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Supplementary methods
Field site and snowpack
Our experiments were performed between February 18 and
March 10, 2022 on a flat and uniform site in Flüela valley near
Davos, Switzerland at an altitude of 1640 m (Fig. S1). The site
itself was on the roof of two buildings in a forest opening pro-
tected from wind. Most experiments were performed on the roof
of building A (Fig. 3 in the main text), and after it was cleared
from snow, we also carried out experiments on building B (Fig. 3
in the main text). The presence of a nearby creek, the absence
of direct sunlight in winter, and the cold concrete roof (typically
below 0 ◦C), created favorable conditions for the formation and
preservation of surface hoar. The weak layer tested consisted of
surface hoar, buried by a snowfall at the beginning of January
2022, with an average weak layer thickness of 9.02 mm.

We characterized the snowpack using manual snow pro-
files 1 (Fig. 4 in the main text) Microstructure and density of the
weak layer were analyzed using computer-tomography (Fig. S2).
The properties of the layered slab were characterized using
density measurements. For this purpose, we used a cylindrical
density cutter with 50 cm3 volume and 23 mm inner diameter
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Supplementary Figure S1 | Geographic location of the field site. Topo-
graphical map (https://map.geo.admin.ch, accessed Jan 29, 2024) of
the location of the two field sites A and B (WGS 84, 46.80773◦ N,
9.86999◦ E). Federal Office of Topography ©swisstopo.

(Fig. S3b). Each 120 mm thick slab was resolved in with four den-
sity measurements (Fig. S3a), accounting for temporal evolution
of density-dependent slab properties. For our calculations, we
used the arithmetic mean density per layer per experimental day
(Fig. S3a).

For successful experiments, specific snowpack properties
were necessary, in particular surrounding the weak layer. The sub-
stratum needed a particular level of cohesion or bonding strength,
usually found in small grains with a density exceeding 250 kg/m3,
to support the snow block during tilting. Similarly, the slab had to
be easily profiled while also supporting additional weights. We
met these conditions with dense layers of rounded grains both
above and right below the weak layer of interest between mid
February and mid March of 2022 (Fig. 3 in the main text).

Experimental procedure
We designed our mixed-mode mixed-mode fracture tests
(MMFTs) by adapting the propagation saw test 2–4 (PST) to enable
testing under variable slope inclinations. To extract snow columns
from the snowpack, we employed a U-shaped aluminum sled
(3 mm thick with 60 mm flanges, 300 mm width, and 1000 mm

5 mm

a b
Supplementary Figure S2 | Computer-tomography scan of the weak
layer. a Horizontal (top) and vertical (bottom) cross sections with
boxed volume of interest (VOI) of the surface-hoar weak-layer sam-
ple extracted on March 7, 2022 at site A. b Rendering of the recorded
VOI with a volume fraction of ice of 0.19 corresponding to a density of
𝜌wl = 174 kg/m3.
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Supplementary Figure S3 | Slab density. a Evolution of the slab density on site A over a period of 9 days. Layerwise mean densities per day are
shown. The mean density of the substratum was 𝜌b = 339 kg/m3. b Location of four density measurements through the thickness of each 120 mm
slab using a 50 cm3 density cutter.

length) (Fig. S4a). Utilizing a spirit level to maintain horizon-
tal alignment, we inserted the sled into the snowpack’s sidewall,
ensuring that its flanges rested directly beneath the weak layer.
This facilitated the isolation of a snow column with a 60 mm thick
base layer (substratum). We cut around the sled on all sides using
a 1 m snow saw to sever the snow block specimen (Fig. S4b). After
reducing the slab’s thickness to 150 mm, we applied a custom-
made profiling device, creating serrated cuts on its top surface.
This resulted in a mean slab thickness from the weak layer to
the base of the serrated cuts of 115 mm. Guided by side rails, the
sled–snow block assembly was lifted onto the tilting rig (Fig. S4c).
Wood screws, penetrating the substratum through circular holes
in the aluminum sled, prevented sliding of the snow block even
at elevated inclinations (Fig. S4c).

The tilting device comprised a base plate, which was piv-
oted on a metal foot on one end and suspended on a steel cable
from a tower made of scaffolding poles on the other. This con-
figuration enabled the assembly to be tilted between 0◦ and 65◦
(Fig. S4d). The titled snow block was loaded with 12 variable
weights distributed into notches (Fig. S4e). Each weight consisted
of a rectangular hollow steel profile (500 mm length) with up
to three metal rods (600 mm length). The profile–rod assemblies
weighed up to 1 kg each, enabling the application of different
load levels without altering the slab bending stiffness. In certain
instances, an additional row of weights was added for very high
surface loading. The titling angle was measured using an analog
inclinometer aligned with the weak layer. To initiate the fracture
process, we introduced a cut into the weak layer by pushing the
unserrated back of a 2 mm thick snow saw (450 mm length, 60 mm
width) into the weak layer (Fig. S4e). Two operators from both
sides ensured that the saw remained within the weak layer. We
cut at a constant travel speed of approximately 70 mm/s (Fig. S4e).
The cutting speed employed here is typical for conducting prop-
agation saw tests. Note that variations in cutting speed between
8 mm/s and 260 mm/s do not significantly affect the critical cut
length. 5 When the artificially induced weak-layer crack became
unstable and propagated through the entire sample, the critical
cut length from saw tip to slab face was measured on both side-
walls and averaged when the cut was not perfectly perpendicular
(Fig. S4f).

In total, we conducted 102 MMFTs and obtained 88 valid
results. Experiments were discarded when we encountered
increased resistance while cutting, indicating that the cut did not
remain in the weak layer. Experiments with cut lengths exceed-
ing 50 cm were also excluded due to the limited effective length
of the slab, which was only 100 cm.

Data fitting procedure
The interaction laws examined in this work are two-dimensional
implicit nonlinear models

0 ≈ 𝑟(x𝑖 ; β), (S1)

where β = (𝒢Ic ,𝒢IIc , 𝑛, 𝑚)⊺ is the vector of model parameters
and x𝑖 =

(
𝒢I ,𝒢II

)⊺
𝑖

is the vector of independent variables, i.e.,
the vector of 𝑖 = 1, ..., |𝑆 | observations (see Eq. (1) of the main
text). Owing to measurement errors in the observations x𝑖 , the
model 𝑟(x𝑖 ; β) can only approximate 0. Because of the implicit
relationship and because of uncertainties in the independent
variables, the parameters β were estimated using a weighted
orthogonal-distance-regression procedure. 6–8 Accounting for the
measurement errors, the models satisfy

0 = 𝑟(x𝑖 + δi; β), for 𝑖 = 1, ..., |𝑆 |, (S2)

where δ ∈ ℝ2 is the vector of unknown errors. The implicit
orthogonal-distance-regression problem is finding the β for
which the sum of the squares of the |𝑆 | orthogonal distances
from the curve 𝑟(x,β) to the |𝑆 | data points is minimized. This is
expressed by the optimization problem

min
β,δ

𝑁∑
𝑖=1

δ
⊺
𝑖
W𝑖 δ𝑖 , (S3)

subject to

0 = 𝑟(x𝑖 + δi; β), (S4)

where the diagonal matrix

W =

(
𝜎−2

I 0
0 𝜎−2

II

)
, (S5)

accounts for unequal error variances 𝜎2
I and 𝜎2

II in 𝒢I and
𝒢II, respectively. The optimization problem was solved using a
trust-region Levenberg–Marquardt procedure. 8 Jacobian matri-
ces with respect to parameters and independent variables were
computed explicitly and supplied to the algorithm. The goodness
of fit is assessed using the residual variance expressed by

𝜒2
𝜈 =

1
𝜈

𝑁∑
𝑖=1

δ
⊺
𝑖
W𝑖 δ𝑖 , (S6)

where 𝜈 = 𝑁 − 𝑃 is the number of degrees of freedom obtained
from the number of observations with nonzero weight 𝑁 and the
number of estimated model parameters 𝑃. A 𝜒2

𝜈 value close to 1



Supplementary Figure S4 | Experimental procedure. a Aluminum sled pushed into the snowpack to facilitate the extraction of the snow column
of interest. b Profiling device used to serrate the slab’s top surface to support the addition of weights. c Placement of snowpack–sled assembly
onto the tilting rig with guiding plates on the sides and the bottom edge to ensure alignment. Screws punch into the substratum to prevent
sliding. d Assembly tilted to final inclination before addition of weights. e Weak-layer cut introduced with the back of a snow saw by two people
ensuring parallel movement through the weak layer. f Slab sliding after unstable propagation of the introduced crack. The cut length is recorded
from the end of the saw to the end of the slab.

generally indicates that the model fits the data well, where < 1
indicates overfitting and>1 underfitting. For datasets with intrin-
sic scatter beyond measurement errors—such as snow science and
fracture mechanics where individual variation is significant—
the model is not expected to predict each point accurately. In
these cases, a higher 𝜒2

𝜈 value can be acceptable if residuals are
randomly distributed and do not exhibit patterns.

Interaction-law identification
Fracture-toughness interaction laws have been proposed and
examined by many authors. 9 In the following, we illustrate their
differences and justify our choice of a power-law interaction
model using two characteristic examples.

