strong coupling regime)



Wang et al., Nature Physics volume 15, pages483–489 (2019) !" < 0.44

Changes in the Revised Manuscript:

We have added the comparison to other systems in the supplementary material as:

Similarly, we can estimate the critical photon flux from the fitted parameters as: !" =
>?*@ABC/A

D@E
F

G. HI[G. JK, G. LH] [4,5]. This is comparable to previously measured values for solid state 

emitters: quantum dots:#MN F[0.81[5],0.33[4], 1.6[6]] in weak coupling and MN #F G. O : G. P [7] 

in strong coupling; or in organic molecules: MN # F JK in weak coupling [8] and MN #F G. OO [9] 

in strong coupling. An atom strongly coupled to a resonator has demonstrated even lower 

values, with MN F G. GJ [10].”

We also corrected an error in the critical photon number calculation, which should be 0.39, not 

0.33.

3) As I pointed out earlier, although the title says "nonlinear phase shift", most of the present data 

is about linear shifts. If I understand correctly, the 0.19 Pi is the linear shift. I recommend that the 

authors should distinguish them, for example in the abstract, and clarify the value of the exact 

nonlinear shift in their experiment. My guess is that the nonlinear shift in Fig. 3 is smaller than 0.19 

Pi. For the same reason, the saturation photon number is an important quantity. I recommend to 

show the saturation power in Fig. 3. Although they derived the photon number from fitting, the 

saturation power can be obtained independently from the input power in Fig. 3. This check would 

be worth showing to strengthen their result. 

We apologize for not fully understanding the reviewer's point earlier. In our terminology, "nonlinear 

phase shift" refers to the total phase shift experienced by the beam as a function of power (mean 

photon number). If we now understand correctly, the reviewer is referring to the nonlinear phase 

shift as the difference between the single-photon phase shift and the two-photon phase shift, as 

for exampled defined in Volz et al.[10]

Indeed, the 0.19π phase shift observed in our experiments can be considered close to the single-

photon limit, denoted in Ref. [10] as Q>. To determine the two-photon phase shift (Q*) and thus the 

nonlinear phase shift (Q*- 2Q>), a two-photon tomography experiment would be required, similar 

to the approach taken by Volz et al .[10].

Changes in the Revised Manuscript:

We thank the reviewer for bringing this important distinction to our attention and have clarified this 

in our manuscript to avoid any confusion.

1. We have changed the title by “Direct observation of a few-photon phase shift induced by a 

single quantum emitter in a waveguide”

2. Additionnally we have changed in the main text the following sentence in the abstract: 

“The process is nonlinear in power, the saturation at the single-photon level and compatible 

with scalable photonic integrated circuitry.”

3. We also have added the sentence in the main text “This should enable the observation of a 

differential phase shift between single and two-photon components (also often called 



"nonlinear" phase shift), such as measured in Ref. [19], which is essential for the 

implementation of controlled quantum operations.”

3/b Regarding the saturation power, we understand the importance of this quantity. The issue with 

defining a saturation power using only Fig. 3b is that each |QRST| is taken at a different detuning, 

thus not following a classical saturation curve at fixed detuning.

The “real” saturation power in the classical sense is defined at a fixed detuning. For example, at 

resonance U = 0, the saturation parameter reads V = DWE

AAE
(XYY =

Z
*(Z?>)

= 1/4

#at S=1). Using the fitted parameters, this gives a saturation power at resonance:

\̂ S_ =
`a`/*?`BCb

Dc
< 0.15de.

However, the saturation power cannot easily be extracted at resonance since the phase shift 

quickly goes to zero with power around the resonance (see Figure below).

To evaluate a saturation power (denoted \̂ S_
f ) of the maximal phase shift without assuming any 

parameters, we fit the data using a general decaying model |QRST| = ghij/jklm
f
+ n. This yields 

\̂ S_
f = 0.14 [0.11,0.16] mW, corresponding to a maximal phase shift of 0.27 rad.

Changes in the Revised Manuscript:

We thank the reviewer for this point and have now indicated \̂ S_ and \̂ S_
f on Fig. 3b. This 

calculation has been added to the supplementary material.

”Those values are in good agreement with the data of the two dipoles in Figure 2.

Since the exact Rabi frequency is unknown, we define the mapping constant o to the power 

asp = qor.  At resonance, the saturation parameter is given by s = OpJ

ttJ
(where uvv =

s
J(s?w)

=

w/O at S=1). Using the fitted parameters, this yields: rxyz =
tat/J?t{}b

Oo
< G. wK�� (indicated 

by the solid line in Fig. 3(b)).

Similarly, we can estimate the critical photon flux from the fitted parameters as: !" =
>?*@ABC/A

D@E
F

G. HI[G. JK, G. LH] [4,5]. This is comparable to previously measured values for solid state 

emitters: quantum dots:#MN F[0.81[5],0.33[4], 1.6[6]] in weak coupling and MN #F G. O : G. P [7] 

in strong coupling; or in organic molecules: MN # F JK in weak coupling [8] and MN #F G. OO [9] 



in strong coupling. An atom strongly coupled to a resonator has demonstrated even lower 

values, with MN F G. GJ [10].

