In Dictyostelium discoideum inositol 1,3,4,5-tetrakisphosphate is dephosphorylated by a 3-phosphatase and a 1-phosphatase

Peter VAN DIJKEN, Aleida A. LAMMERS and Peter J. M. VAN HAASTERT*

Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

The degradation of Ins(1,3,4,5) P_4 in *Dictyostelium* was investigated using a mixture of $[{}^3H]$ Ins(1,3,4,5) P_4 and $[3$ - ${}^{32}P]$ Ins- $(1,3,4,5)P_4$. After incubation of this mixture with a *Dictyostelium* homogenate the ${}^{32}P/{}^{3}H$ ratio found in the Ins P_3 product was reduced to 24% of the ratio in the substrate. ³²P-labelled inorganic phosphate was found as well, whereas hardly any Ins P_2 was detected. This indicates that Ins(1,3,4,5) P_4 is mainly degraded by a 3-phosphatase. The other enzyme was characterized by identification of the $32P$ -labelled Ins P_3 isomer. This isomer did not co-elute with $Ins(1,3,4)P_3$, indicating that no 5-

INTRODUCTION

It is generally accepted that the second messenger $Ins(1,4,5)P_3$, generated by the action of phospholipase C, is involved in calcium mobilization from non-mitochondrial stores [1]. In mammalian cells Ins $(1,4,5)P_3$ can be phosphorylated by a 3kinase, resulting in the formation of $Ins(1,3,4,5)P_4$ [2]. Both Ins(1,4,5) P_3 and Ins(1,3,4,5) P_4 are dephosphorylated by a 5phosphatase yielding Ins(1,4) \overline{P}_2 and Ins(1,3,4) \overline{P}_3 respectively [3,4]. For rat liver and human platelets it has been shown that Ins(1,3,4,5) P_4 can also be dephosphorylated by a 3-phosphatase [5-7]. It was suggested that this activity provides a way to sustain $Ins(1,4,5)P₃$ signals, but when the hepatic 3-phosphatase was purified its substrate specificity indicated that the preferred substrates in vivo probably are $\text{Ins}P_6$ and $\text{Ins}(1,3,4,5,6)P_5$ [8]. Furthermore, it is shown that the 3-phosphatase is located inside the endoplasmic reticulum, probably without access to its substrates [9]. Therefore, the cellular function of the 3-phosphatase remains unclear.

In the cellular slime mould Dictyostelium discoideum there are indications for the function of $\text{Ins}(1,4,5)P_3$ in calcium mobilization [10,11]. Furthermore Ins $(1,4,5)P_3$ has been shown to be generated by phospholipase C-mediated hydrolysis of Ptdlns- $(4,5)P₉$ [12-14]. The metabolism of Ins(1,4,5) $P₃$ in Dictyostelium is different from that in mammalian cells: in vegetative and aggregation competent cells $Ins(1,4,5)P_3$ is degraded by a 5phosphatase and a 1-phosphatase to yield $Ins(1,4)P_2$ and Ins- $(4,5)P₂$ respectively [15]. In *Dictyostelium* slug cells, however, the Ins(1,4,5) P_3 is solely dephosphorylated by the 1-phosphatase [16].

Recently a Dictyostelium cell line lacking the gene for phospholipase C was constructed [17]. This cell line has levels of $Ins(1,4,5)P₃$ that are only slightly significantly lower than those in wild-type cells [18]. This indicates that there should be at least one additional route for Ins $(1,4,5)P_3$ formation. Among several other possible routes, the dephosphorylation of higher inositol polyphosphates could provide Ins(1,4,5) P_3 . Ins(1,3,4,5) P_4 , which

phosphatase was present in Dictyostelium. The ³²P-labelled $\text{Ins}P_3$ could be oxidized using NaIO₄. The only Ins_3 isomer that has these characteristics is $Ins(3,4,5)P_3$, indicating 1-phosphatase activity. The 1-phosphatase appeared to be dependent on $MgCl₂$, whereas the 3-phosphatase was still active in the absence of MgCl₂. An analogue of Ins(1,3,4,5) P_4 with a thiophosphate substitution at the 1-position was found to be almost completely resistant to hydrolysis by the I-phosphatase, but was degraded by the 3-phosphatase.

is present in Dictyostelium, could be the immediate precursor of Ins(1,4,5) P_3 . The level of Ins(1,3,4,5) P_4 is 10 pmol/10⁷ cells, whereas the level of Ins(1,4,5) P_3 is about 5 pmol/10⁷ cells [18].