Compare the best fit of the power-law interaction model given
in Eq. (1) of the main text (Fig. 2)

0 ≈ 𝑟1 (x𝑖 ; β1) ≡
(
𝒢 𝑖

I
𝒢Ic

) 1
𝑛

+
(
𝒢 𝑖

II
𝒢IIc

) 1
𝑚

− 1, (S7)

where β1 = (𝒢Ic ,𝒢IIc , 𝑛, 𝑚)⊺ , to the mixed-mode interaction law
proposed by Benzeggagh and Kenane 10

0 ≈ 𝑟2 (x𝑖 ; β2) ≡
𝒢Ic + (𝒢IIc − 𝒢Ic)𝜓𝑘𝑖

𝒢 𝑖 + 𝒢 𝑖
II

− 1, (S8)

where

𝜓𝑖 =
𝒢 𝑖

II
𝒢 𝑖

I + 𝒢 𝑖
II
, (S9)

is the mode ratio and β2 = (𝒢Ic ,𝒢IIc , 𝑘)
⊺ the vector of model

parameters (Fig. S5). Equation (S8) was proposed to capture
mixed-mode fracture toughness under tension–shear interac-
tion, 10 where the total energy release rate 𝒢 = 𝒢I+𝒢II is observed
as a monotonous function of the mode ratio, expressed in the 𝜓𝑘 -
term. 10,11 Our data show that for compression–shear interaction,
the total energy release rate is not monotonous with respect to
the mode ratio 𝜓 (Figs. 2b and S5b). This incompatibility results
in a linear relationship 𝒢(𝜓), i.e., 𝑘 = 1.0 (Table S1), as the best fit
of Eq. (S8) and in a significantly larger residual variance 𝜒2

𝜈 (4.16
vs. 3.14, Figs. 2b and S5b). Many other interaction laws proposed
in literature 9,12—for dense isotropic materials or fiber-reinforced
plastics under combined tension and shear—are of similar char-
acteristics as Eq. (S8). However, as they are aimed at both other
classes of materials and other load interactions, they did not
provide a better fit to our data.

While the mode I fracture toughness estimates of both mod-
els are similar, their mode II representations are much different
(Tables 1 and S1). Owing to their exceptionally low density, we
assume that the tensile mode I fracture toughness of highly



Supplementary Table S1 | Best fit parameters. Interaction-law param-
eters of Eq. (S8) identified from a weighted orthogonal distance regres-
sion.

Weak layer type 𝒢Ic (J/m2) 𝒢IIc (J/m2) 𝑘

Surface hoar 0.59±0.03 1.12±0.07 1.0

porous weak layers is very small. That is, we expect a mixed-mode
law that captures the interaction of mode II with both mode I com-
pression and mode I tension to decrease sharply on the tension
side. For this reason, we expect a vanishing or small but positive
gradient 𝜕𝒢II/𝜕𝒢I for 𝒢I → 0 (Figs. 2a). However, for the best fit
of Eq. (S8), we observe a steep, negative gradient (Fig. S5a).

Eq. (S8) was proposed to account for tension–shear interaction.
We observe that the mechanics of compression–shear interac-
tion are quite different and that interactions laws are not directly
transferable.

Model derivation
The mechanical model used in this work results from a series of
articles in which different components of the theory have been
derived and tested. The novelty, here, is the treatment of added
surface loads. To help readers who would not be familiar already
with this literature, we provide a summary how physical compo-
nents have been validated. In the following, we refer to the works
of Weißgraeber & Rosendahl. 13–15

Governing equations. We model a stratified snow cover as a
system comprised of i) a snow slab, represented by an arbitrar-
ily layered beam, that rests ii) on a weak layer, represented by
an elastic foundation. The beam kinematics and its constitutive
behavior are derived from first-order shear deformation theory
of laminated plates under cylindrical bending. 16 The weak layer
is modeled as a so-called weak interface. 17 The concept sim-
plifies the kinematics of the weak layer and allows for efficient
analyses of interface configurations that exhibit a strong elastic
contrast. The weak interface can be understood as an infinite set
of smeared springs with normal and shear stiffness attached to
the bottom side of the slab. Weak interface models are common
for the analysis of cracks in thin, compliant layers. 18–20 The anal-
ysis of this system yields fully coupled bending, extension and
shear deformations of both slab and weak layer.

Consider the segment of the stratified snow pack on an
inclined slope of angle 𝜑 shown in Fig. S6. As typical for beam
analyses, the axial coordinate 𝑥 points left-to-right along the beam
midplane and is zero at its left end. The thickness coordinate 𝑧
is perpendicular to the midplane, points downwards and is zero
at the center line. Slope angles 𝜑 are counted positive about the
𝑦 axis of the right-handed Cartesian coordinate system (counter-
clockwise). Note that on inclined slopes (𝜑 ≠ 0), the axial and
normal beam axes (𝑥 and 𝑧) do not coincide with the horizontal
and vertical directions.

The slab with total thickness ℎ is composed of 𝑁 layers with
individual ply thicknesses ℎ𝑖 = 𝑧𝑖+1 − 𝑧𝑖 , each assumed homo-
geneous and isotropic (Fig. S7). Young’s modulus, Poisson’s ratio
and density of each layer are denoted by 𝐸𝑖 , 𝜈𝑖 and 𝜌𝑖 , respec-
tively. The weak layer of thickness 𝑡 can be anisotropic and its
normal and tangential stiffnesses are

𝑘n =
𝐸′wl
𝑡
, (S10a)

where 𝐸′wl = 𝐸wl/(1 − 𝜈2) is the weak layer’s plane-strain elastic
modulus and

𝑘t =
𝐺wl
𝑡
, (S10b)

where𝐺wl is the weak layer’s plane-strain shear modulus, respec-
tively. To account for anisotropic weak layers, these constants can
be defined from independent stiffness properties. It is to note, that
since the weak layer is connected to the slab, an intrinsic coupling
of shear and normal deformation of the weak layer occurs even
when the stiffnesses 𝑘n and 𝑘t are defined independently.

The slab is loaded by its own weight, i.e., the gravitational
load 𝑞, and an external load 𝐹 (e.g., a skier or added weights) in
vertical direction. The gravity load corresponds to the sum of the
weight of all layers

𝑞 = 𝑔

𝑁∑
𝑖=1

ℎ𝑖𝜌𝑖 . (S11)

It is split into a normal component 𝑞n = 𝑞 cos𝜑 and a tangential
component 𝑞t = −𝑞 sin𝜑 that are introduced as line loads. The
tangential gravity line load acts at center of gravity in thickness
direction

𝑧s =

∑𝑁
𝑖=1(𝑧𝑖 + 𝑧𝑖+1)ℎ𝑖𝜌𝑖

2
∑𝑁
𝑖=1 ℎ𝑖𝜌𝑖

, (S12)

in the slab, where (𝑧𝑖 + 𝑧𝑖+1)/2 yields each layer’s center 𝑧-
coordinate. For relevant slab thicknesses the external load can
be modeled as a point load and is introduced as a force with
a normal component 𝐹n = 𝐹 cos𝜑 and a tangential component
𝐹t = −𝐹 sin𝜑.

Deformations of the slab are described by means of the first-
order shear deformation theory (FSDT) of laminated plates under
cylindrical bending. 16 By dropping the Kirchhoff assumption
of orthogonality of cross sections and midplane, this allows
for the consideration of shear deformations. We consider mid-
plane deflections 𝑤0, midplane tangential displacements 𝑢0
and the rotation 𝜓 of cross sections. The quantities define the
displacement field of the beam according to

𝑤(𝑥, 𝑧) = 𝑤0(𝑥), (S13a)
𝑢(𝑥, 𝑧) = 𝑢0(𝑥) + 𝑧𝜓(𝑥). (S13b)

At the interface between slab and weak layer (𝑧 = ℎ/2), the dis-
placement fields of slab (𝑢, 𝑤) and weak-layer (𝜐, 𝜔) coincide.
Using Eqs. (S13a) and (S13b), this yields 𝜐̄ = 𝑢̄ = 𝑢0 + 𝜓 ℎ/2 and
𝜔̄ = 𝑤̄ = 𝑤0, where the bar indicates quantities at the interface.
Modeling the weak layer as an elastic foundation of an infinite set
of smeared linear elastic springs, yields constant strains and con-
sequently a constant deformation gradient through its thickness.
Hence, weak-layer stresses can be expressed through the differ-
ential deformation between the lower boundary of the weak layer
(𝜐 = 𝜔 = 0) and its deformations at the interface:

𝜎𝑧𝑧(𝑥) = 𝐸wl𝜀𝑧𝑧(𝑥) = 𝐸wl
d𝜔(𝑥, 𝑧)

d𝑧 = 𝐸wl
0 − 𝜔̄(𝑥)

𝑡

= −𝑘n𝑤0(𝑥),
(S14a)

𝜏𝑥𝑧(𝑥) = 𝐺wl𝛾𝑥𝑧(𝑥) = 𝐺wl

(
d𝜐(𝑥, 𝑧)

d𝑧 + d𝜔(𝑥, 𝑧)
d𝑥

)
= 𝐺wl

(
0 − 𝜐̄(𝑥)

𝑡
+ 𝜔̄′(𝑥)

2

)
= 𝑘t

(
𝑡

2𝑤
′
0(𝑥) − 𝑢0(𝑥) −

ℎ

2𝜓(𝑥)
)
.

(S14b)

From the free body-cut of an infinitesimal beam section of the
layered slab (Fig. S8), we obtain the equilibrium conditions of the
section forces and moments:

0 =
d𝑁(𝑥)

d𝑥 + 𝜏(𝑥) + 𝑞t + 𝑝t , (S15a)
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Supplementary Figure S5 | Best fit of tension–shear mixed-mode interaction law. a Mode I/II composition of critical energy release rates at the
onset of unstable crack propagation from this work (𝑁 = 88, green) and literature 5 (𝑁 = 183, orange) with best fit (𝑝 < 0.001) of Eq. (S8). b Total
energy release rate 𝒢 = 𝒢I +𝒢II as a function of mode ratio 𝜓 (mode II fraction). A monotonous model of the total energy release rate vs. mode
ratio 𝜓, e.g., Eq. (S8), cannot capture the local maximum evident in the data.
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Supplementary Figure S6 | Mechanical model. Stratified snowpack
composed of an arbitrary number of slab layers and a weak layer mod-
eled as an elastic foundation.

