Supporting Information

High-Performance Semiconducting Carbon Nanotube Transistors Using

Naphthalene Diimide-based Polymers with Biaxially Extended Conjugated Side Chains

Chun-Chi Chen,^{*a*} Shang-Wen Su,^{*a*} Yi-Hsuan Tung,^{*a*} Po-Yuan Wang,^{*a*} Sheng-Sheng Yu,^{*a*} Chi-Cheng Chiu,^{*a*} Chien-Chung Shih^{*c*,*} and Yan-Cheng Lin,^{*a,b,**}

^a Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan

^b Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan

^c Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan

*Corresponding author. E-mail: shihcc@yuntech.edu.tw (C.-C. Shih); ycl@gs.ncku.edu.tw (Y.-C. Lin);

CPs	$\lambda_{\max}(\mathbf{nm})^a$	HOMO (eV) ^b	LUMO (eV) ^b	$E_{\rm g}^{\rm cv}({ m eV})^{c}$	$E_{\rm g}^{\rm UV}({ m eV})^{d}$	$T_{\rm d}$ (°C) e
P1	389, 705	-5.96	-4.09	1.87	1.76	436
P2	369, 637	-5.91	-3.77	2.14	1.95	312
P3	375, 635	-5.89	-3.73	2.16	1.95	358

 Table S1. Optical, electrochemical, and thermal properties of the polymers.

^{*a*} UV-Vis absorption maximum position of the CPs dissolved in toluene. ^{*b*} Derived from the CV oxidative onset potential determined using Fc/Fc⁺ as an internal potential reference. ^{*c*} HOMO and LUMO gap determined from the difference between the oxidative and reductive onsets in CV profiles. ^{*d*} Energy bandgap determined from the onset wavelength in UV-Vis spectrum. ^{*e*} Determined from TGA at 5% weight loss in a nitrogen atmosphere.

Table S2. FET dielectric layer parameters.

Layer	Thickness (nm)	Dielectric constant (ε _r)
SiO ₂	300	3.9
SBS	30	2.4

Table S3. Summary of the sorting parameters of CP/*sc*-SWNT solutions and the crystallographic parameters of the pristine CP films.

CPs	$C_{sc-swnts} (g L^{-1})^a$	ϕ^{a}	Purity (%)	Yield (%)	d 100 (Å) ^b	q 100 (Å ⁻¹) ^b
P1	0.044	0.325	~99	34.0	25.1	0.25
P2	0.003	0.429	>99	2.3	31.9	0.20
P3	0.032	0.586	>99	23.3	34.3	0.18

^{*a*} sc-SWNT concentration of the as-sorted solutions and ϕ value determined from the UV–Vis absorption spectra in **Figure S19**. ^{*b*}*d*-spacing and *q* values are extracted from the 1D GIXD profiles.

CPs/sc-SWNTs	d010 (Å)	q010 (Å ⁻¹)	FWHM	g010 (%)
P1	4.65	1.352	0.245	16.9
P2	4.61	1.362	0.262	17.5
P3	4.59	1.369	0.267	17.6

Table S4. Crystallographic parameters of the CP/*sc*-SWNT films, including the *d*-spacing, full-width at half-maximum (FWHM), and paracrystalline disorder of the IP(010) diffraction peaks.

Table S5. Device performances of FETs comprising the CP/sc-SWNTs.

CPs/sc-SWNTs	$\mu_{\rm h} ({\rm cm}^2 {\rm V}^{-1} {\rm s}^{-1})^a$	$V_{\mathrm{th}}(\mathrm{V})^{b}$	$I_{\rm on}/I_{\rm off}^{\ c}$	$S_{\rm s}$ (V/dec) ^d	$N_{\rm tr} (\times 10^{12} {\rm cm}^{-1} {\rm eV}^{-1})^{e}$
$P1$ $(V_{\rm d} = -1 \text{ V})$	0.058	3.8	10 ⁵	5.8	5.27
$P3$ $(V_d = -1 V)$	0.079	11.1	10 ⁵	4.6	4.18
P1 $(V_{\rm d} = -10 \text{ V})$	0.48	4.4	10 ⁵	6.3	5.73
P3 $(V_{\rm d} = -10 \text{ V})$	0.99	11.6	10 ⁶	5.6	5.09
$P1$ $(V_{\rm d} = -100 \text{ V})$	2.21	13.7	10 ⁵	15.2	13.8
P3 $(V_{\rm d} = -100 \text{ V})$	4.72	24.5	10 ³	12.6	11.5

^{*a*} Average hole mobility of the P-type FET device measured at $V_d = -10$ or -100 V. ^{*b*} Threshold voltage. ^{*c*}On-off current ratio. ^{*d*} Subthreshold swing. ^{*e*} Maximum interfacial trap density calculated from the subthreshold slope.