In this study the degradation of Ins(1,3,4,5) P_4 by Dictyostelium homogenates was investigated. We found that $Ins(1,3,4,5)P_4$ is degraded by a 3-phosphatase to yield Ins $(1,4,5)P_3$, as in mammalian cells. Unlike in mammalian cells, $Ins(1,3,4,5)P₄$ is not degraded by a 5-phosphatase, but an additional enzyme hydrolysing Ins(1,3,4,5) P_4 at the 1-position was identified.

MATERIALS AND METHODS

Materials

 $[2^{-3}H]$ Ins(1,3,4,5) P_4 (21 Ci/mmol) and $[2^{-3}H]$ Ins(1,4,5) P_3 (40 Ci/ mmol) were from Du Pont-New England Nuclear. $[\gamma^{-32}P]ATP$ (3000 Ci/mmol) was purchased from Amersham International. The Zorbax HPLC column $(6.2 \text{ mm} \times 8 \text{ cm})$ was from Du Pont. Emulsifier 299 scintillation cocktail was from Packard. The Visking dialysis membrane (12-14 kDa cutoff) and PMSF were from Serva. Hexokinase (2 mg/ml), adenosine 5'-[y-thio]triphosphate (ATP[S]) and leupeptin were purchased from Boehringer. BSA and Ins $(1,4,5)P_3$ were from Sigma. All other chemicals were from Merck. DL-myo-Inositol 4,5-bisphosphate I-phosphorothioate $[Ins(1) PS(4, 5)P₂]$ was a generous gift from Dr. B. V. L. Potter. A cDNA clone encoding the C-terminal part of the Ins(1,4,5) P_3 3-kinase (clone C5 in [19]) was a generous gift from Dr. C. Erneux.

Organism and culture conditions

Dictyostelium discoideum strains AX3, HD1O and HDII were grown axenically in HL5 medium [20] containing ¹⁰ g/l glucose instead of ¹⁶ g/l glucose. Cells were harvested in PB (10 mM sodium/potassium phosphate buffer, pH 6.5), washed by repeated centrifugation (3 min, 300 g), and starved for 5 h in PB at

Abbreviations used: Ins(1)PS(4,5)P₂, DL-myo-inositol 4,5-bisphosphate 1-phosphorothioate; Ins(1)PS(3,4,5)P₃, DL-myo-inositol 3,4,5-trisphosphate 1phosphorothioate.

^{*}To whom correspondence should be addressed.

a density of 1×10^7 cells/ml. Cells were washed in 40 mM Hepes, pH 6.5, containing 0.5 mM EDTA. After resuspending in ⁴⁰ mM Hepes, pH 6.5, 0.5 mM EDTA and ²⁰⁰ mM sucrose, cells were homogenized at a density of 1×10^8 /ml by pressing them through a Nuclepore filter (pore size $3 \mu m$).

Preparation of recombinant $Ins(1,4,5)P_3$ 3-kinase

LB medium (10 g/l NaCl, ¹⁰ g/l bactotryptone, ⁵ g/l bactoyeast extract) containing 50 μ g of ampicillin/ml was inoculated with a single colony of the Bluescript plasmid harbouring the cDNA insert encoding rat brain $Ins(1,4,5)P_3$ 3-kinase (clone C5; [19]). Cultures (50 ml) were incubated overnight at 37 $^{\circ}$ C. The Ins- $(1,4,5)P₃$ 3-kinase was induced by the addition of isopropyl β thiogalactoside (IPTG) to ^a final concentration of ¹ mM. After 4 h cells were harvested and resuspended in 0.5 ml of cold lysis buffer (50 mM Tris/HCl, pH 8, ¹ mM EDTA, ¹² mM 2-mercaptoethanol, 0.2 mM PMSF, 2.5 μ M leupeptin, 1% Triton X-100, ¹⁰ % sucrose). The suspension was shaken for ²⁰ min at 4 °C followed by centrifugation (15000 g , 5 min). The supernatant showed Ins $(1,4,5)P_3$ 3-kinase activity and was immediately stored at -80 °C.