0 =
d𝑉(𝑥)

d𝑥 + 𝜎(𝑥) + 𝑞n + 𝑝n , (S15b)

0 =
d𝑀(𝑥)

d𝑥 −𝑉(𝑥) + ℎ + 𝑡
2 𝜏(𝑥) + 𝑧s𝑞t −

ℎ

2 𝑝t . (S15c)

Note the addition of normal and tangential surface loads 𝑝n and
𝑝t, respectively. 15 To connect the slab section forces (normal force
𝑁 , shear force 𝑉 , and bending moment 𝑀) to the deformations
of the layered slab, we make use of the mechanics of composite
laminates. First-order shear deformation theory of laminate plates
under cylindrical bending yields(

𝑁(𝑥)
𝑀(𝑥)

)
=

(
𝐴11 𝐵11
𝐵11 𝐷11

) (
𝑢′0(𝑥)
𝜓′(𝑥)

)
, (S16a)

and

𝑉(𝑥) = 𝜅𝐴55
(
𝑤′

0(𝑥) + 𝜓(𝑥)
)
. (S16b)
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Supplementary Figure S7 | Slab layering. Slab of total thickness ℎ com-
posed of 𝑁 individual layers. A layer 𝑖 is characterized by its height ℎ𝑖
and its the top and bottom coordinates 𝑧𝑖 and 𝑧𝑖+1, respectively.

These constitutive equations contain the extensional stiffness𝐴11,
the bending stiffness 𝐷11, the bending–extension coupling stiff-
ness 𝐵11, and the shear stiffness 𝜅𝐴55 of the layered slab. The
coupling stiffness 𝐵11 accounts for the bending–extension cou-
pling of asymmetrically layered systems such as bimetal bars.
These stiffness quantities are obtained by weighted1 integration
of the individual ply stiffness properties:

𝐴11 =

ℎ/2∫
−ℎ/2

𝐸(𝑧)
1 − 𝜈(𝑧)2

d𝑧 =
𝑁∑
𝑖=1

𝐸𝑖

1 − 𝜈2
𝑖

ℎ𝑖 , (S17a)

𝐵11 =

ℎ/2∫
−ℎ/2

𝐸(𝑧)
1 − 𝜈(𝑧)2

𝑧 d𝑧 = 1
2

𝑁∑
𝑖=1

𝐸𝑖

1 − 𝜈2
𝑖

(
𝑧2
𝑖+1 − 𝑧

2
𝑖

)
, (S17b)

𝐷11 =

ℎ/2∫
−ℎ/2

𝐸(𝑧)
1 − 𝜈(𝑧)2

𝑧2 d𝑧 = 1
3

𝑁∑
𝑖=1

𝐸𝑖

1 − 𝜈2
𝑖

(
𝑧3
𝑖+1 − 𝑧

3
𝑖

)
, (S17c)

1Weighted by the moment of area of the cross-section of zeroth, first, and
second order.
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Supplementary Figure S8 | Equilibrium conditions. Free-body cut of
an infinitesimal segment of length of the layered slab of height with
half of the weak layer.

𝐴55 =

ℎ/2∫
−ℎ/2

𝐺(𝑧)d𝑧 =
𝑁∑
𝑖=1

𝐺𝑖 ℎ𝑖 . (S17d)

The shear correction factor 𝜅 complements the shear stiffness
𝜅𝐴55. It is set to 5/6 as a good approximation for the layered slab of
rectangular cross-section. 21 The above quantities are given for the
case of isotropic layers. Orthotropic layers can be considered fol-
lowing the same approach by using directional elastic properties
of the individual layers instead of an isotropic Young’s modulus.

In the special case of a homogeneous, isotropic slab with
Young’s modulus𝐸sl and Poisson’s ratio 𝜈, the laminate stiffnesses
take the homogeneous stiffness properties well-known from beam
theory:

𝐴11 =
𝐸slℎ

1 − 𝜈2 , (S18a)

𝐷11 =
𝐸slℎ

3

12
(
1 − 𝜈2) , (S18b)

𝐴55 =
𝐸slℎ

2 (1 + 𝜈) , (S18c)

and the coupling stiffness vanishes (𝐵11 = 0).
System of differential equations. The equations of the kine-

matics of the weak layer, (S14a) and (S14b), the equilibrium
conditions, (S15a) to (S15c), and the constitutive equations of the
layered beam with first-order shear deformation theory, (S16a)
and (S16b), provide a complete description of the mechanics of the
layered snowpack and constitute a system of ordinary differential
equations (ODEs) of second order.

With the first derivative of the constitutive equation of the
normal force (S16a)′ inserted into the equilibrium of horizontal
forces (S15a), we obtain

0 = 𝐴11𝑢
′′
0 (𝑥) + 𝐵11𝜓

′′
0 (𝑥) + 𝜏(𝑥) + 𝑞t . (S19)

Likewise, with the first derivative of the constitutive equation of
the shear force (S16b)′ and the vertical force equilibrium (S15b),
we have:

0 = 𝜅𝐴55(𝑤′′
0 (𝑥) + 𝜓′(𝑥)) + 𝜎(𝑥) + 𝑞n . (S20)

The first derivative of the constitutive equation of the bending
moment (S16a)′ with the balance of moments (S15c), yields

0 = 𝐵11𝑢
′′
0 (𝑥) + 𝐷11𝜓

′′(𝑥) − 𝜅𝐴55
(
𝑤′

0(𝑥) + 𝜓(𝑥)
)

+ ℎ + 𝑡
2 𝜏(𝑥) + 𝑧s𝑞t .

(S21)

We then insert the definition of the shear stresses (S14b) into
Eq. (S19) to obtain

0 = 𝐴11𝑢
′′
0 (𝑥) − 𝑘t𝑢0(𝑥) − 𝑘t

𝑡

2𝑤
′
0(𝑥)

+ 𝐵11𝜓
′′(𝑥) − 𝑘t

ℎ

2𝜓(𝑥) + 𝑞t .

(S22)

Inserting the normal stress definition (S14a) into Eq. (S20), yields

0 = 𝜅𝐴55𝑤
′′
0 (𝑥) − 𝑘n𝑤0(𝑥) + 𝜅𝐴55𝜓

′(𝑥) + 𝑞n , (S23)

and, again, inserting the shear stress (S14b) into Eq. (S21), yields

0 = 𝐵11𝑢
′′
0 (𝑥) − 𝑘t

ℎ + 𝑡
2 𝑢0(𝑥) + 𝐷11𝜓

′′(𝑥)

+
(
ℎ + 𝑡

2
𝑡

2 𝑘t − 𝜅𝐴55

)
𝑤′

0(𝑥)

−
(
𝜅𝐴55 +

ℎ + 𝑡
2

ℎ

2 𝑘t

)
𝜓(𝑥) + 𝑧s𝑞t .

(S24)

Equations (S22) to (S24) constitute a system of linear ordinary
differential equations of second order with constant coefficients
of the deformation variables 𝑢(𝑥), 𝑤(𝑥), 𝜓(𝑥) that describes the
mechanical behavior of a layered beam on a weak layer.

Using the vector of unknown functions

z(𝑥) =
[
𝑢0(𝑥) 𝑢′0(𝑥) 𝑤0(𝑥) 𝑤′

0(𝑥) 𝜓(𝑥) 𝜓′(𝑥)
]⊺
, (S25)

the ODE system can be written as a system of first-order for the
form

Az′(𝑥) +Bz(𝑥) + d = 0, (S26)

with the matrices

A =



1 0 0 0 0 0
0 𝐴11 0 0 0 𝐵11
0 0 1 0 0 0
0 0 0 𝜅𝐴55 0 0
0 0 0 0 1 0
0 𝐵11 0 0 0 𝐷11


, (S27)

and

B =



0 −1 0 0 0 0
−𝑘t 0 0 𝑘t

𝑡
2 −𝑘t

ℎ
2 0

0 0 0 −1 0 0
0 0 −𝑘n 0 0 𝑘𝐴55
0 0 0 0 0 −1

− ℎ+𝑡
2 𝑘t 0 0 𝐵64 𝐵65 0


, (S28)

where

𝐵64 = 𝑘t
ℎ + 𝑡

4 𝑡 − 𝜅𝐴55 , and 𝐵65 = −𝑘t
ℎ + 𝑡

4 ℎ − 𝜅𝐴55 ,

and the vector

d =
[
0 𝑞t + 𝑝t 0 𝑞n + 𝑝n 0 𝑧s𝑞t − ℎ

2 𝑝t
]⊺
. (S29)

Note the addition of surface loads 𝑝n and 𝑝t. 15 The system (S26)
can be rearranged into the form

z′(𝑥) = Kz(𝑥) + q, (S30)

where

K = −A−1B , (S31a)

q = −A−1d. (S31b)

The solution of the nonhomogeneous ODE system (S30) is com-
posed of a complementary solution vector zh(𝑥) and a particular
integral vector zp, where the latter is constant in the present case.
The complementary solution can be obtained from an eigenanal-
ysis of the system matrix K. Depending on the layering and the
material properties, K has six real or complex eigenvalues. Since



the beam is bedded, it has no rigid body motions and all eigenval-
ues of nonzero. Real eigenvalues occur as sets of two eigenvalues
with opposite signs ±𝜆ℝ and linearly independent eigenvectors
vℝ± ∈ ℝ6. Complex eigenvalues appear as complex conjugates
𝜆±
ℂ

= 𝜆ℜ ± 𝑖𝜆ℑ with the corresponding complex eigenvectors
v±
ℂ
= vℜ ± 𝑖vℑ such that v±

ℂ
∈ ℂ6 and vℜ , vℑ ∈ ℝ6. Denoting the

number of sets of real eigenvalue pairs as𝑁ℝ ∈ {0, . . . , 3} and the
number of complex conjugate eigenvalue pairs as𝑁ℂ ∈ {0, . . . , 3}
such that 𝑁ℝ + 𝑁ℂ = 3, the complementary solution is given by
the linear combination

zh(𝑥) =
𝑁ℝ∑
𝑛=1

𝐶
(𝑛)
ℝ+ exp

(
+𝜆(𝑛)

ℝ
𝑥
)
v
(𝑛)
ℝ+

+ 𝐶(𝑛)
ℝ− exp

(
−𝜆(𝑛)

ℝ
𝑥
)
v
(𝑛)
ℝ−

+
𝑁ℂ∑
𝑛=1

𝐶
(𝑛)
ℜ exp

(
𝜆(𝑛)
ℜ 𝑥

) [
v
(𝑛)
ℜ cos

(
𝜆(𝑛)
ℑ 𝑥

)
− v

(𝑛)
ℑ sin

(
𝜆(𝑛)
ℑ 𝑥

) ]
+ 𝐶(𝑛)

ℑ exp
(
𝜆(𝑛)
ℜ 𝑥

) [
v
(𝑛)
ℜ sin

(
𝜆(𝑛)
ℑ 𝑥

)
+ v

(𝑛)
ℑ cos

(
𝜆(𝑛)
ℑ 𝑥

) ]
.