Table S6. Device performances of FETs comprising the CP thin films as the	ie channel.
---	-------------

CPs	$\mu_e (\text{cm}^2 \text{V}^{-1} \text{s}^{-1})^a$	$V_{\rm th}$ (V) ^b	$I_{\rm on}/I_{\rm off}^{\ c}$
P1	3.5×10^{-2}	37.0	10 ³
P2	1.8×10^{-3}	14.4	10 ⁵
P3	3.4×10^{-5}	27.7	10 ³

^{*a*} Average electron mobility of the N-type FET device measured at $V_d = 100$ V. ^{*b*}Threshold voltage. ^{*c*}On-off current ratio.

Materials Characterizations.

¹H and ¹³C nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AVNEO500 with working frequencies of 500 MHz for ¹H and 125 MHz for ¹³C, respectively, and with *d*-chloroform (CDCl₃) and dimethyl sulfoxide-*d*₆ (DMSO-*d*₆) as the *d*-solvent. Number-average molecular weights (M_n), weight-average molecular weights (M_w), and PDI of polymers were measured at 40 °C and flowing rate of 0.3 mL min⁻¹ in tetrahydrofuran (THF) by gel permeation chromatography (GPC) on a LC-20AT (Shodex GPC LF-604). Thermogravimetry analysis (TGA) measurement was performed from 100 to 750 °C with a heating rate of 10 °C min⁻¹ on a Perkin Elmer TGA4000. Differential scanning calorimetry (DSC) was measured under N₂ protection from 30 to 300 °C with a heating rate of 10 °C min⁻¹ on a Perkin Elmer DSC6000. The elemental analysis of reported polymers was performed on a UNICUBE (Elementar, Germany). Cyclic voltammetry (CV) analysis was conducted by a CHI 6273E electrochemical analyzer (CH Instrument Inc.), and ITO glass, Pt wire, and Ag/AgNO₃ (acetonitrile (*sat.*)) were served in a three-electrode cell system as the working, auxiliary, and reference electrodes, respectively.

Physical properties of the synthesized CPs:

P1: ¹H NMR (500 MHz, CDCl₃, δ ppm, 25 °C, **Figure S10**): 8.67 (d, *J* = 155 Hz, 2H), 7.48–7.07 (br, 4H), 4.11 (s, 4H), 1.98 (s, 2H) 1.51–0.78 (br, 76H). *M*_n (GPC) = 66000, PDI = 1.69. Yield = 78% (550 mg).

P2: ¹H NMR (500 MHz, CDCl₃, δ ppm, 25 °C, **Figure S12**): 8.89 (s, 2H), 8.22 (d, J = 5 Hz, 4H), 7.41 (d, J = 6 Hz, 4H), 7.32 (s, 2H), 7.22 (s, 2H) 4.20 (d, J = 5.5 Hz, 4H), 1.58 (s, 2H), 1.44–0.79 (br, 76H). M_n (GPC) = 5,200, PDI = 1.23 (bimodal molecular weight distribution due to the polymer aggregates). Anal. Calcd for C₇₆H₉₈N₂O₈S₂ (%): C, 74.1; H, 8.9; N, 2.3; S, 5.2. Found (%): C, 67.2; H, 7.4; N, 2.14; S, 3.6. Yield = 55% (100 mg).

P3: ¹H NMR (500 MHz, CDCl₃, δ ppm, 25 °C, **Figure S14**): 8.91 (s, 2H), 8.76 (s, 2H), 7.18 (s, 4H), 7.38–7.29 (br, 2H), 7.24–7.16 (br, 2H) 4.26 (s, 4H), 1.57 (s, 2H), 1.42–0.75 (br, 154H). M_n (GPC) = 5,950, PDI = 1.4 (bimodal molecular weight distribution due to the polymer aggregates). Anal. Calcd for C₁₁₈H₁₇₈N₂O₁₂S₂ (%): C, 75.4; H, 9.5; N, 1.5; S, 3.4. Found (%): C, 80.0; H, 11.1; N, 0.7; S, 1.4. Yield = 67% (130 mg).

Figure S1. GPC profiles of the CPs in THF at 40 °C and 0.3 mL min⁻¹. Note that the molecular weight used poly(methyl methacrylate) (PMMA) as the molecular weight standard.

Figure S2. ¹H NMR spectrum of M1 in DMSO- d_6 .

Figure S3. ¹³C NMR spectrum of M1 in DMSO-*d*₆.

Figure S4. ¹H NMR spectrum of M2 in DMSO-*d*₆.

Figure S5. ¹³C NMR spectrum of M2 in DMSO- d_6 .

