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Table S1. Optical, electrochemical, and thermal properties of the polymers.

CPs | Amax(nm)? | HOMO (eV)? | LUMO (eV)? | Eg (V)¢ | EUV(eV)? | Ta (°C)®
P1 389, 705 -5.96 -4.09 1.87 1.76 436
P2 369, 637 -5.91 -3.77 2.14 1.95 312
P3 375, 635 -5.89 3.73 2.16 1.95 358

¢ UV-Vis absorption maximum position of the CPs dissolved in toluene. ® Derived from the CV
oxidative onset potential determined using Fc/Fc* as an internal potential reference. ¢ HOMO and
LUMO gap determined from the difference between the oxidative and reductive onsets in CV profiles.
9 Energy bandgap determined from the onset wavelength in UV-Vis spectrum. ¢ Determined from TGA
at 5% weight loss in a nitrogen atmosphere.

Table S2. FET dielectric layer parameters.

Layer Thickness (nm) Dielectric constant (&r)
SiO2 300 3.9
SBS 30 2.4

Table S3. Summary of the sorting parameters of CP/sc-SWNT solutions and the crystallographic
parameters of the pristine CP films.

CPs Cieswhts (L) | ¢ ¢ | Purity (%) | Yield (%) dioo Q)% | qro0 (A1) ?°
P1 0.044 0.325 ~99 34.0 25.1 0.25

P2 0.003 0.429 >99 2.3 31.9 0.20
P3 0.032 0.586 >99 23.3 34.3 0.18

a

sc-SWNT concentration of the as-sorted solutions and ¢ value determined from the UV-Vis

absorption spectra in Figure S19. °d-spacing and g values are extracted from the 1D GIXD profiles.
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Table S4. Crystallographic parameters of the CP/sc-SWNT films, including the d-spacing, full-width
at half-maximum (FWHM), and paracrystalline disorder of the IP(010) diffraction peaks.

CPs/sc-SWNTs doro (A) goio (A™) FWHM go10 (%)
P1 4.65 1.352 0.245 16.9
P2 4.61 1.362 0.262 17.5
P3 4.59 1.369 0.267 17.6

Table S5. Device performances of FETs comprising the CP/sc-SWNTs.

CPs/sc-SWNTs | u (em'V's")e | Vo (P | I /Mf | S,(Vide)! | N (x10" em V™)
P1
0.058 3.8 10° 5.8 5.27
(Va=-1V)
P3
0.079 1.1 10° 4.6 4.18
(Va=-1V)
P1
0.48 4.4 10° 6.3 5.73
(Va=-10V)
P3
0.99 11.6 10° 5.6 5.09
(Va=-10V)
P1
221 13.7 10° 15.2 13.8
(Va=-100V)
P3
472 24.5 10° 12.6 11.5
(Va=-100V)

 Average hole mobility of the P-type FET device measured at V4 =—10 or —100 V. ® Threshold voltage.

On-off current ratio. ¢ Subthreshold swing. ¢ Maximum interfacial trap density calculated from the

subthreshold slope.

Table S6. Device performances of FETs comprising the CP thin films as the channel.

CPs He (csz-ls-l) a Vin V)? L0
P1 3.5 %107 37.0 10°
P2 1.8 x 107 14.4 10
P3 3.4 %107 27.7 10°

@ Average electron mobility of the N-type FET device measured at ¥4 = 100 V. *Threshold voltage.

“On-off current ratio.
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Materials Characterizations.

'H and '3C nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AVNEOS500
with working frequencies of 500 MHz for 'H and 125 MHz for '*C, respectively, and with d-
chloroform (CDCIl3) and dimethyl sulfoxide-ds (DMSO-ds) as the d-solvent. Number-average
molecular weights (M,), weight-average molecular weights (My), and PDI of polymers were measured
at 40 °C and flowing rate of 0.3 mL min™! in tetrahydrofuran (THF) by gel permeation chromatography
(GPC) on a LC-20AT (Shodex GPC LF-604). Thermogravimetry analysis (TGA) measurement was
performed from 100 to 750 °C with a heating rate of 10 °C min"' on a Perkin Elmer TGA4000.
Differential scanning calorimetry (DSC) was measured under N protection from 30 to 300 °C with a
heating rate of 10 °C min™! on a Perkin Elmer DSC6000. The elemental analysis of reported polymers
was performed on a UNICUBE (Elementar, Germany). Cyclic voltammetry (CV) analysis was
conducted by a CHI 6273E electrochemical analyzer (CH Instrument Inc.), and ITO glass, Pt wire, and
Ag/AgNOs (acetonitrile (sat.)) were served in a three-electrode cell system as the working, auxiliary,

and reference electrodes, respectively.

S54



Physical properties of the synthesized CPs:

P1: 'H NMR (500 MHz, CDCls, § ppm, 25 °C, Figure S10): 8.67 (d, J = 155 Hz, 2H), 7.48-7.07
(br, 4H), 4.11 (s, 4H), 1.98 (s, 2H) 1.51-0.78 (br, 76H). M, (GPC) = 66000, PDI = 1.69. Yield = 78%

(550 mg).