(S32)

The particular solution is obtained using the method of undeter-
mined coefficients, which yields the constant vector

zp =

[
𝑞t+𝑝t
𝑘t

+ ℎ(ℎ+𝑡−2𝑧s) 𝑞t
4𝜅𝐴55

0 𝑞n+𝑝n
𝑘n

0 (2𝑧s−ℎ−𝑡) 𝑞t+(2ℎ+𝑡) 𝑝t
2𝜅𝐴55

0
]⊺
.

(S33)

Again, note the addition of surface loads 𝑝n and 𝑝t. 15 The general
solution of the system

z•(𝑥) = zh(𝑥) + zp , (S34)

comprises six unknown coefficients 𝐶(𝑛)
• that must be identified

from boundary and transmission conditions. It can be given in
the matrix form

z•(𝑥) = Zh(𝑥) c• + zp , (S35)

where Zh : ℝ → ℝ6×6 is a matrix-valued function with the
summands of Eq. (S32) as column vectors and c• ∈ ℝ6 a vector
containing the six free constants 𝐶(𝑛)

• according of Eq. (S32).
Layered segments without elastic foundation. To study sit-

uations where the weak layer has partially failed, the case of an
unsupported slab must be considered. The situation can occur
when the weak layer has collapsed or when a saw cut is intro-
duced in a propagation saw test. Accounting for such cases allows
for the use of the present model in failure models for anticrack
nucleation 14 or growth. 22 If the slab is not supported by an elas-
tic foundation, the general solution simplifies. In the equilibrium
conditions (S15a) to (S15c), the normal and shear stress terms are
omitted since no stresses act on the bottom side of the slab. The
constitutive equations (S16a) and (S16b) remain the same.

Without elastic foundation, the equilibrium conditions (S15a)
and (S15b) reduce to

0 =
d𝑁(𝑥)

d𝑥 + 𝑞t + 𝑝t , (S36a)

0 =
d𝑉(𝑥)

d𝑥 + 𝑞n + 𝑝n , (S36b)

0 =
d𝑀(𝑥)

d𝑥 −𝑉(𝑥) + 𝑧s𝑞t −
ℎ

2 𝑝t . (S36c)

By adding and subtracting±𝐷11𝑤
′′
0 (𝑥) to the constitutive equation

of the bending moment (S16a) and using the first derivative of
the constitutive equation of the shear force (S16b)′, we obtain

𝑀(𝑥) = 𝐵11𝑢
′
0(𝑥) +

𝐷11
𝜅𝐴55

𝑉′(𝑥) − 𝐷11𝑤
′′
0 (𝑥). (S37)

Differentiating twice and using the first derivatives of the
equilibrium conditions, (S36b)′ and (S36c)′, yields

𝑀′′(𝑥) = 𝑉′(𝑥) = −(𝑞n + 𝑝n) = 𝐵11𝑢
′′′
0 (𝑥) − 𝐷11𝑤

′′′′
0 (𝑥). (S38)

Adding and subtracting ±𝐵11𝑤
′′
0 to the constitutive equation of

the normal force (S16a) and using the constitutive equation of the
shear force (S16b), gives

𝑁(𝑥) = 𝐴11𝑢
′
0(𝑥) +

𝐵11
𝜅𝐴55

𝑉′(𝑥) − 𝐵11𝑤
′′
0 (𝑥). (S39)

Differentiating this equation and, again, using the derivatives of
the equilibrium conditions, (S36a)′ and (S36b)′, yields

𝑁′(𝑥) = −(𝑞t + 𝑝t) = 𝐴11𝑢
′′
0 (𝑥) − 𝐵11𝑤

′′′
0 (𝑥). (S40)

Solving the derivative of this equation for 𝑢′′′0 (𝑥) and inserting it
into Eq. (S38), yields an ordinary differential equation of fourth
order for the vertical displacement

𝑤′′′′
0 (𝑥) = − 𝐴11

𝐵2
11 − 𝐴11𝐷11

(𝑞n + 𝑝n). (S41)

It can be solved readily by direct integration

𝑤0(𝑥) = 𝑐1 + 𝑐2𝑥 + 𝑐3𝑥2 + 𝑐4𝑥3

− 𝐴11

24(𝐵2
11 − 𝐴11𝐷11)

(𝑞n + 𝑝n)𝑥4 .
(S42)

Solving Eq. (S40) for 𝑢′′0 (𝑥), integrating twice and inserting the
third derivative of the general solution for 𝑤0(𝑥) (S42)′, yields the
general solution for the tangential displacement of unsupported
beams

𝑢0(𝑥) = 𝑐5 + 𝑐6𝑥 +
(6𝐵11𝑐4 − 𝑞t − 𝑝t)

2𝐴11
𝑥2

− 𝐵11

6
(
𝐵2

11 − 𝐴11𝐷11
) (𝑞n + 𝑝n)𝑥3 .

(S43)

To obtain a solution of the cross-section rotation𝜓(𝑥), we take the
derivative of the constitutive equation for the bending moment
(S16a)′ and insert it together with the constitutive equation of the
shear force (S16b) into the equilibrium of moments (S36c). Solving
this for 𝜓(𝑥) yields

𝜓(𝑥) = 1
𝜅𝐴55

(
𝐵11𝑢

′′
0 (𝑥) + 𝐷11𝜓

′′(𝑥) + 𝑧s𝑞t −
ℎ

2 𝑝t
)
− 𝑤′

0(𝑥).
(S44)

Equation (S40) allows for eliminating 𝑢′′0 (𝑥). In order to eliminate
𝜓′′(𝑥), we insert the constitutive equation of the shear force (S16b)
into the second derivative of the vertical equilibrium (S36b)′′,
which yields 𝜓′′(𝑥) = −𝑤′′′

0 (𝑥) and we obtain

𝜓(𝑥) =
𝐵2

11 − 𝐴11𝐷11

𝜅𝐴55𝐴11
𝑤′′′

0 (𝑥) − 𝑤′
0(𝑥)

+
(
𝑧s −

𝐵11
𝐴11

)
𝑞t

𝜅𝐴55
−

ℎ𝑝t
2𝜅𝐴55

,

(S45)

which is fully defined through the solution for 𝑤0(𝑥) (S42).
In order to assemble a global system of linear equations from

boundary and transmission conditions between supported and
unsupported beam segments, it is helpful to express the general
solutions for both cases in the same form. For this purpose, we
express vector of unknown functions (S25) used for the solution
of supported beam segments through the general solutions (S42)



to (S45) for unsupported beam segments. This yields the matrix
form

z◦(𝑥) = 𝓟(𝑥) c◦ + p(𝑥), (S46)

where

c◦ =

[
𝐶
(1)
◦ 𝐶

(2)
◦ . . . 𝐶

(6)
◦

]⊺
. (S47)

is the vector of unknown coefficients,

𝓟(𝑥) =



0 0 0 3 𝐵11
𝐴11

𝑥2 1 𝑥

0 0 0 6 𝐵11
𝐴11

𝑥 0 1
1 𝑥 𝑥2 𝑥3 0 0
0 1 2𝑥 3𝑥2 0 0
0 −1 −2𝑥 6𝐾0

𝐴11𝜅𝐴55
− 3𝑥2 0 0

0 0 −2 −6𝑥 0 0


, (S48)

and

p(𝑥) =



− 𝑞t+𝑝t
2𝐴11

𝑥2 − 𝐵11
6𝐾0

(𝑞n + 𝑝n) 𝑥3

− 𝑞t+𝑝t
𝐴11

𝑥 − 𝐵11
2𝐾0

(𝑞n + 𝑝n) 𝑥2

− 𝐴11
24𝐾0

(𝑞n + 𝑝n) 𝑥4

− 𝐴11
6𝐾0

(𝑞n + 𝑝n) 𝑥3

𝐴11
6𝐾0

(𝑞n + 𝑝n) 𝑥3 +
(
𝑧s − 𝐵11

𝐴11

)
𝑞t

𝜅𝐴55
− ℎ𝑝t

2𝜅𝐴55
− 𝑞n+𝑝n

𝜅𝐴55
𝑥

𝐴11
2𝐾0

(𝑞n + 𝑝n) 𝑥2 − 𝑞n+𝑝n
𝜅𝐴55


,

(S49)

with 𝐾0 = 𝐵2
11 − 𝐴11𝐷11.

Global system assembly. The general solutions presented
above allow for the investigation of different systems composed
of segments of supported and unsupported layered slabs. Possi-
ble configurations of interest are, e.g., skier-loaded snowpacks,
skier-loaded snowpacks with a partially collapsed weak layer,
or propagation saw test (PSTs) with an artificially introduced
(sawed) edge crack. Assemblies of such configurations are illus-
trated in Fig. S9. Individual segments are connected through
transmission conditions given in terms of displacements and
section forces.

Stability tests are typically conducted on finite volumes with
free ends that require vanishing section forces and moments

𝑁 = 𝑉 = 𝑀 = 0, (S50)

as boundary conditions. Skier-induced loading is typically con-
fined in a very small volume compared to the overall dimensions
of the snowpack that extends over the entire slope. For the model,
this corresponds to an unbounded domain where, all components
of the solution converge to a constant at infinity. That is, at the
boundaries, the complementary solution vector must vanish

zh = 0, (S51)

which yields constant displacements z(𝑥) = zp, see Eq. (S33).
At interfaces between two segments (e.g., change from sup-

ported to unsupported), 𝒞0-continuity of displacements and
section forces is required and the transmission conditions read

Δ𝑢0 = 0, Δ𝑤0 = 0, Δ𝜓 = 0,
Δ𝑁 = 0, Δ𝑉 = 0, Δ𝑀= 0, (S52)

where the Δ operator indicates the difference between left and
right segments, i.e., Δ𝑦 = 𝑦l − 𝑦r.