Preparation of $[3-32P]$ lns(1,3,4,5) P_A

Ins(1,4,5) P_3 3-kinase activity was used in a 50 μ l reaction volume containing 84 mM Hepes, pH 7.5, 1 mg/ml BSA, 20 mM $MgCl₂$, 10 μ M ATP, 10 μ M Ins(1,4,5) P_3 , [γ -³²P]ATP and enzyme [enzyme activity in the mixture: 94 pmol/min per ml at 10 μ M Ins(1,4,5) P_3 and 37 °C]. The mixture was incubated for 8 min at 37 'C. This was followed by boiling for 2 min and centrifugation for 5 min at $15000 g$. The supernatants were incubated for 35 min with 5 μ l of hexokinase (1.1 units) in the presence of 100 μ M glucose followed by boiling for 2 min to remove residual $[\gamma^{-32}P]$ ATP. The reaction mixture was centrifuged (2 min, $14000 g$) and analysed by HPLC as described below. The fractions containing $[3^{-32}P]$ Ins(1,3,4,5) P_4 were desalted by dialysis against ¹⁰ mM Hepes, pH 7.0, for ⁴ h.

$Ins(1,3,4,5)P_4$ phosphatase assay

Ins $(1,3,4,5)P_4$ phosphatase activity was determined in a mixture containing 2000 d.p.m. [³H]Ins(1,3,4,5) P_4 and 2000 d.p.m. $[3^{-32}P]$ Ins $(1,3,4,5)P_4$. After incubation for 30-60 min at room temperature, $(NH_4)_2HPO_4$ was added to a final concentration of ¹²⁰ mM and the sample was boiled for ² min. The sample was centrifuged for 2 min at $10000 g$, and the supernatant was applied to an HPLC column.

HPLC analysis of labelled inositol phosphates

Samples were analysed using ^a Zorbax HPLC column equipped with a guard column. The column was eluted with a gradient of water (buffer A) and $1.2 M (NH₄)₂ HPO₄$ (buffer B) at 1.5 ml/min. Linear gradients of $\%$ B were formed at the following time points.

Gradient 1: 0% at 0 min, 30% at 5 min, 39% at 11 min, 100% at 13min, 100% at 16min. Gradient 2: 0% at 0min, 50% at 0.1 min, 100% at ⁵ min, 100% at 7.5 min. Gradient 3: 0% at 0 min, 5% at 3 min, 15% at 8 min, 20% at 9 min, 25% at ¹⁴ min, ³⁰ % at ¹⁵ min, ³⁹ % at ²¹ min, ¹⁰⁰ % at 21.1 min, ¹⁰⁰ % at ²⁷ min. Gradient 4: ⁰ % at ⁰ min, ³⁰ % at ¹ min, ⁷⁰ % at ¹⁰ min, ¹⁰⁰ % at ¹¹ min, ¹⁰⁰ % at ¹⁶ min. Fractions of 0.5 ml were collected to which 4 ml of scintillation cocktail was added. Radioactivity in the fractions was determined in a Beckmann liquid-scintillation counter.

Oxidation of $Ins(1,3,4,5)P₄$ degradation product

 $[3^{-32}P]$ Ins(1,3,4,5) P_4 was incubated with a *Dictyostelium* homogenate. The sample was split in two. One of the samples was used as a control. To the other sample $NaIO₄$ (pH 2) was added to a final concentration of ¹⁷⁵ mM. The reaction was carried out for 36 h at room temperature in the dark. Afterwards both samples were analysed by HPLC as described above.

RESULTS AND DISCUSSION

For the investigation of $Ins(1,3,4,5)P_4$ degradation by wildtype (AX3) Dictyostelium homogenates we made use of $[3^{-32}P]Ins(1,3,4,5)P_4$. This compound was prepared from unlabelled Ins(1,4,5) $\overline{P_3}$ and [γ -³²P]ATP using Ins(1,4,5) $\overline{P_3}$ 3-kinase. As this compound yields unlabelled Ins $(1,4,5)P_3$ and ³²P-labelled inorganic phosphate when degraded by a 3-phosphatase, it provides a simple assay for $Ins(1,3,4,5)P_3$ 3-phosphatase activity. On the other hand, degradation of $Ins(1,3,4,5)P_4$ by a 5phosphatase results in the formation of ^{32}P -labelled Ins(1,3,4) P_3 , a compound that elutes before $Ins(1,4,5)P_3$ in the HPLC system used.