At each power we also perform an independent fit with free parameters, to extract accurately the 

maximal, experimentally measured phase shift from the data. These data points |QRST| are

displayed in Fig.3(b). By fitting with a general decay model |��y�| = �vir/rxyzf +�, we find 

rxyzf = G. wO [0.11,0.16] mW. This rxyzf represents the saturation power of the maximum 

phase shift and is indicated by the dotted line in Fig. 3(b).”

Fig3: (a) Measurements of the phase response of the QD versus detuning and for different 

excitation powers. The solid lines are the fit to the theory of the overall data set. (b) Maximum 

measured experimental phase shift as a function of input power (measured at \��Y^, see Fig1.(a). 

The colored points correspond to the data shown in (a). The solid horizontal line represents the 

calculated saturation power of the transition, rxyz = G. wK mW. The dotted line indicates the 

saturation power of the maximal phase shift, rxyzf = G. wO mW  (see Supplementary 

Information).

4) The authors did not provide the response to my following comment. "In introduction, they 

mentioned that most previous works employ intensity measurements, and emphasized the 

importance of the interferometric measurements. However, there are many works of interferometric 

measurements in quantum optics with atoms and molecules. The phrase would be misleading." I 

still think that they should describe about previous interferometric measurements in quantum 

optics, and should show the technical difference



We apologize to the reviewer in missing their point. To clarify that previous experiments have 

indeed been performed before we have now moved the citations of previous interferometric 

measurements to the introduction. 

Changes in the Revised Manuscript:

The introduction now reads: 

“In most experiments and protocols, the focus has been on measuring the intensity modification of 

a light field after interaction with the emitter [25-28], either in transmission (�_) or in reflection (��).
However, the direct measurement of the essential phase response of the nonlinear interaction 

requires interferometric measurement of the optical response of the quantum emitter. Previous 

phase shift measurements include a direct measurement using Mach-Zehnder 

interferometry with a single atom in a focused beam [14], limited by the coupling efficiency. 

In contrast, using a heterodyne detection-like scheme, phase shifts induced by single 

organic molecules up to 0.017π [23] were reconstructed, and more recently even to 0.37 π 

[22] radians, the later demonstration being in a cavity-embedded scheming, reaching the 

strong coupling regime. The method established in that study demonstrated high resilience 

against thermal, mechanical, and optical disturbances. However, its implementation 

involved fitting Floquet theory for a single emitter interacting with two laser beams (and 

therefore to be considered an indirect measurement). This could pose challenges, 

particularly in experiments with QDs where multiple and broader transitions are situated in 

close proximity to each other.

Further experiments show a � � phase shift, in the reflection of an atom coupled to a cavity 

[20,29].” 

The previous paragraph later on in the manuscript:

“In contrast, using heterodyne interferometry, phase shifts induced by single organic molecules up 

to 0.017π [25] were reconstructed, and more recently even to 0.37π  [24] radians, the later 

demonstration being cavity-embedded. The method established in that study demonstrated high 

resilience against thermal, mechanical, and optical disturbances. However, its implementation 

involved fitting Floquet theory for a single emitter interacting with two laser beams (and therefore 

to be considered an indirect measurement). This could pose challenges, particularly in experiments 

with QDs where multiple and broader transitions are situated in close proximity to each 

other.Further experiments show a � � phase shift, in the reflection of an atom coupled to a cavity 

[22,29]” 

now reads: 

“We have thus presented a method of directly measuring the total transmission response 

across the resonance of an emitter in a waveguide. The phase shift is about thirty times 

larger than a previous direct measurement using Mach-Zehnder interferometry [14], yet 

limited by residual broadening of the QD emission line. The method itself is only limited to 

the signal intensity and similarly the integration time per point.”



5) In response to my previous comment, they showed the* value of the coupling efficiency. But 

they wrote that they did not measure it for their device. Since this value is important, they should 

present how they estimated the efficiency value exactly.

The coupling efficiency was determined by fitting the data from Fig 3, i.e. the phase shift spectra 

serie with power. This inherently introduces significant error bars, due to the number of parameters 

in the system. More complex experiments are required for precise extraction, as highlighted by 

studies such as [1-3]. Extracting precisely the beta-factor in fact remains an active area of research 

within the community (see recent work from Scarpelli et al. [4] ). Consequently, we emphasize the 

importance of having direct methods to measure the phase shift without relying on system 

parameter assumptions. This was the primary focus of our work.

[1] :H. Thyrrestrup, L. Sapienza and P. Lodahl, Appl. Phys. Lett. 96, 231106 (2010)

[2] M. Arcari et al., Phys. Rev. Lett. 113, 093603, (2014)

[3] H. Le Jeannic et al., Phys. Rev. Lett. 126, 023603  (2021)

[4] L. Scarpelli, et al., Phys. Rev. B 100, 035311 (2019)

Changes in the Revised Manuscript:

We agree with the reviewer that our previous explanation lacked precision. We have now added 

more details to clarify our method: 

We fit all the transmission spectra series with power presented in Fig. 3 simultaneously 

using a nonlinear least-squares regression based on our model:

�(�,�) = y��(w :
��(�J + ��)

Ja�J + �J
J + O�J�J/�b

)