External concentrated forces (e.g., skiers) are introduced as
discontinuities of the section forces. They are considered with
their normal and tangential components 𝐹n and 𝐹t and with their

g
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Supplementary Figure S9 | System assembly. Exemplary systems of
interest assembled from supported and unsupported layered slabs
with numbered segments: a) downslope PST, b) upslope PST, c) skier-
loaded snowpack, d) partially fractured weak-layer, and e) layered slab
loaded by multiple skiers with partially fractured weak-layer. Dotted
lines indicate transmission conditions for the continuity of displace-
ments and section forces.

resulting moment 𝑀 = −ℎ𝐹t/2. They have to be accounted for in
the form of the transmission conditions between two segments

Δ𝑁 = 𝐹t , Δ𝑉 = 𝐹n , Δ𝑀 = − ℎ2 𝐹t , (S53)

where again, the Δ operator expresses the difference between left
and right segments. Therefore, at points of such loads the slab
must always be split into segments to allow for the definition of
the transmission conditions.

Inserting the general solutions (S35) and (S46) into the bound-
ary and transmission conditions, yields equations that only
depend on free constants. The set of equations can be assembled
into a system of linear equations with 𝑘 = 6𝑁b degrees of free-
dom, where 𝑁b is the number of beam segments. In matrix form,
the system reads

𝚿c = f . (S54)

Here, 𝚿 ∈ ℝ𝑘×𝑘 is a square matrix of full rank, c ∈ ℝ𝑘 is the
vector of all free constants, and f ∈ ℝ𝑘 is the right-hand-side
vector that contains the particular solutions and displacement dis-
continuities induced by concentrated loads. With only 𝑘 degrees
of freedom, the system can be solved in real-time using stan-
dard methods such as Gaussian elimination or lower-upper (LU)
decomposition.

Computation of displacements, stresses and energy release
rates. Substituting the coefficients 𝐶(𝑛) obtained from Eq. (S54)
for each beam segment back into the general solutions (S35) and
(S46), yields the vector z(𝑥), which contains all slab displacement
functions, see Eq. (S25).

Inserting the slab deformation solution into Eqs. (S14a) and
(S14b), provides weak-layer normal and shear stresses, respec-
tively. As discussed in the details of the mechanical model,
weak-interface models do not allow for capturing highly local-
ized stress concentrations (e.g., stress singularities) as they occur
at crack tips. However, it is known that outside the direct vicin-
ity of crack tips, the simplified weak-interface kinematics provide
accurate displacement and stress solutions. 13



The in-plane stresses 𝜎𝑥 , 𝜎𝑧 , and 𝜏𝑥𝑧 within layers of the slab
are obtained using the layers’ constitutive equations and exploit-
ing the equilibrium conditions. 16 Using Hooke’s law and the
identities 𝜀𝑥(𝑥, 𝑧) = 𝑢′(𝑥, 𝑧) = 𝑢′0(𝑥) + 𝑧𝜓

′(𝑥), the axial layer nor-
mal stresses can be expressed in terms of slab displacements in
the form

𝜎𝑥(𝑥, 𝑧) =
𝐸(𝑧)

1 − 𝜈(𝑧)2
(
𝑢′0(𝑥) + 𝑧𝜓

′(𝑥)
)
, (S55)

where Young’s modulus 𝐸(𝑧) and Poisson’s ratio 𝜈(𝑧) are layer-
wise, i.e., piecewise, constant in 𝑧-direction. Integrating the local
equilibrium condition

0 =
𝜕𝜎𝑥
𝜕𝑥

+
𝜕𝜏𝑥𝑦

𝜕𝑦
+ 𝜕𝜏𝑥𝑧

𝜕𝑧
, (S56)

with respect to 𝑧, where derivatives with respect to 𝑦 vanish
owing to the plane-strain assumption, yields the in-plane layer
shear stress

𝜏𝑥𝑧(𝑥, 𝑧) = −
∫

𝜎′𝑥(𝑥, 𝑧)d𝑧

= −
∫

𝐸(𝑧)
1 − 𝜈(𝑧)2

(
𝑢′′0 (𝑥) + 𝑧𝜓

′′(𝑥)
)

d𝑧,
(S57)

The second-order derivatives are obtained from the left-hand side
of Eq. (S30) and integration with respect to 𝑧 is performed using
the trapezoidal rule. Again, integrating the equilibrium condition

0 =
𝜕𝜏𝑥𝑧
𝜕𝑥

+
𝜕𝜏𝑦𝑧

𝜕𝑦
+ 𝜕𝜎𝑧

𝜕𝑧
, (S58)

with respect to 𝑧 under the same assumptions, yields the
interlayer normal stresses

𝜎𝑧(𝑥, 𝑧) = −
∫

𝜏′𝑥𝑧(𝑥, 𝑧)d𝑧. (S59)

Here, differentiation is performed using difference quotients
with consideration of discontinuities. Finally, maximum (𝜎I) and
minimum (𝜎III) principal stresses are computed from

𝜎I,III =
𝜎𝑥 + 𝜎𝑧

2 ±
√( 𝜎𝑥 − 𝜎𝑧

2

)2
+ 𝜏2

𝑥𝑧 . (S60)

The model can be used to determine the energy release rate
of cracks. Here, we make use of the concept of anticracks, 23 that
allows for studying failure of a weak layer in a snowpack exhibit-
ing collapse. 24 As typical for fracture mechanics, 25 the symmetry
of the displacement field around the crack tip can be used to iden-
tify symmetric (mode I) and antisymmetric deformations (mode
II). We follow this convention to study mode I (crack closure)
and mode II (crack sliding) energy release rates of anticracks. The
energy release rate of cracks in weak interfaces can be given as

𝒢(𝑎) = 𝒢I(𝑎) + 𝒢II(𝑎) =
𝜎(𝑎)2
2𝑘n

+ 𝜏(𝑎)2
2𝑘t

, (S61)

where 𝑎 denotes the crack-tip coordinate. The limitations of the
weak-interface kinematics yield energy release rates that cannot
capture very short cracks but, again, provide accurate results
for cracks of a minimum length. 26 Cracks shorter than a few
millimeters cannot be studied by the present approach.

Model validation
With reference to previous analysis of snowpack layering, 27,28

we use three-layered slabs proposed as schematic hardness pro-
files, 29 that are composed of soft, medium, and hard snow
as benchmark slab configurations (Fig. S10). Assuming bonded

A B C D E F H

Supplementary Figure S10 | Benchmark profiles. Illustration of bench-
mark snow profiles used in the present work. Material properties of
hard, medium, and soft slab layers (dark) and the weak layer (light)
are given in Table S2. The weak layer is 2 cm thick and the slab layers
have a thickness of 12 cm each.

Supplementary Table S2 | Snow profiles. Considered snow layers and
their elastic properties with reference to three-layer slabs. 27

Hand Density 𝜌 Young’s Poisson’s
Layer hardness (kg/m3) modulus ratio 𝜈

index 𝐸 (MPa)

Hard P 350 93.8 0.25
Medium 1F 270 30.0 0.25
Soft 4F 180 5.0 0.25
Weak layer F– 100 0.15 0.25

Supplementary Table S3 | Material properties. Material properties
used throughout this work unless specified differently.

Property Symbol Value

Skier weight 𝑚 80 kg
Slope angle 𝜑 38◦
Slab thickness† ℎ 36 cm
Weak-layer thickness† 𝑡 2 cm
Effective ouf-of-plane ski length 𝑙o 100 cm
Young’s modulus weak layer 𝐸wl 0.15 MPa
Poisson’s ratio 𝜈 0.25
Length of PST block 𝑙PST 250 cm
Length of PST cut 𝑎PST 50 cm
† Thicknesses given in slope-normal direction.

slabs (e.g., rounded grains) and considering the density–hand
hardness relations, 30 we assume densities of 𝜌 = 350, 270, and
180 kg/m3 for hard, medium, and soft snow layers with hand
hardness indices pencil (P), four fingers (4F), and one finger (1F),
respectively. From slab densities, we calculate the Young’s mod-
ulus using a density-parametrization developed using acoustic
wave propagation experiments 31 and improved using full-field
displacement measurements 32

𝐸sl(𝜌) = 𝐸0

(
𝜌

𝜌0

)𝛾
, (S62)

where 𝛾 = 4.4 accounts for density scaling and 𝐸0 = 6.5 · 103 MPa
and 𝜌0 = 917 kg/m3 are Young’s modulus and density of ice. Each
slab layer is 12 cm thick and their individual material properties
are given in Table S2. With reference to previous studies who
report weak layer thickness between 0.2 and 3 cm, 33 we assume
a weak-layer thickness of 𝑡 = 2 cm. Following density measure-
ments of surface hoar layers that report densities i) between 44
and 215 kg/m3 with a mean of 102.5 kg/m3 and ii) between 75
and 252 kg/m3 with a mean of 132.4 kg/m3 using two differ-
ent measurement techniques, we assume a weak-layer density of
𝜌wl = 100 kg/m3, and a Young’s modulus of 𝐸wl = 0.15 MPa. 34

Other parameters are summarized in Table S3.
Finite element reference model. To validate the model, in

particular with respect to different slab layerings, we compare
the analytical solution to finite element analyses (FEA). The finite



Supplementary Figure S11 | Finite element model used for validation.
Discretization of a snowpack with slab and weak layer. Cracks are intro-
duced by removing all weak layer elements. Skier loads are applied as
vertical concentrated forces. Here, the case of a propagation saw test
is shown as an example. The rigid base layer below the weak layer has
a Young’s modulus of 𝐸bl = 1012 MPa.