A mixture of $[3^{-32}P]$ Ins $(1,3,4,5)P_4$ and $[{}^3H]$ Ins $(1,3,4,5)P_4$ was incubated with Dictyostelium discoideum homogenate in the presence of ¹⁰ mM EDTA. In Figure ¹ ^a typical HPLC profile of the reaction products is shown; the relative ${}^{32}P/{}^{3}H$ ratios of the different peaks are indicated in the Figure, with the ratio in Ins(1,3,4,5) P_4 set at 1.0. These data reveal that the ³²P/³H ratio in the Ins P_3 fraction (0.24) is markedly reduced relatively to the ³²P/³H ratio of the Ins(1,3,4,5) P_4 substrate. In addition, hardly any InsP_2 is formed in the reaction. Furthermore the ³²P label that is lost in the $\text{Ins}P_3$ fraction is found back as ³²P-labelled inorganic phosphate. The significant loss of ^{32}P in the Ins P_3 fraction on the one hand, and the formation of 32P-labelled inorganic phosphate in the absence of significant InsP_2 formation on the other hand, indicates that 76% of Ins(1,3,4,5) $P₄$

Figure 1 $[3-32P]$ Ins(1,3,4,5) P_A degradation in the presence of EDTA

HPLC profile of the degradation of a mixture of $[^3H]$ lns(1,3,4,5) P_4 and $[3^{32}P]$ lns(1,3,4,5) P_4 by ^a wild-type Dictyostelium homogenate in the presence of ¹⁰ mM EDTA. Gradient ⁴ was used α who type *biotypotomam* homogenate in the prosence of 10 hmw ED1A. Gradient 4 was doed $\frac{1}{2}$ $\frac{1}{2}$ (InsP/P, fraction).

Figure 2 Absence of co-chromatography of the $[^{32}P]$ Ins P_3 and $[^{3}H]$ Ins- $(1,3,4)P_3$

HPLC profile of $[^{32}P]$ Ins P_3 product formed from $[3\cdot^{32}P]$ Ins(1,3,4,5) P_4 after incubation with a wild-type *Dictyostelium* homogenate. The $[^{32}P]$ Ins P_3 did not co-elute with authentic $[^{3}H]$ Ins- $(1,3,4)P₃$ which was included as an internal standard. The HPLC column was eluted with gradient 3.

degradation is caused by a 3-phosphatase. Figure ¹ also shows that 24% of the produced Ins P_3 is ³²P-labelled. Exclusion of EDTA and addition of 5 mM $MgCl₂$ in the reaction mixture resulted in about a 4-fold increase of total Ins $(1,3,4,5)P_4$ phosphatase activity and in the enhanced formation of a 32P-labelled $InsP_3$ isomer as the ³²P/³H ratio in the $InsP_3$ fraction has increased from 0.24 in the presence of EDTA to 0.84 in the presence of $MgCl₂$ (data not shown). It should be noted that in the presence of $MgCl₂$ the ³²P/³H ratio in the Ins $P₃$ fraction is still lower than the ³²P/³H ratio in Ins(1,3,4,5)P₄, indicating that part of the Ins(1,3,4,5) P_4 is still degraded by the 3-phosphatase.

In mammalian cells $Ins(1,3,4,5)P_4$ is degraded by a 3-phosphatase and a 5-phosphatase. The latter would yield [3-32P]Ins- $(1,3,4)P_3$ from $[3^{-32}P]$ Ins $(1,3,4,5)P_4$. Figure 2 reveals that the $[3^{-32}P]$ Ins P_3 isomer produced by *Dictyostelium* homogenates in the presence of Mg^{2+} does not co-elute with authentic [³H]Ins(1,3,4) P_3 , indicating that no 5-phosphatase is present.

In order to identify the second phosphatase activity we identified the nature of the formed $[32P]\text{Ins}P_3$, which could be either Ins(3,4,5) P_3 or Ins(1,3,5) P_3 (assuming that phosphate migration does not occur). From these two compounds Ins- $(3,4,5)P₃$ can be oxidized in a Malaprade reaction, whereas $Ins(1,3,5)P₃$ can not be oxidized because it has no vicinal hydroxyl groups, which are the requirements for the Malaprade reaction [21]. Incubation of the $[3^{2}P]$ Ins P_{3} with NaIO₄ altered the retention time of this compound (Figure 3). We therefore conclude that it was oxidized, indicating that it must have been $Ins(3,4,5)P_3$ and that the phosphatase is an Ins $(1,3,4,5)P_4$ 1-phosphatase. Dictyostelium cells contain less than 1 pmol of D/L -Ins(3,4,5) P_3 per 1×10^7 cells [18]. Therefore either the formation of Ins(3,4,5) P_s has little significance in vivo or $Ins(3,4,5)P_3$ is rapidly metabolized further.