Since we do not know the exact Rabi frequency we define the mapping efficiency constant 

� to the power as � = q�r
We obtain the following single set of parameters:

$ 0.99~[0.57,1]

%#[!�:1] 12.6~[7.7, 17.4

%&' [!�
i>] 3.4 [0,7.4]

Q�# [rad] -0.26~ [-0.31,-0.2]

o [�y{#(��#x)iw] 5  ~ [2.3, 7.7]
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Realizing a sensitive photon-number-dependent phase shift on a light beam is required both
in classical and quantum photonics. It may lead to new applications for classical and quantum
photonics machine learning or pave the way for realizing photon-photon gate operations. Non-
linear phase-shifts require efficient light-matter interaction, and recently quantum dots coupled to
nanophotonic devices have enabled near-deterministic single-photon coupling. We experimentally
realize an optical phase shift of 0.19π ± 0.03 radians (≈ 34 degrees) using a weak coherent state
interacting with a single quantum dot in a planar nanophotonic waveguide. The phase shift is probed
by interferometric measurements of the light scattered from the quantum dot in the waveguide. The
process is nonlinear in power, the saturation at the single-photon level and compatible with scalable
photonic integrated circuitry. The work may open new prospects for realizing high-efficiency optical
switching or be applied for proof-of-concept quantum machine learning or quantum simulation
demonstrations.

Optical nonlinearities are at the core of many modern
applications in photonics. If sensitive at the level of single
light quanta, they may be applied to realize fundamental
quantum gate operations for photonic quantum comput-
ing or advanced quantum network implementations1,2.
The nanophotonics platform could potentially be scaled
up to realize large-scale nonlinear quantum photonic cir-
cuits, as required, e.g., in quantum neural networks3.
Strong optical nonlinearities can be achieved using sin-
gle emitters such as molecules or quantum dots (QDs)
embedded in photonic waveguides or cavities4,5 due to
the tight confinement of light to reach light-matter cou-
pling efficiencies near unity6. In the waveguide geometry,
a narrow-band single-photon wavepacket is deterministi-
cally reflected upon resonant interaction with a highly
coherent two-level quantum emitter, while two-photon
wavepackets are partly transmitted due to the satura-
tion of the emitter7,8, allowing for realizing deterministic
quantum operations such as photon sorters9,10. In con-
trast to optimal π(π/2) phase shift operations, even mod-
erate non-linear interactions have been proposed as a way
to boost measurement-based quantum computing11 and
for the implementation of quantum neural networks3,12

Emitter-induced phase shifts demonstrated in atomic
ensembles, either at room temperature or in magneto-
optical traps,13, and using trapped single atoms or
ions14,15. However, there, the relatively weak light con-
finement achievable by tightly focusing a free-space laser
beam, limited the achievable phase shift from a single
atom to a few degrees14. Free-space, high finesse cavities
were considered to increase the light-atom coupling16,17,
as well as their nanophotonic equivalents18–20, enabling
to drastically increase the reachable phase shift by sin-
gle atoms, although at the cost of greater experimental
complexity. In parallel, solid-state emitters have been
considered a promising platform due to their ease of in-

tegration with nanophotonic structures21 and significant
phase shifts have been demonstrated in nanocavities22.
There, the help of the Purcell effect enabled increas-
ing the coupling efficiency to reduce the influence of
decoherence channels. However, in a cavity the quan-
tum nonlinear response is limited to within the nar-
row cavity linewidth, which may limit the scalability of
the approach. In nanophotonic waveguides, the Pur-
cell enhancement is typically weaker yet the strong sup-
pression of emission leakage entails that the photon-
emitter coupling efficiency can be near unity6, however
the single-photon phase shift has been limited to only
a few degrees because of the restricted coupling effi-
ciency of molecules23. Among them, single QDs embed-
ded in photonic waveguides can potentially reach very
pronounced single-photon phase shifts, thanks to the
high single-mode coupling efficiency6 and nearly lifetime-
limited emission lines24.

In most experiments and protocols, the focus has been
on measuring the intensity modification of a light field
after interaction with the emitter25–28, either in trans-
mission (It) or in reflection (Ir). However, the direct
measurement of the essential phase response of the non-
linear interaction requires interferometric measurement
of the optical response of the quantum emitter. Previ-
ous phase shift measurements include a direct measure-
ment using Mach-Zehnder interferometry with a single
atom in a focused beam14, limited by the coupling ef-
ficiency. In contrast, using a heterodyne detection-like
scheme, phase shifts induced by single organic molecules
up to 0.017π23 were reconstructed, and more recently
even to 0.37π22 radians, the later demonstration being
in a cavity-embedded scheming, reaching the strong cou-
pling regime. The method established in that study
demonstrated high resilience against thermal, mechan-
ical, and optical disturbances. However, its implementa-