element model is assembled from individual layers with unit
out-of-plane width on an inclined slope (Fig. S11). Each layer is
discretized using at least 10 eight-node biquadratic plane-strain
continuum elements with reduced integration through its thick-
ness. The lowest layer corresponds to the weak layer and rests on a
rigid foundation. Weak-layer cracks are introduced by removing
all weak-layer elements on the crack length 𝑎. We perform a static
analysis of discrete geometric configurations with specific crack
lengths 𝑎. Crack advance is not considered. The mesh is refined
towards stress concentration such as crack tips and mesh conver-
gence has been controlled carefully. The weight of the snowpack
is introduced by providing the gravitational acceleration 𝑔 and
assigning each layer its corresponding density 𝜌. The load intro-
duced by a skier is modeled as a concentrated force acting on
the top of the slab. If skier loading is considered, the horizontal
dimensions of the model are chosen large enough for all gradi-
ents to vanish. Typically 10 m suffice. Boundary conditions of PST
experiments are free ends. In the FE model, the energy release
rate of weak-layer cracks

𝒢FE(𝑎) = − 𝜕Π(𝑎)
𝜕𝑎

≈ −Π(𝑎 + Δ𝑎) −Π(𝑎 − Δ𝑎)
2Δ𝑎 , (S63)

is computed using the central difference quotient to approximate
the first derivative of the total potential Π with respect to 𝑎. The
crack increment Δ𝑎 corresponds to the element size and could
be increased twofold or threefold without impacting computed
values of 𝒢FE(𝑎). Weak-layer stresses are evaluated in its vertical
center.

Displacement and stress fields. Although visual representa-
tions of deformation and stress fields are limited to qualitative
statements, they illustrate the principal responses of structures
in different load cases. For this purpose, Fig. S12 compares prin-
cipal stresses in a deformed slab-on-weak-layer system between
present model and finite element reference solution. The system is
loaded by the weight of the homogeneous slab H and a concen-
trated force representing an 80 kg skier. Deformations are scaled
by a factor of 200 and the weak-layer thickness by a factor of 4. In
the slab, we show maximum principal normal stresses (tension)
normalized to their tensile normal strength 𝜎+c = 9.1 kPa obtained
from the scaling law

𝜎+c (𝜌) = 240 kPa
(
𝜌

𝜌0

)2.44
, (S64)

where 𝜌0 = 917 kg/m3 is the density of ice. 35 This illustrates
the potential of tensile slab fracture. In the weak layer, mini-
mum principal normal stresses (compression) normalized to their
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Supplementary Figure S12 | Stress field. Principal stresses and 200
times scaled snowpack deformations in the central 200 cm section of
a skier-loaded snowpack comparing the present model (top) and the
FEA reference model (bottom). In the homogeneous slab H, maxi-
mum principal normal stresses 𝜎I (tension) normalized their tensile
strength 𝜎+c = 9.1 kPa are shown. In the weak layer we show minimum
principal normal stresses 𝜎III (compression) normalized to an assumed
weak layer compressive strength of 𝜎−c = 2.6 kPa. The weak-layer thick-
ness is scaled by a factor of 4 for illustration.

rapid-loading compressive strength 𝜎−c = 2.6 kPa 36 are shown,
illustrating the potential for weak-layer collapse. We choose prin-
cipal stresses for the visualization because they allow for the
assessment of complex stress states by incorporating several stress
components.

While the present model (Fig. S12, top panel) does not capture
the highly localized stresses at the contact point between skier
and slab observed in the FEA model (Fig. S12, bottom panel), the
overall stress fields are in excellent agreement. This is consistent
with Saint-Venant’s principle, according to which the far-field
effect of localized loads is independent of their asymptotic near-
field behavior. The same holds for the displacement field. While
the concentrated load introduces a dent in the slab’s top surface,
the overall deformations agree. With respect to the numerical
reference, the present model renders displacement fields and both
weak-layer and slab stresses well. Moreover, we can confirm the
model assumption of constant stresses through the thickness of
the weak layer.

Experimental validations are challenging since direct mea-
surements of stresses are not possible and displacement mea-
surements require considerable experimental effort. The latter
can be recorded using digital image correlation (DIC). 32 From
their analysis, we use the DIC-recorded displacement field of the
first 1.3 m of a 3.0 ± 0.1 m long flat-field propagation saw test
(Fig. S13, bottom panel). The PST was performed on January 7,
2019, had a slab thickness of ℎ = 46 cm, a critical cut length of
𝑎 = 23 ± 2 cm, and the density profile shown in Fig. S13 (left
panel) with a mean slab density of 𝜌̄ = 111 ± 6 kg/m3. From
the density we computed individual layer stiffnesses according
to Eq. (S62). Figure S13 compares both in-plane deformations of
the snowpack (outlines) and the horizontal displacement fields
(colorized overlay) obtained from the present model (top panel)
and from DIC measurements (bottom panel). Deformations are
scaled by a factor of 100, the weak-layer thickness by a factor of 10
for their visualization. In-plane slab and weak-layer deformations
are in very good agreement. This is evident in both the deformed
contours and in the colorized displacement field overlay. Since
displacements are𝒞1-continuous across layer interfaces, the effect
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Supplementary Figure S13 | Displacement field. Horizontal displace-
ment field of the first 1.3 m of a flat-field propagation saw test (PST)
with an 𝑎 = 23 cm cut into the 𝑡 = 1 cm weak layer under a ℎ =

46 cm slab. Comparison of the present model (top) with full-field digi-
tal image correlation measurements (bottom). White patches indicate
missing data points. Deformations are scaled by a factor of 100 and
the weak-layer thickness by a factor of 10 for illustration.

of layering is not directly visible in the displacement field. How-
ever, the slightly larger-than-expected tilt of the slab at its left end
hints at a higher stiffness at the bottom of the slab and a compliant
top section.

Weak-layer stresses and energy release rates. For all bench-
mark profiles illustrated in Fig. S10, weak-layer shear and normal
stresses (𝜏, 𝜎) obtained from the FEA model (dotted, light) and the
present analytical solution (solid, dark) are compared in Fig. S14.
We investigate a 38◦ inclined slope subjected to a concentrated
force equivalent to the load of an 80 kg skier on an effective out-
of-plane ski length of 1 m. The finite element reference model
has a horizontal length of 10 m, of which the central 3 m are
shown. The boundary conditions of the present model require the
complementary solution (S32) to vanish, representing an infinite
extension of the system.

Kinks in the model solution originate from the loading dis-
continuity introduced by the concentrated skier force. They are a
direct result of the plate-theory modeling approach. The agree-
ment with the FEA reference solution is close for all types of
investigated profiles and layering effects on weak-layer stress dis-
tributions are well captured. Only for profile C, the present
solution slightly underestimates the normal stress peak directly
below the skier. This observation is not relevant for the predic-
tion of weak-layer failure in a snow cover. 14 To study size effects
present in any structure, a nonlocal evaluation of stresses must be
used. 39–42 This has been discussed in detail by Leguillon 43, lay-
ing the foundation for the successful application of finite fracture
mechanics approaches with weak-interface models. 44–46 Effects
of bending stiffness (Fig. S14c vs. d) or bending–extension cou-
pling (Fig. S14e vs. f) resulting from different layering orders, will
be discussed in detail below.

A similar comparison of solutions for all profiles is given in
Fig. S15, where total energy release rates (ERRs) of weak-layer
anticracks in 38◦ inclined PST experiments are shown. Here, both
models consider free boundaries of the 1.2 m long PST block. The
structure is loaded by the weight of the slab and saw-introduced
cracks are modeled by removing all weak-layer elements on the
crack length 𝑎. This causes finite ERRs, even for very small cracks,
because a finite amount of strain energy is removed from the
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Supplementary Figure S14 | Weak-layer stresses. Weak-layer normal
and shear stresses (𝜎, 𝜏) owing to combined skier and snowpack-
weight loading for the benchmark profiles illustrated in Fig. S10. The
present solution (solid, dark) only slightly underestimates the maxi-
mum normal stresses with respect to the FEA reference (dotted, light)
in the case of profile C. Material properties are given in Tables S2
and S3.

system with these elements. The ERR of a sharp crack is expected
to vanish in the limit of zero crack length (≪ 1 cm).

The principal behavior of the ERR as a function of crack length
is unaffected by the choice of profile. However, the different result-
ing stiffness and deformation properties influence the magnitude
of the energy release rate considerably. For instance, between
cases A and B, we observe a difference of almost 10 % (Fig. S15).

Figure S16 shows weak-layer fracture toughnesses determined
from critical cut lengths of PSTs with layered slabs throughout
the 2019 winter season using the present model. 32,37 The authors
performed 21 tests on the same weak layer. While we observe
small weak-layer fracture toughnesses at the beginning of January
2019, it quickly increases with the most significant precipitation
event in mid January and then remains comparatively constant
throughout the rest of the season. 32 For the purpose of validation
of the present model, it is to note that all fracture toughnesses
computed from the experiments lie within the bounds of the
to date lowest 38 and highest 5 published values, 0.01 J/m2 and
2.7 J/m2, respectively.
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Supplementary Figure S15 | Anticrack energy release rate. Total
energy release rates of weak-layer anticracks in 38◦ inclined PST
experiments of 120 cm length with the benchmark profiles illustrated
in Fig. S10. The present solution (solid, dark) and FEA reference (dotted,
light) are in good agreement. Material properties are given in Tables S2
and S3.

The present model can be classified as a structural-mechanics
model as frequently employed in fracture mechanics. Structural
models can be used to obtain effective quantities characteriz-
ing weak layers. 22 Effective quantities of fracture mechanics
models are macroscopic quantities and always include micro-
scopic mechanisms without further resolving their microscopic
nature. 25 Identifying microstructural interactions in the fracture
of highly-porous materials is a current active research topic. 47–49

In comparison to previous studies that used similar concepts
to model the structural response of layered snowpacks, 50–52 in
our model we also consider slope normal deformations and the
compliance of the weak layer. The latter effect has a substantial
influence on the modeled energy release rate, which is central in
this study.