The Dictyostelium Ins $(1,3,4,5)P_4$ phosphatases were investigated using a labelled Ins(1,3,4,5) P_4 analogue with thiophosphate substitution at the 1-position. It was prepared from Ins(1)PS-(4,5) P_2 using recombinant 3-kinase and [γ -³²P]ATP as described previously [22]. The compound was purified using HPLC and desalted by dialysis. It eluted several fractions after authentic

Figure 3 Effect of incubation with NaIO, on the $[3-32P]$ Ins(1,3,4,5) $P₄$ degradation products

 $[3³²P]$ lns(1,3,4,5) P_4 was incubated with a wild-type *Dictyostelium* homogenate in the presence of 10 mM EDTA. Half of the sample was incubated with NalO₄, and the other half was used as a control. The position of the InsP_3 in the control sample is indicated in the Figure. In the $NalO_A$ -treated sample the retention time of this compound is altered, indicating that it was oxidized and cannot be $Ins(1,3,5)P_3$. Gradient 1 was used to elute the column. The experiment was done twice with identical results.

Ins(1,3,4,5) P_4 (Figure 4). This compound was degraded in the presence of $5 \text{ mM } MgCl₂$ by an homogenate with [3H]Ins- $(1,3,4,5)P₄$ as internal standard. Under these conditions Ins- $(1,3,4,5)P₄$ is degraded mainly (84%) by the 1-phosphatase. From Figure 4 it can be seen that hardly any $[{}^{32}P]$ Ins P_3 is formed from [3-32P]DL-myo-inositol 3,4,5-trisphosphate I-phosphorothioate [Ins(1)PS(3,4,5) P_3], but that instead most of the ³²P radioactivity

Figure 4 Degradation of $[3-32P]$ Ins(1)PS(3,4,5)P₃

HPLC profile of the degradation of a mixture of $[^{3}H]$ lns(1,3,4,5) P_4 and $[3^{32}P]$ lns(1)PS(3,4,5) P_3 by a wild-type *Dictyostelium* homogenate in the presence of 5 mM MgCl₂. Ins(1)PS(3,4,5) P_3 is not degraded to an Ins P_3 compound, indicating that no degradation by the 1-phosphatase has occurred. ³²P-labelled inorganic phosphate is formed which indicates that the analogue is degraded by the 3-phosphatase. Gradient 2 was used to elute the column.

is found back as inorganic phosphate. This indicates that the analogue is hardly degraded by the l-phosphatase, but mainly by the 3-phosphatase. Using $Ins(1,4,5)P_4$ 5-phosphatase, it has been shown before that thiophosphate-substituted inositol phosphates are resistant to hydrolysis of the thiophosphate group [23]. Now we can extend this observation to a phosphatase that hydrolyses a different phosphate group.

The magnesium dependence of both phosphatase activities was determined by carrying out reactions in the presence of 5 mM MgCl₂ or 10 mM EDTA. The relative enzyme activities were determined with the activity of the I-phosphatase in the presence of MgCl, set at 100% . Under this condition 3phosphatase activity was $25.9 \pm 3.0\%$. Replacing MgCl₂ with EDTA resulted in ^a decrease of l-phosphatase activity to 9.3 \pm 0.6%. The 3-phosphatase on the other hand, is hardly dependent on the presence of $MgCl₂$ as its activity in the presence of EDTA was still $21.9 \pm 0.6\%$.

The Ins $(1,3,4,5)P₄$ 3-phosphatase activity, as a percentage of total Ins(1,3,4,5) P_4 phosphatase activity in the presence of MgCl₂, was not significantly different in various Dictyostelium strains. In wild-type (AX3) cells, 3-phosphatase was $20.6 \pm 3.0\%$ of total Ins $(1,3,4,5)P₄$ phosphatase activity. In a phospholipase C-lacking mutant (HD10) and in a control cell line for HD10 (HD11) these values were $18.5 \pm 3.3\%$ and $15.0 \pm 3.2\%$ respectively. This indicates that this route of $Ins(1,4,5)P_3$ formation is not caused by knocking out phospholipase C, but is a normally existing route in Dictyostelium.

The degradation of Ins(1,3,4,5) P_4 in *Dictyostelium* is in some aspects similar to that in mammalian cells, whereas other aspects are different. In mammalian cells two enzymes for $Ins(1,3,4,5)P₄$ degradation have also been demonstrated. One of them is a Mg2+-independent 3-phosphatase [5]. However, in mammalian cells the second enzyme is not a l-phosphatase but a 5 phosphatase [4]. In our experiments we could not demonstrate any Ins $(1,3,4,5)P₄$ 5-phosphatase activity as we could not detect the formation of $Ins(1,3,4)P_3$ (Figure 2). In mammalian cells three different types of 5-phosphatases have been identified: types I and III degrade both $Ins(1,4,5)P_3$ and $Ins(1,3,4,5)P_4$ whereas type II only hydrolyses $Ins(1,4,5)P_3$ [4]. In Dictyostelium Ins(1,4,5) P_3 5-phosphatase activity has been identified [15]. The absence of Ins(1,3,4,5) P_4 5-phosphatase activity suggests that the enzyme is a type-II 5-phosphatase.