2

tion involved fitting Floquet theory for a single emitter
interacting with two laser beams (and therefore to be
considered an indirect measurement). This could pose
challenges, particularly in experiments with QDs where
multiple and broader transitions are situated in close
proximity to each other. Further experiments show a
≃ π phase shift, in the reflection of an atom coupled to
a cavity20,29.
In a waveguide, the transmission coefficient is defined

as t = 〈Êout〉ss
〈Êin〉ss

, where Êin and Êout are the input

and output field operators, respectively (see Fig. 1(a)),
evaluated in the steady state (ss). The phase shift is
expressed as its argument φ = arg(t). In the case
of a lifetime-limited quantum emitter of decay rate γ
and bidirectional (isotropic) interaction, the maximum
single-photon phase shift achievable on resonance reaches
π/2, in the limit where the light-matter coupling effi-
ciency (the β-factor) reaches unity4. For β 6= 1, the
phase shift is maximum for a light-emitter detuning of

∆ = ±γ
√
1−β
2

23

|φ|max = tan−1

(

β

2
√
1− β

)

(1)

(see Supplementary Information for the detailed cal-
culation of the transmission coefficient). Recently,
a photon-scattering reconstruction method was imple-
mented to indirectly infer a phase shift of 0.22π30.
Here, we demonstrate the direct measurement of a single-
photon phase shift induced from the interaction with a
QD in a nanophotonic waveguide by implementing inter-
ferometric measurements.
The measurement setup, sketched in Fig. 1(a), consists

of an approximately 3m long Mach-Zehnder interferom-
eter built on top of a closed-cycle cryostat, where the
nanophotonic chip is cooled down to 4K. A continuous-
wave laser is sent to one of the interferometer arms con-
taining a GaAs photonic crystal waveguide with an In-
GaAs QD embedded inside (for more details on the sam-
ple fabrication, see31, see also Methods). After interac-
tion with the QD, the signal is coupled out of the waveg-
uide chip and interfered with the reference arm (the local
oscillator, LO). The achieved interferometer visibility is
v ≈ 0.65, mainly limited by the imperfect mode matching
between the LO and the light out-coupled from the chip’s
gratings. The limited visibility only affects the signal-to-
noise ratio of the measurement but suffices for resolv-
ing the narrow spectral features of the QD resonances.
The resulting interference signal is then sent to a single-
photon detector.To stabilize such a long interferometer,
which is sensitive to sub-wavelength-scale vibrations, we
apply a second laser, the locking laser, to measure and
implement fast feedback corrections on the optical path
(see the Method Section for more details). Finally, the
locking laser is filtered from the signal using a grating
filter setup.
To probe the phase shift, the frequency of the reso-

nant laser is swept across the QD resonance to measure
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FIG. 1. (a) Experimental setup: a Mach-Zehnder interfer-
ometer is used to measure the phase shift caused by a single
quantum dot (QD) in a photonic crystal waveguide(PCW)
cooled to 4 K. The interferometer is locked using a two-color
scheme, where a far-detuned laser (blue) is used as a refer-
ence, and a feedback loop is implemented with a FPGA and
a piezo-electric transducer (PZT). The low-power, resonant
interference signal (red) is separated from the higher-power
locking beam (blue) through a grating mirror. The filtered
signal is then captured by a single-photon avalanche photo-
diode (SPAPD). PMres and PMlock are the two power meters
used to stabilize the laser powers. (b) Evolution of the inter-
ference signal with detuning of the resonant laser (relative to
the most pronounced QD transition) when the QD is tuned
on (green). Same laser tuning range interference evolution
when the QD is switched off (orange) through the applica-
tion of an electric field across the QD (DC-Stark effect). A
zoom-in of the blue area is presented in Fig. 2 (b).

the resulting interference signal, while the locking laser
frequency stays fixed. We tune the resonance frequency
of the QD with a voltage applied across the sample by
virtue of the DC-Stark effect31, allowing us to compare
the on- and off-resonance cases, respectively (See Figure
1(b)), and determine directly and accurately the phase
shift induced by the QD (see the Method Section and
the Supplemental materials for more details). Figure 2(a)
and (b) presents two examples of signals at different laser
detunings. Away from resonance (Figure 2(a)), no signif-
icant intensity and phase change are observed, meaning
the change of the electric field itself does not affect the
laser transmission, while near resonance (Figure 2(b)),
the fringe contrast and phase changes when the QD is
set to be resonant with the laser field. Through a single
measurement, we can thus infer both the phase and in-
tensity changes experienced by the light field due to the
interaction with the QD. The results are presented in Fig.
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FIG. 2. (a) and (b) Direct interferometric data with the emit-
ter tuned on (green) and off (orange) resonance using the
external electric field, for two different laser-emitter detun-
ings (integration time of 100ms per point). The measure-
ment points are plotted along with corresponding sinusoidal
fits (solid line). The data in (b) correspond to the detun-
ing area marked in blue in Fig. 1(b). (c) and (d) Extracted
respective phase shift and transmission for the two dipoles,
labeled 1 and 2. The solid lines correspond to the fit of the
data to the theory.

2, where the phase (c) and intensity (d) spectra of the
two dipole transitions of the QD neutral exciton, labeled
(1) and (2), are displayed. We fit the phase and intensity
data of both dipoles simultaneously (See Supplementary
Information), and infer the maximal phase shifts to be
φmax,1 = (−0.06± 0.03)π and φmax,2 = (−0.19± 0.03)π
radians, respectively.