Supplementary tables
Recorded data and literature data
Tables S4 and S5 list the experimental data with mean and stan-
dard deviation recorded at field sites A and B, respectively,
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Supplementary Figure S16 | Weak-layer fracture toughness. Weak-
layer fracture toughness determined with the present model from crit-
ical cut lengths of 21 flat-field propagation saw tests (PSTs) throughout
the 2019 winter season on the same surface-hoar weak layer cov-
ered by a layered slab of changing thickness. 32,37 All results are within
the hatched boundaries indicating the thus far lowest 38 and highest 5

published fracture toughness of weak layers, 0.01 J/m2 and 2.7 J/m2,
respectively.

between February 18 and March 10, 2022. Table S6 lists the
literature data 5 evaluated for the present study.

Supplementary Table S4 | Field site A. Experimental data recorded at
field site A between February 18 and March 3, 2022.

Date
Slope Cut length Fracture toughness

𝜑 𝑎c (cm) 𝒢Ic (J/m2) 𝒢IIc (J/m2)

Feb 18 0◦ ± 2◦ 10.90 ± 1.00 0.892 ± 0.173 0.022 ± 0.008
10◦ ± 2◦ 15.50 ± 1.00 0.880 ± 0.143 0.061 ± 0.012
15◦ ± 2◦ 14.75 ± 1.00 0.645 ± 0.112 0.070 ± 0.012
20◦ ± 2◦ 16.75 ± 1.00 0.616 ± 0.106 0.101 ± 0.015
25◦ ± 2◦ 19.00 ± 1.00 0.739 ± 0.126 0.157 ± 0.021
35◦ ± 2◦ 20.00 ± 1.00 0.509 ± 0.100 0.218 ± 0.026
40◦ ± 2◦ 23.50 ± 1.00 0.592 ± 0.117 0.305 ± 0.034
45◦ ± 2◦ 26.50 ± 1.00 0.602 ± 0.126 0.391 ± 0.041
50◦ ± 2◦ 28.75 ± 1.00 0.459 ± 0.111 0.447 ± 0.046
50◦ ± 2◦ 31.00 ± 1.00 0.599 ± 0.136 0.510 ± 0.051
55◦ ± 2◦ 34.00 ± 1.00 0.571 ± 0.147 0.614 ± 0.061
60◦ ± 2◦ 38.50 ± 1.00 0.579 ± 0.175 0.772 ± 0.077

Feb 23 −49◦ ± 2◦ 9.20 ± 1.00 0.452 ± 0.059 0.098 ± 0.016
14◦ ± 2◦ 14.00 ± 1.00 0.431 ± 0.070 0.042 ± 0.008
25◦ ± 2◦ 14.25 ± 1.00 0.343 ± 0.064 0.087 ± 0.013
36◦ ± 2◦ 27.75 ± 1.00 0.974 ± 0.149 0.304 ± 0.032
47◦ ± 2◦ 28.00 ± 1.00 0.542 ± 0.106 0.367 ± 0.039
53◦ ± 2◦ 35.75 ± 1.00 0.720 ± 0.151 0.567 ± 0.056
57◦ ± 2◦ 38.00 ± 1.00 0.447 ± 0.117 0.612 ± 0.062
61◦ ± 2◦ 37.50 ± 1.00 0.289 ± 0.094 0.606 ± 0.064

(continued on next page)



Table S4 | Field site A (continued)

Date 𝜑 𝑎c (cm) 𝒢Ic (J/m2) 𝒢IIc (J/m2)

64◦ ± 2◦ 46.75 ± 1.00 0.346 ± 0.134 0.884 ± 0.091

Feb 24 −60◦ ± 2◦ 19.65 ± 1.00 0.867 ± 0.102 0.147 ± 0.026
−50◦ ± 2◦ 16.55 ± 1.00 0.810 ± 0.094 0.109 ± 0.020
−45◦ ± 2◦ 11.40 ± 1.00 0.551 ± 0.069 0.091 ± 0.016
−40◦ ± 2◦ 16.75 ± 1.00 0.928 ± 0.108 0.064 ± 0.014
−27◦ ± 2◦ 14.75 ± 1.00 0.802 ± 0.099 0.025 ± 0.008
−18◦ ± 2◦ 14.55 ± 1.00 0.779 ± 0.101 0.006 ± 0.003
−10◦ ± 2◦ 14.50 ± 1.00 0.705 ± 0.094 0.000 ± 0.000

1◦ ± 2◦ 13.35 ± 1.00 0.510 ± 0.074 0.006 ± 0.003
5◦ ± 2◦ 17.75 ± 1.00 0.720 ± 0.097 0.021 ± 0.006

60◦ ± 2◦ 43.25 ± 1.00 0.391 ± 0.121 0.737 ± 0.076

Feb 25 24◦ ± 2◦ 19.50 ± 1.00 0.706 ± 0.106 0.126 ± 0.017
28◦ ± 2◦ 22.90 ± 1.00 0.817 ± 0.119 0.182 ± 0.022
32◦ ± 2◦ 24.70 ± 1.00 0.715 ± 0.108 0.222 ± 0.026
35◦ ± 2◦ 25.75 ± 1.00 1.045 ± 0.157 0.285 ± 0.031
37◦ ± 2◦ 23.00 ± 1.00 0.539 ± 0.091 0.240 ± 0.027
42◦ ± 2◦ 28.50 ± 1.00 0.870 ± 0.143 0.371 ± 0.038
47◦ ± 2◦ 28.45 ± 1.00 0.501 ± 0.098 0.386 ± 0.040
53◦ ± 2◦ 33.75 ± 1.00 0.394 ± 0.094 0.515 ± 0.051
53◦ ± 2◦ 31.25 ± 1.00 0.510 ± 0.112 0.482 ± 0.048
56◦ ± 2◦ 34.00 ± 1.00 0.377 ± 0.096 0.542 ± 0.054
57◦ ± 2◦ 49.00 ± 1.00 0.064 ± 0.060 1.015 ± 0.112
65◦ ± 2◦ 42.50 ± 1.00 0.141 ± 0.072 0.778 ± 0.079

Mar 02 7◦ ± 2◦ 13.40 ± 1.00 0.458 ± 0.066 0.016 ± 0.005
16◦ ± 2◦ 9.25 ± 1.00 0.248 ± 0.047 0.033 ± 0.007
28◦ ± 2◦ 20.50 ± 1.00 0.496 ± 0.076 0.143 ± 0.019
35◦ ± 2◦ 28.25 ± 1.00 0.875 ± 0.128 0.280 ± 0.030
42◦ ± 2◦ 31.00 ± 1.00 0.699 ± 0.116 0.372 ± 0.038
48◦ ± 2◦ 31.75 ± 1.00 0.437 ± 0.089 0.425 ± 0.044
53◦ ± 2◦ 37.00 ± 1.00 0.555 ± 0.122 0.573 ± 0.056
56◦ ± 2◦ 40.75 ± 1.00 0.386 ± 0.107 0.672 ± 0.067
62◦ ± 2◦ 41.75 ± 1.00 0.270 ± 0.096 0.736 ± 0.074
63◦ ± 2◦ 46.00 ± 1.00 0.333 ± 0.123 0.875 ± 0.087
65◦ ± 2◦ 45.50 ± 1.00 0.175 ± 0.085 0.857 ± 0.087

Mar 03 8◦ ± 2◦ 15.75 ± 1.00 0.582 ± 0.080 0.024 ± 0.006
11◦ ± 2◦ 16.25 ± 1.00 0.639 ± 0.090 0.038 ± 0.008
17◦ ± 2◦ 20.00 ± 1.00 0.768 ± 0.104 0.079 ± 0.013
26◦ ± 2◦ 22.25 ± 1.00 0.617 ± 0.089 0.142 ± 0.019
32◦ ± 2◦ 26.00 ± 1.00 0.796 ± 0.115 0.227 ± 0.026
36◦ ± 2◦ 24.75 ± 1.00 0.499 ± 0.081 0.236 ± 0.027
42◦ ± 2◦ 31.25 ± 1.00 0.588 ± 0.102 0.367 ± 0.038
46◦ ± 2◦ 36.50 ± 1.00 0.915 ± 0.156 0.513 ± 0.049
50◦ ± 2◦ 38.50 ± 1.00 0.797 ± 0.153 0.589 ± 0.056
55◦ ± 2◦ 40.25 ± 1.00 0.656 ± 0.147 0.672 ± 0.064
59◦ ± 2◦ 44.50 ± 1.00 0.393 ± 0.122 0.800 ± 0.079

Supplementary Table S5 | Field site B. Experimental data recorded at
field site B between March 7 and March 10, 2022.