The 3-phosphatase could be similar to the 3-phosphatase in mammalian cells. It shares the characteristic that it is $MgCl₂$ -

Received 19 October 1994/16 December 1994; accepted 5 January 1995

independent. In mammalian cells it has been shown that the 3-phosphatase is localized in the endoplasmic reticulum without apparent access to its substrate [9]. We are currently investigating the localization of the 3-phosphatase in order to see whether it could provide a way to form $Ins(1,4,5)P_3$ in vivo.

This study was supported by the life sciences foundation (SLW) which is subsidized by the Netherlands Organization for Scientific Research (NWO).

REFERENCES

- ¹ Berridge, M. J. and Irvine, R. F. (1984) Nature (London) 312, 315-321
- 2 Irvine, R. F., Letcher, A. J., Heslop, J. P. and Berridge, M. J. (1986) Nature (London) 320, 631-634
- 3 Downes, C. P., Mussat, M. C. and Michell, R. H. (1982) Biochem. J. 203, 169-177
- Verjans, B., Moreau, C. and Erneux, C. (1994) Mol. Cell. Endocrinol. 98, 167-171
- 5 Doughney, C., McPherson, M. A. and Dormer, R. L. (1988) Biochem. J. 251, 927-929
- 6 Cunha-Melo, J. R., Dean, M. M., Ali, H. and Beaven, M. A. (1988) J. Biol. Chem. 263, 14245-14250
- 7 Hoer, D., Kwiatkowski, A., Seib, C., Rosenthal, W., Schultz, G. and Oberdisse, E. (1988) Biochem. Biophys. Res. Commun. 164, 668-675
- 8 Nogimori, K., Hughes, P. J., Glennon, M. C., Hoggson, M. E., Putney, J. W., Jr. and Shears, S. B. (1991) J. Biol. Chem. 266, 16499-16506
- 9 Ali, N., Craxton, A. and Shears, S. B. (1993) J. Biol. Chem. 268, 6161-6167
- 10 Europe-Finner, G. N. and Newell, P. C. (1986) Biochim. Biophys. Acta 887, 335-340
- 11 Flaadt, H., Jaworski, E., Schlatterer, C. and Malchow, D. (1993) J. Cell Sci. 105, 255-261
- 12 Lundberg, G. A. and Newell, P. C. (1990) FEBS Lett. 270, 181-183
- 13 Cubitt, A. B. and Firtel, R. A. (1992) Biochem. J. 283, 371-378
- 14 Bominaar, A. A., Kesbeke, F. and Van Haastert, P. J. M. (1994) Biochem. J. 297, 181-187
- 15 Van Lookeren Campagne, M. M., Erneux, C., Van Eijk, R. and Van Haastert, P. J. M. (1988) Biochem. J. 254, 343-350
- 16 Bominaar, A. A., Van Dijken, P., Draijer, R. and Van Haastert, P. J. M. (1991) Differentiation 46, 1-5
- 17 Drayer, A. L. and Van Haastert, P. J. M. (1992) J. Biol. Chem. 267, 18387-18392
- 18 Drayer, A. L., Van Der Kaay, J., Mayr, G. W. and Van Haastert, P. J. M. (1994) EMBO J. 13, 1601-1609
- 19 Takazawa, K., Vandekerckhove, J., Dumont, J. E. and Erneux, C. (1990) Biochem. J. 272, 107-112
- 20 Coccuci, S. M. and Sussman, M. (1970) J. Cell Biol. 45, 399-407
- 21 Vogel, A. I. (1972) A Textbook of Practical Organic Chemistry, 3rd edn., Longman, London
- 22 Van Dijken, P., Lammers, A. A., Ozaki, S., Potter, B. V. L., Erneux, C. and Van Haastert, P. J. M. (1994) Eur. J. Biochem. 226, 561-566
- 23 Woijcikiewicz, R. J. H., Cooke, A. M., Potter, B. V. L. and Nahorski, S. R. (1990) Eur. J. Biochem. 192, 459-467