Next, we examine the saturation of the phase shift in
order to investigate its nonlinear response to changes in
the incoming laser power. We consider dipole transition
(2). In Fig. 3(a), we show several spectra taken at dif-
ferent laser power levels and the corresponding fitting of
the full saturation behavior (see Supplementary Informa-
tion), which is fully consistent with the data presented.
For each power level, we determine the maximum experi-
mentally observed phase shift and investigate the nonlin-
ear behavior as the QD saturates, see Fig. 3(b). By using
the experimental parameters extracted previously, we es-
timate that the saturation happens at a mean photon
flux of nc ∼ 0.39 photons interacting with the QD dur-
ing its lifetime (See30 and Supplementary Information),
well below the single-photon level. This should enable to
observe a differential phase shift between single and two-
photon components (also often called ”nonlinear” phase

FIG. 3. (a) Measurements of the phase response of the QD
versus detuning and for different excitation powers. The solid
lines are the fit to the theory of the overall data set. (b)
Maximum measured experimental phase shift as a function
of input power (measured at PMres, see Fig. 1(a). The col-
ored points correspond to the data shown in (a). The full
horizontal line indicates the calculated saturation power of
the transition Psat = 0.15 mW. The dashed line indicates the
saturating power P ∗

sat = 0.14 mW of the maximal phase shift
(See Supplementary Information)

shift), such as measured in Ref.19, essential for the im-
plementation of controlled quantum operations.

The experimentally extracted phase shifts are lim-
ited by the coupling efficiency and decoherence of the
QD and future experiments on fully lifetime-limited QD
transitions24 should allow observing a phase shift ap-
proaching π/2. Going beyond this would even be pos-
sible in the setting of chiral quantum optics32 where di-
rectional coupling entails that the reflective ”loss chan-
nel” can be strongly suppressed Fig. 4(a) schematically
illustrates the isotropic and chiral cases, respectively. In
the ideal chiral case, the maximum possible phase shift
of π can be realized, the ultimate goal for quantum phase
gates1,33,34. In contrast, the transmitted intensity would
be unchanged at resonance, see Fig. 4 (b), i.e. no pho-
tons are lost and the scattering is thereby deterministic
in transmission. Such a single-photon response, how-
ever, would be undetectable in intensity measurements
and therefore require the interferometric method demon-
strated here. It is interesting to further exploit the un-
usual behavior of the phase response in the chiral geom-
etry. When the input light intensity is increased, a very
abrupt phase response is predicted (see Fig. 4(c)), unlike
in the symmetric configuration. Indeed, towards satu-
ration the transmission coefficient at resonance (which
is real) changes from a negative value to a positive
value, resulting in a sudden shift in the phase from π
to 0. This may find applications as an all-optical phase-
switch20,23,35. Similarly a sharp transition can be found
while varying the dephasing rate (see Fig. 4(d)), which
means it may be applicable as an ultra-sensitive probe
of environmental decoherence processes of the QD. Fi-
nally, we rediscover that the case of ideal directionality



4

FIG. 4. The top illustration shows the scattering configu-
ration for an isotropic (Left) and a chiral (Right) coupled
system. In the latter, the reflection and transmission decay
rates (γr and γt respectively) differ. Correspondingly (a) and
(b) shows the phase shift and transmission intensity for the
isotropic and chiral coupling. (c) Maximal phase shift φmax

as a function of the driving Rabi frequency Ω for different
directional coupling efficiencies βdir = [1 (blue), 0.9 (red) 0.7
(yellow) 0.5 (purple)]. βdir = 0.5 corresponds to the case of
an isotropic waveguide with β = 1. (d) φmax as a function of
the pure dephasing rate γd for a series of coupling efficiency
βdir ={1 (blue), 0.9 (red) 0.7 (yellow) 0.5 (purple)}

.

is equivalent to an ideal emitter in an isotropic waveg-
uide when the efficiency decreases by half due to satu-
ration (Ω ≥ γ

2
√
2
), dephasing (γdp ≥ γ/2), or coupling

inefficiency (βdir ≤ 1/2).

In summary, we have developed an interferometric
method for measuring the nonlinear phase shift of light
caused by a single quantum emitter and measured an
unprecedented phase response in a waveguide. These re-
sults may open up for a wide range of applications on
how to realize deterministic quantum phase gates in pho-
tonic circuits33,36 as a basis for quantum non-demolition
measurements17,18 or deterministic generation of optical
Schrödinger cat states37, when combined with accurate
spin control34,38,39. This work holds promises for on-
chip photonic quantum processing, in particular com-
bined with the recent achievement on the integration40

and coherent coupling41 of multiple quantum dots in
waveguides. Additionally, the quantum emitter phase
shift may be applied as the quantum nonlinear opera-
tion required in quantum optical neural networks3, where
even moderate nonlinear phase shifts have been shown
to suffice for improving the implementation of Bell-state
detectors11,12. Finally, chiral light-matter interaction
promises to improve the phase response even further,

although the combination of a high β-factor and high
directionnality has not yet explicitly been demonstrated
in a waveguide. In such a configuration, interferometric
measurements are required to detect the single-photon
scattering processes, and the complex phase response ac-
quired by optical pulses constitutes an interesting future
direction of research that also may shed new light on ap-
plications of the emitter nonlinearity.
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II. METHODS