Figure S6. ¹H NMR spectrum of M3 in CDCl₃.

Figure S7. ¹³C NMR spectrum of M3 in CDCl₃.

Figure S9. ¹³C NMR spectrum of M4 in CDCl₃.

Figure S10. ¹H NMR spectrum of P1 in CDCl₃.

Figure S11. ¹³C NMR spectrum of P1 in CDCl₃.

Figure S12. ¹H NMR spectrum of P2 in CDCl₃.

Figure S13. ¹³C NMR spectrum of P2 in CDCl₃.

Figure S14. ¹H NMR spectrum of P3 in CDCl₃.

Figure S15. ¹³C NMR spectrum of P3 in CDCl₃.

Figure S16. Thermal properties of the polymers studied: (a) TGA and (b) DSC profiles at a ramping rate of 10 °C min⁻¹.

Figure S17. Aggregation and disorder fractions in the UV–Vis absorption spectra of polymers (a) P1 and (b) P2. Note that the polymer solutions in toluene were prepared at a concentration of 0.25 mg mL⁻¹, and the disordered polymer solutions were prepared in 1-chloronaphthalene (1-CN) at a concentration of 0.05 mg mL⁻¹.

Figure S18. CV profiles of the polymer films coated on an ITO glass. The measurement was conducted at a scanning rate of 0.1 V s^{-1} .

Figure S19. UV–Vis absorption spectra of the *sc*-SWNTs sorting solutions for calculating its purity: (a) **P1**/*sc*-SWNT, (b) **P2**/*sc*-SWNTs, and (c) **P3**/*sc*-SWNTs. The absorbances of NDI-based CPs were deconvoluted and subtracted from the absorption spectra of CP/*sc*-SWNT solutions.

Figure S20. FT-IR spectra of the raw SWNT, and pure polymer powder of P1, P2, and P3.

	1. Run Filter		2. Stitch Fibers		
)	Original Image	Invert Color	Fiber Vectorization		
ay	Image Width (nm)	5000	Step Length (nm)	15	
	Scale Parameters with Width		Max. Curvature (1/µm)	60	
			Stitch Gap Length (nm)	60	
)	Diffusion Filter		Min. Fiber Length (nm)	100	
	Gaussian Smoothing (nm) Orientation Smoothing (nm) Diffusion Time (s)	5 15 5	 Display Fiber Segments Stitched Fibers 		
)	Top Hat Filter Param. Top Hat Size (nm)	40	Plotting and Visualization	ons	
)	Thresholding		Orientational Order		
	Adaptive Threshold		Fiber Length and Width		
	If global, Value (0-1)	0.45	Orientation Map (slow)	1	
)	Noise Removal				
	Noise Max Area (sq. nm)	1500			
)	Skeletonization		Analyze a Folder of Image	s	
)	Fringe Removal (nm) Skeleton branches less than this length will be removed	60	Save Plots and Visualizations		

Figure S21. SWNT morphology fitting parameters in GTFiber software for extracting the lengths of *sc*-SWNTs in AFM topography. The program was developed by Persson *et al.* and reported in *Chem. Mater.* **2017**, *29*, 3-14.

Figure S22. 1D GIXD profiles of CP/*sc*-SWNT films extracted along the OOP direction: the lamellar stacking is inhibited with the existence of *sc*-SWNTs.

Figure S23. Transfer characteristics curves with $V_d = -100$ V for CP/sc-SWNT devices of (a) P1/sc-SWNTs and (b) P3/sc-SWNTs. Note that gray scattered dots represent the gate current measured, and the curves were swept from 20 to -40 V for *p*-type operation.

Figure S24. (a) Transfer curve with $V_d = -10$ V and (b) output curve of P2/sc-SWNTs device. Note that the device's drain current is low due to the low yield of sc-SWNTs sorted by P2.

Figure S25. FET transfer characteristics of the *n*-type CP films of (a) **P1**, (b) **P2**, and (c) **P3**. Note that the gray scattered dots represent the gate currents measured, and the curves were swept from -20 to 100 V for *n*-type operation.

Figure S26. N-type transfer characteristic curves of the CP/sc-SWNTs device of (a) P1/sc-SWNTs and (b) P3/sc-SWNTs. Note that the curves were swept from -20 to 40 V at $V_d = 10$ V.

Figure S27. Bias stability test of CP/sc-SWNT based devices by applying $V_g = -10$ V at $V_d = -1$ V.

Figure S28. Transfer characteristics curves with $V_d = -1$ V for the CP/sc-SWNT devices of (a) P1/sc-SWNTs and (b) P3/sc-SWNTs. Note that gray scattered dots represent the gate current measured, and the curves were swept from 20 to -40 V for *p*-type operation.