P2: 'H NMR (500 MHz, CDCls, § ppm, 25 °C, Figure S12): 8.89 (s, 2H), 8.22 (d, J= 5 Hz, 4H),
7.41 (d, J= 6 Hz, 4H), 7.32 (s, 2H), 7.22 (s, 2H) 4.20 (d, /= 5.5 Hz, 4H), 1.58 (s, 2H), 1.44-0.79 (br,
76H). M, (GPC) = 5,200, PDI = 1.23 (bimodal molecular weight distribution due to the polymer
aggregates). Anal. Calcd for C76HogN2OsS2 (%): C, 74.1; H, 8.9; N, 2.3; S, 5.2. Found (%): C, 67.2; H,

7.4; N, 2.14; S, 3.6. Yield = 55% (100 mg).

P3: '"H NMR (500 MHz, CDCls, & ppm, 25 °C, Figure S14): 8.91 (s, 2H), 8.76 (s, 2H), 7.18 (s,
4H), 7.38-7.29 (br, 2H), 7.24-7.16 (br, 2H) 4.26 (s, 4H), 1.57 (s, 2H), 1.42-0.75 (br, 154H). M, (GPC)
=5,950, PDI = 1.4 (bimodal molecular weight distribution due to the polymer aggregates). Anal. Calcd
for C11sH17sN2012S2 (%): C, 75.4; H, 9.5; N, 1.5; S, 3.4. Found (%): C, 80.0; H, 11.1; N, 0.7; S, 1.4.

Yield = 67% (130 mg).
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Figure S1. GPC profiles of the CPs in THF at 40 °C and 0.3 mL min™'. Note that the molecular weight
used poly(methyl methacrylate) (PMMA) as the molecular weight standard.
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Figure S2. '"H NMR spectrum of M1 in DMSO-d.
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Figure S3. *C NMR spectrum of M1 in DMSO-db.



Figure S5. *C NMR spectrum of M2 in DMSO-db.
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Figure S6. 'H NMR spectrum of M3 in CDCls.
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Figure S7. °C NMR spectrum of M3 in CDCls.
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Figure S8. 'H NMR spectrum of M4 in CDCls.
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Figure S9. °C NMR spectrum of M4 in CDCls.
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Figure S11. '*C NMR spectrum of P1 in CDCl;.
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Figure S13. 3C NMR spectrum of P2 in CDCls.
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Figure S14. '"H NMR spectrum of P3 in CDCls.
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Figure S15. 3C NMR spectrum of P3 in CDCls.
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Figure S16. Thermal properties of the polymers studied: (a) TGA and (b) DSC profiles at a ramping

rate of 10 °C min™'.
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Figure S17. Aggregation and disorder fractions in the UV—Vis absorption spectra of polymers (a) P1
and (b) P2. Note that the polymer solutions in toluene were prepared at a concentration of 0.25 mg
mL!, and the disordered polymer solutions were prepared in 1-chloronaphthalene (1-CN) at a

concentration of 0.05 mg mL™.
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Figure S18. CV profiles of the polymer films coated on an ITO glass. The measurement was conducted

at a scanning rate of 0.1 Vs,
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Figure S19. UV—Vis absorption spectra of the sc-SWNTs sorting solutions for calculating its purity:
(a) P1/sc-SWNT, (b) P2/sc-SWNTs, and (c) P3/sc-SWNTs. The absorbances of NDI-based CPs were
deconvoluted and subtracted from the absorption spectra of CP/sc-SWNT solutions.
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Figure S20. FT-IR spectra of the raw SWNT, and pure polymer powder of P1, P2, and P3.
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Figure S21. SWNT morphology fitting parameters in GTFiber software for extracting the lengths of
sc-SWNTs in AFM topography. The program was developed by Persson et al. and reported in Chem.
Mater. 2017, 29, 3-14.
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Figure S22. 1D GIXD profiles of CP/sc-SWNT films extracted along the OOP direction: the lamellar

stacking is inhibited with the existence of sc-SWNTs.
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Figure S23. Transfer characteristics curves with V4= —100 V for CP/sc-SWNT devices of (a) P1/sc-
SWNTs and (b) P3/sc-SWNTs. Note that gray scattered dots represent the gate current measured, and

the curves were swept from 20 to —40 V for p-type operation.
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Figure S24. (a) Transfer curve with V4 =-10 V and (b) output curve of P2/sc-SWNTs device. Note
that the device’s drain current is low due to the low yield of sc-SWNTs sorted by P2.
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Figure S25. FET transfer characteristics of the n-type CP films of (a) P1, (b) P2, and (c) P3. Note that
the gray scattered dots represent the gate currents measured, and the curves were swept from —20 to

100 V for n-type operation.
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Figure S26. N-type transfer characteristic curves of the CP/sc-SWNTs device of (a) P1/sc-SWNTs
and (b) P3/sc-SWNTs. Note that the curves were swept from =20 to 40 V at Vg=10 V.
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Figure S27. Bias stability test of CP/sc-SWNT based devices by applying Vg=—10 Vat Vag=—1 V.
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Figure S28. Transfer characteristics curves with Vq=—1 V for the CP/sc-SWNT devices of (a) P1/sc-
SWNTs and (b) P3/sc-SWNTs. Note that gray scattered dots represent the gate current measured, and
the curves were swept from 20 to =40 V for p-type operation.
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