Our quantum dot (QD) was embedded in a photonic
crystal waveguide with a radius of 70 nm and a lattice
constant of 250 nm. The sample configuration closely re-
sembled the layout utilized in Reference24. The bandgap
was positioned approximately 0.5 THz away from the
emission wavelength resulting in only weak Purcell en-
hancement while still maintaining a high β-factor24.
Light was coupled to and from the chip through shallow-
etched grating couplers, where efficiencies of > 25%,
are typically reached while grating back reflections are
strongly suppressed42.
The QD was tuned in and out of resonance through

DC stark shift tuning using a voltage field. The ”off”
state (corresponding to an applied voltage of 0.8V) was
checked to be away from any optically active transition
of the dot. The ”on” voltage was set to 1.24V. The
linewidths of the two quantum dot dipole transitions were
fitted to be 1.95± 0.05 GHz and 1.45± 0.05 GHz wide.
The interferometer is locked by having a piezoelectric

transducer (PZT) mounted mirror to compensate for any
change in phase not originating from the quantum emit-
ter (see Supplemental Information for more details on the
experimental setup). The feedback is performed by us-
ing an FPGA (Field Programmable Array, Red Pitaya)
programmed to act like a lock-in amplifier followed by a
proportional–integral–derivative controller43.
The locking laser is blue-detuned by 7.5 nm from the

QD transition at 941 nm to avoid any interaction with the
emitter, and at a much higher power than the few-photon
resonant laser. This wavelength was chosen to stay away
from the QD transition while keeping a good transmis-
sion in the sample (away from the bandgap). We saw
no difference compared to the use of a red-detuned laser.
The response frequency of the mirror and piezoelectric
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system is limited to 4kHz. The lock-in modulation signal was chosen to be driven at 3.1kHz.

1 D. E. Chang, V. Vuletić, and M. D. Lukin, Nat. Photonics
8, 685 (2014).

2 R. Uppu, L. Midolo, X. Zhou, J. Carolan, and P. Lodahl,
Nat. Nanotechnol. 16, 1308 (2021).

3 G. R. Steinbrecher, J. P. Olson, D. Englund, and J. Car-
olan, npj Quantum Inf. 5, 1 (2019).

4 P. Lodahl, S. Mahmoodian, and S. Stobbe, Rev. Mod.
Phys. 87, 347 (2015).

5 P. Türschmann, H. Le Jeannic, S. F. Simonsen, H. R.
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V. Sandoghdar, Phys. Rev. Lett. 113, 213601 (2014).

27 N. O. Antoniadis, N. Tomm, T. Jakubczyk, R. Schott,
S. R. Valentin, A. D. Wieck, A. Ludwig, R. J. Warburton,
and A. Javadi, npj Quantum Inf. 8, 1 (2022).

28 A. Pscherer, M. Meierhofer, D. Wang, H. Kelkar,
D. Mart́ın-Cano, T. Utikal, S. Götzinger, and V. San-
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I. TRANSMISSION OF THE

EMITTER-WAVEGUIDE SYSTEM

The quantum dot is modeled as a two-level system
(TLS) with ground-and excited states |g〉 and |e〉. The
Hamiltonian describing the light-emitter interaction can
be written as1:

Ĥ = −~∆σ̂egσ̂ge + ~ωpf̂
†(r)f̂(r)− d̂ · Ê(r) (1)

The first term describes the emitter dynamics with ∆ =
ω − ωTLS as the detuning between the driving field of
frequency ω and the two-level system resonance ωTLS .
σ̂ij = |i〉 〈j|, where i, j ∈ {|g〉 , |e〉} are the transition
operators of the TLS. The second term in the Hamil-
tonian accounts for the photon field at position r with
the bosonic annihilation operators f̂(r). Finally, the
last term accounts for the light-matter interaction be-
tween the emitter dipole d̂ and the electric field Ê(r) =

Ê
+(r) + Ê

−(r). The response of the TLS can be ex-
pressed by the partially traced density matrix giving the
elements ρij . In the rotating wave approximation and

solving for the steady state solution ( ˙̂ρ = 0) we obtain
the elements:

ρee =
2γ2Ω

2

γ(γ2
2 +∆2 + 4(γ2/γ)Ω2)

ρge = − Ω(iγ2 +∆)

γ2
2 +∆2 + 4(γ2/γ)Ω2

(2)

Where γ is the total emission rate that together with
the pure dephasing rate γdp constitutes γ2 = γ/2 + γdp.
While the population is also dependent on the driving
field amplitude through Rabi frequency Ω = d ·E/~.

In a single-mode conventional waveguide, the resulting
transmitted ”output” electric field can be expressed in
terms of the input driving field1,2:

Ê
+
out

(r) = Ê
+
in
(r) + i

βγ

2Ω
Ê

+
in
(r)σ̂ge (3)

Where waveguide-emitter coupling efficiency is gov-
erned by the ratio β = γWG

γ . Here γWG is the rate of

decay into the waveguide mode. The coupling factor is
divided by 2 as equal coupling to both directions of prop-
agation is assumed i.e. the coupling is isotropic. From
this we define the corresponding transmission coefficient t
that transforms the input electric field Ê

+
in
(r) to Ê

+
out

(r)

through the photonic waveguide. Using equation 3, re-
sults in:

t =
〈Ê+

out
(r)〉ss

〈Ê+
in
(r)〉ss

= 1 + i
βγ

2Ω
ρeg (4)

Inserting the density matrix element ρeg = ρ∗ge of equa-
tion (2), we obtain:

t = 1− βγ

2

(γ2 + i∆)

γ2
2 +∆2 + 4(γ2/γ)Ω2

(5)

Finally, the normalized intensity of the transmitted light
can be calculated as:

It =
〈Ê−

out
(r)Ê+

out
(r)〉ss

〈Ê−
in
(r)Ê+

in
(r)〉ss

= 1− βγγ2(2− β)

2(γ2
2 +∆2 + 4(γ2/γ)Ω2)

(6)

We emphasize that It 6= |t|2.

A. Maximal phase shift

The maxima of the phase shift with respect to the de-
tuning can be found, at low power (Ω ≪ 1) and in the
absence of dephasing, by solving:

∂ arg(t)

∂∆
(∆±) =

2βγ
(

(β − 1)γ2 + 4∆2
±

)

(

γ2 + 4∆2
±

) (

(β − 1)2γ2 + 4∆2
±

) = 0

(7)
which corresponds to

∆± = ±γ

√
1− β

2
(8)

Plugging this back in the expression of the argument, one
can find :

|φ|max = | arg(t(∆±)|

= arg

(

(

2− i
√
1− β

)

β − 2

β − 2

)

= tan−1

(

β

2
√
1− β

)

(9)
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B. Transmission for a chirally coupled emitter

In a waveguide with chiral light-matter coupling the
interaction is directionally dependent. Similar to before,
the total electric field in transmission is

Ê
+
out

(r) = Êin(r) + i
βdirγ

Ω
Ê

+
in
(r)σ̂ge (10)

where we define the directional coupling efficiency
as βdir = γt/γ, by differing the emission rate in
transmitted(t) or reflected modes(r). Following the same
method as for conventional waveguide, we have:

tdir = 1− βdirγ(γ2 + i∆)

γ2
2 +∆2 + 4(γ2/γ)Ω2

Itdir = 1 +
2βdirγγ2(βdir − 1)

γ2
2 +∆2 + 4(γ2/γ)Ω2

(11)

Note that in the case of an isotropic, conventional
waveguide (γt = γr = γWG/2), we recover the equation
for an emitter coupled isotropically to waveguide modes.

II. MACH-ZEHNDER INTERFEROMETRY

The intensity of the output modes in a Mach-Zehnder
interferometer is affected by the difference in phase, δφ,
between the two paths in the interferometer:

I = sin2(δφ/2) (12)

When light at frequency f travels through each arm of
the Mach-Zender interferometer (1,2), it experiences a
phase shift of φ1,2 = 2πfL1,2/cn1,2, where the speed of
light is c and the index of refraction n may be different in
the two arms with respective distances L1,2. Addition-
ally, there may be an environmental fluctuation phase
difference δφenv. Only one path (path 1) is affected by a
phase change φQD = arg(t) induced by the quantum dot
waveguide system. Therefore, the final interferometric
phase difference can be expressed as

δφ = φ1 − φ2 =
2πfδL

c
+ δφenv + φQD (13)

δL is the interferometric path length difference. The in-
terferometric signal obtained when sweeping the laser
detuning is displayed in Fig. 1(b). The Fourier trans-
form(FFT) of these interferometric fringes is displayed
in Fig. SM SM1. Using Equations 12 and 13, we identify
the main frequency component of the Fourier transform
as f = δL/c and we estimate the full path length differ-
ence of our interferometer to be δL ≈ 2.78m.
The interferometer was stabilized by mounting a mir-

ror in one of the Mach-Zehnder arms on a piezoelectric
transducer(PZT). This allowed upon the application of
a voltage to modulate the optical path length difference
and thus correct for any fluctuation or drift. This Mir-
ror/PZT system was found to have its first frequency
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Fig. SM 1: Normalized Fourier transformation of the
interferometric signal as function of δL in meters with

the QD turned off.
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Fig. SM 2: Normalized and background subtracted
fringe signal seen on the oscilloscope of the modulated

interferometer(blue) and output of the stabilized
interferometer (black)

harmonic at around 4KHz. By modulating the PZT volt-
age at 3.1 KHz with a small amplitude, a lock-in ampli-
fier was used to gain a signal that looks roughly like the
first derivative of the interferometric signal. Using this
as the error signal for feedback PID loop to lock at the
zero value of the lock-in output resulted in a top-of-fringe
locking3. FIG.SM2 show in blue the normalized fringes
signal recorded by modulating the PZT with a ramp sig-
nal. In the recorded range, the signal shows that the
mirror was displaced roughly 4 wavelengths. Compared
to this in black is the top-of-fringe locked signal taken in
a subsequent measurement.
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Fig. SM 3: Visualization of the effect of transition 2
(colored dots), and its corresponding fit (dashed black

line) in a phasor diagram as a function of the
normalized detuning ∆/γ. For comparison, solid
colored lines from inner to outer curves represent
calculations for increasing directional coupling

efficiencies βdir = {0.5, 0.8, 1}.

III. MODELING THE EXPERIMENTAL DATA

A. Phase and Intensity

We simultaneously fit the phase and intensity data of
the two dipoles’ response displayed in Fig. 2(c) and (d).
We assume here for simplicity identical dephasing rates
for both dipoles. Furthermore, we assume only pure de-
phasing, while in reality also slow noise processes (spec-
tral diffusion) are influencing, however an unambiguous
separation of these two processes is outside the scope
of the present work; for more information, see4. As a
consequence, the extracted pure dephasing rates will be
overestimated. We adjusted the displayed data by tak-
ing into account the constant offset φ0 caused by weak
Fano resonances, which are a result of partial reflection
from the outcoupling gratings of the waveguide. (More
information can be found in the references4,5) We find
the parameters to be:

Dipole 1 Dipole 2
β 0.94± 0.03 1

γ (ns−1) 9.4± 0.2 12.3± 0.2.
γdp (ns−1) 3.9± 0.1
φ0 (rad) −0.25± 0.02

We present the data of dipole transition 2, and the corre-
sponding model fit in a phasor diagram in Fig. SM SM3

B. Saturation Characterization

In the following, we focus only on transition (2). We fit
all the transmission spectra series with power presented
in Fig. 3 simultaneously using a nonlinear least-squares
regression based on our model:

φ(∆,Ω) = arg

[

1− βγ(γ2 + i∆)

2 (∆2 + γ2
2 + 4Ω2γ2/γ)

]

(14)

Since we do not know the exact Rabi frequency we define
the mapping efficiency constant η to the power as Ω =√
ηP . We obtain the single set of parameters:

β 0.99 [0.57, 1]
γ (ns−1) 12.6 [7.7, 17.4]
γdp (ns−1) 3.4[0, 7.4]
φ0 (rad) −0.26 [−0.31,−0.2]

η (rad.s−1.mW−1) 5 [2.3, 7.7]

Those values are in good agreement with the data of
the two dipoles in Figure 2. At resonance, the satu-

ration parameter is defined as S = 4Ω2

γγ2

(where ρee =
S

2(S+1) = 1/4 at S = 1). By using the fitted param-

eters, this gives: Psat =
γ(γ/2+γdp)

4η ≈ 0.15 mW (indi-

cated by a full line in Fig. 3(b)). Similarly, we can
estimate the critical photon flux from the fitted pa-

rameters as: nc =
1+2βγdp/γ

4β2 ∼0.39[0.25, 0.73]4,5. This

is comparable to previously measured values for solid
states: quantum dots: nc ∼ [0.815, 0.334, 1.66] in
weak coupling and nc ∼ 0.4 − 0.6 in strong coupling7;
and Organic Molecules:nc ∼ 258 in weak coupling and
nc ∼ 0.449 in strong coupling. An atom strongly cou-
pled to a resonator has demonstrated even lower val-
ues, with nc ∼ 0.0210. At each power we also per-
form an independent fit with free parameters, to ex-
tract accurately the maximal, experimentally measured
phase shift from the data. Those are the data points
|φmax| displayed in Fig.3(b). By directly fitting by a
general decay model |φmax| = AeP/P∗

sat + B, we find
P ∗
sat = 0.14mW[0.11, 0.16]. This P ∗

sat is the saturation
power of the maximal phase shift, and is indicated by a
dotted line in Fig. 3(b).

IV. QD AND WAVEGUIDE SYSTEM

Initial experimental measurements consisted of investi-
gating the transmission response of the photonic crystal
waveguide and identifying an optical transition from a
quantum dot embedded in the waeguide. A widefield
image of a waveguide system leading through a photonic
waveguide crystal is shown in FIG.SM4(a). Here the light
can be coupled in/out of the waveguide via the couplers
at the ends. The larger area along the waveguide is the
photonic crystal consisting of a regular lattice with a pe-
riodicity of 250nm with hole sizes of 70nm. By collecting
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the transmitted signal we can obtain the transmission
response by scanning the laser frequency. The resulting
transmission response is shown in FIG.SM4(b). The red
and blue lines show respectively the laser frequency of the
on-resonance laser and locking laser . When the band of
the transmission was known, finer ranges of frequencies
were scanned until the transmission dip of a quantum
dot was found. By Scanning the frequency for different
voltages we are able to build the transmission map as
shown in FIG.SM5. The voltage for the experiment was
set at 1.24V for the ”on” mode i.e. we have turned on
the optical transition. In contrast, the ”off” mode had
the voltage set to 0.8V sufficiently far from an optical
transition.

318 319 320 321 322 323 324

Frquency [THz]

0

1

2

3

4

5

6

7

C
o

u
n

ts
 [
K

H
z]

(a)

(b)

Fig. SM 4: (a) Widefield image of the sample with the
photonic waveguide, with the laser spot next to it. (b)
Unormalized transmission spectra of the laser as a
function of the wavelength in the waveguide. The
bandgap can be easily localized and is around 318.3

THz. The red and blue line marks the frequency of the
on-resonance and locking laser, respectively.
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Fig. SM 5: Normalized transmission of the laser
through the waveguide as function of the frequency and

the voltage applied on the sample. The two dipole
transitions can be identified.
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