Date
Slope Cut length Fracture toughness

(continued on next page)

Table S5 | Field site B (continued)

Date 𝜑 𝑎c (cm) 𝒢Ic (J/m2) 𝒢IIc (J/m2)

𝜑 𝑎c (cm) 𝒢Ic (J/m2) 𝒢IIc (J/m2)

Mar 07 59◦ ± 2◦ 29.75 ± 1.00 0.635 ± 0.247 0.755 ± 0.098

Mar 08 2◦ ± 2◦ 14.25 ± 1.00 0.575 ± 0.095 0.039 ± 0.009
13◦ ± 2◦ 16.75 ± 1.00 0.696 ± 0.119 0.111 ± 0.019
21◦ ± 2◦ 17.00 ± 1.00 0.542 ± 0.100 0.137 ± 0.021
29◦ ± 2◦ 19.25 ± 1.00 0.403 ± 0.079 0.174 ± 0.023
35◦ ± 2◦ 19.75 ± 1.00 0.326 ± 0.071 0.202 ± 0.026
39◦ ± 2◦ 25.25 ± 1.00 0.584 ± 0.116 0.357 ± 0.041
44◦ ± 2◦ 27.75 ± 1.00 0.556 ± 0.118 0.430 ± 0.048
49◦ ± 2◦ 32.25 ± 1.00 0.711 ± 0.156 0.609 ± 0.066
55◦ ± 2◦ 29.75 ± 1.00 0.196 ± 0.066 0.418 ± 0.050
60◦ ± 2◦ 35.25 ± 1.00 0.404 ± 0.133 0.663 ± 0.080

Mar 09 −53◦ ± 2◦ 11.15 ± 1.00 0.603 ± 0.077 0.038 ± 0.010
−48◦ ± 2◦ 9.10 ± 1.00 0.511 ± 0.069 0.035 ± 0.009
−41◦ ± 2◦ 13.35 ± 1.00 0.823 ± 0.106 0.010 ± 0.005
−22◦ ± 2◦ 13.75 ± 1.00 0.874 ± 0.122 0.002 ± 0.002
−12◦ ± 2◦ 14.90 ± 1.00 0.877 ± 0.125 0.016 ± 0.006
−1◦ ± 2◦ 9.90 ± 1.00 0.375 ± 0.067 0.011 ± 0.004

Mar 10 52◦ ± 2◦ 25.00 ± 1.00 0.347 ± 0.114 0.723 ± 0.086
56◦ ± 2◦ 20.25 ± 1.00 0.127 ± 0.068 0.706 ± 0.091
58◦ ± 2◦ 21.50 ± 1.00 0.082 ± 0.054 0.735 ± 0.095
62◦ ± 2◦ 26.00 ± 1.00 0.029 ± 0.031 0.667 ± 0.086
62◦ ± 2◦ 23.25 ± 1.00 0.120 ± 0.073 0.732 ± 0.095
65◦ ± 2◦ 22.75 ± 1.00 0.006 ± 0.013 0.689 ± 0.095

Supplementary Table S6 | Historic data set. Literature data 5 on prop-
agation saw tests evaluated for the present study, truncated at two
digits.

#
Slope Cut length Fracture toughness

𝜑 𝑎c (cm) 𝒢Ic (J/m2) 𝒢IIc (J/m2)

1 0◦ ± 2◦ 19.98 ± 1.00 0.38 ± 0.05 0.00 ± 0.00
2 0◦ ± 2◦ 21.69 ± 1.00 0.13 ± 0.01 0.00 ± 0.00
3 0◦ ± 2◦ 52.04 ± 1.00 2.02 ± 0.22 0.01 ± 0.01
4 0◦ ± 2◦ 37.06 ± 1.00 0.99 ± 0.13 0.00 ± 0.00
5 0◦ ± 2◦ 34.41 ± 1.00 0.51 ± 0.06 0.00 ± 0.00
6 0◦ ± 2◦ 29.19 ± 1.00 0.51 ± 0.06 0.00 ± 0.00
7 0◦ ± 2◦ 31.81 ± 1.00 0.99 ± 0.12 0.00 ± 0.00
8 0◦ ± 2◦ 27.08 ± 1.00 0.18 ± 0.02 0.00 ± 0.00
9 0◦ ± 2◦ 33.93 ± 1.00 1.02 ± 0.12 0.00 ± 0.00

10 0◦ ± 2◦ 30.30 ± 1.00 0.22 ± 0.02 0.01 ± 0.00
11 0◦ ± 2◦ 30.53 ± 1.00 0.93 ± 0.12 0.00 ± 0.00
12 0◦ ± 2◦ 26.46 ± 1.00 0.18 ± 0.02 0.00 ± 0.00
13 0◦ ± 2◦ 33.18 ± 1.00 1.06 ± 0.13 0.00 ± 0.00
14 0◦ ± 2◦ 34.00 ± 1.00 0.29 ± 0.02 0.01 ± 0.00
15 0◦ ± 2◦ 16.96 ± 1.00 0.13 ± 0.01 0.00 ± 0.00
16 0◦ ± 2◦ 34.21 ± 1.00 0.30 ± 0.02 0.01 ± 0.00
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Table S6 | Historic data set (continued)

# 𝜑 𝑎c (cm) 𝒢Ic (J/m2) 𝒢IIc (J/m2)

17 0◦ ± 2◦ 34.63 ± 1.00 0.30 ± 0.02 0.01 ± 0.00
18 0◦ ± 2◦ 31.53 ± 1.00 0.26 ± 0.02 0.00 ± 0.00
19 0◦ ± 2◦ 38.46 ± 1.00 0.37 ± 0.03 0.01 ± 0.00
20 0◦ ± 2◦ 29.54 ± 1.00 0.33 ± 0.04 0.00 ± 0.00
21 0◦ ± 2◦ 31.18 ± 1.00 0.42 ± 0.05 0.00 ± 0.00
22 0◦ ± 2◦ 53.80 ± 1.00 3.11 ± 0.38 0.00 ± 0.01
23 0◦ ± 2◦ 51.39 ± 1.00 2.93 ± 0.36 0.00 ± 0.01
24 0◦ ± 2◦ 28.60 ± 1.00 0.43 ± 0.04 0.00 ± 0.00
25 0◦ ± 2◦ 44.57 ± 1.00 0.99 ± 0.11 0.01 ± 0.00
26 0◦ ± 2◦ 32.10 ± 1.00 0.54 ± 0.07 0.00 ± 0.00
27 0◦ ± 2◦ 38.27 ± 1.00 1.16 ± 0.13 0.00 ± 0.00
28 0◦ ± 2◦ 16.54 ± 1.00 0.44 ± 0.06 0.00 ± 0.00
29 0◦ ± 2◦ 20.72 ± 1.00 0.19 ± 0.02 0.00 ± 0.00
30 0◦ ± 2◦ 23.16 ± 1.00 0.20 ± 0.02 0.00 ± 0.00
31 0◦ ± 2◦ 8.82 ± 1.00 0.05 ± 0.01 0.00 ± 0.00
32 0◦ ± 2◦ 15.91 ± 1.00 0.10 ± 0.01 0.00 ± 0.00
33 0◦ ± 2◦ 24.18 ± 1.00 0.26 ± 0.03 0.00 ± 0.00
34 0◦ ± 2◦ 24.63 ± 1.00 0.27 ± 0.03 0.00 ± 0.00
35 0◦ ± 2◦ 23.35 ± 1.00 0.25 ± 0.03 0.00 ± 0.00
36 0◦ ± 2◦ 29.32 ± 1.00 0.35 ± 0.04 0.01 ± 0.00
37 0◦ ± 2◦ 26.91 ± 1.00 0.30 ± 0.03 0.00 ± 0.00
38 0◦ ± 2◦ 32.91 ± 1.00 0.39 ± 0.04 0.01 ± 0.00
39 0◦ ± 2◦ 31.90 ± 1.00 0.37 ± 0.03 0.01 ± 0.00
40 0◦ ± 2◦ 33.27 ± 1.00 0.39 ± 0.04 0.01 ± 0.00
41 0◦ ± 2◦ 27.45 ± 1.00 0.31 ± 0.03 0.00 ± 0.00
42 0◦ ± 2◦ 31.86 ± 1.00 0.38 ± 0.04 0.00 ± 0.00
43 0◦ ± 2◦ 31.43 ± 1.00 0.68 ± 0.08 0.00 ± 0.00
44 0◦ ± 2◦ 29.79 ± 1.00 0.32 ± 0.03 0.01 ± 0.00
45 0◦ ± 2◦ 34.47 ± 1.00 0.45 ± 0.04 0.01 ± 0.00
46 0◦ ± 2◦ 35.42 ± 1.00 0.49 ± 0.05 0.01 ± 0.00
47 0◦ ± 2◦ 21.80 ± 1.00 0.19 ± 0.02 0.00 ± 0.00
48 0◦ ± 2◦ 23.19 ± 1.00 0.22 ± 0.03 0.00 ± 0.00
49 0◦ ± 2◦ 36.76 ± 1.00 0.80 ± 0.10 0.00 ± 0.00
50 0◦ ± 2◦ 23.11 ± 1.00 0.32 ± 0.04 0.00 ± 0.00
51 0◦ ± 2◦ 23.62 ± 1.00 0.26 ± 0.03 0.00 ± 0.00
52 0◦ ± 2◦ 18.71 ± 1.00 0.36 ± 0.04 0.00 ± 0.00
53 0◦ ± 2◦ 24.43 ± 1.00 0.48 ± 0.06 0.00 ± 0.00
54 0◦ ± 2◦ 28.36 ± 1.00 0.56 ± 0.09 0.00 ± 0.00
55 0◦ ± 2◦ 47.10 ± 1.00 2.36 ± 0.29 0.00 ± 0.00
56 0◦ ± 2◦ 23.00 ± 1.00 0.45 ± 0.06 0.00 ± 0.00
57 0◦ ± 2◦ 38.22 ± 1.00 0.68 ± 0.07 0.00 ± 0.00
58 0◦ ± 2◦ 25.30 ± 1.00 0.79 ± 0.09 0.00 ± 0.00
59 0◦ ± 2◦ 34.75 ± 1.00 1.10 ± 0.12 0.00 ± 0.00
60 0◦ ± 2◦ 35.44 ± 1.00 1.38 ± 0.16 0.00 ± 0.00
61 0◦ ± 2◦ 38.39 ± 1.00 1.50 ± 0.17 0.00 ± 0.00
62 0◦ ± 2◦ 20.98 ± 1.00 0.86 ± 0.11 0.00 ± 0.00
63 0◦ ± 2◦ 29.36 ± 1.00 0.61 ± 0.07 0.00 ± 0.00
64 0◦ ± 2◦ 46.27 ± 1.00 1.17 ± 0.11 0.01 ± 0.01
65 0◦ ± 2◦ 33.99 ± 1.00 0.67 ± 0.07 0.01 ± 0.00
66 0◦ ± 2◦ 36.80 ± 1.00 0.80 ± 0.09 0.00 ± 0.00
67 0◦ ± 2◦ 29.06 ± 1.00 0.55 ± 0.06 0.00 ± 0.00
68 0◦ ± 2◦ 27.58 ± 1.00 0.52 ± 0.06 0.00 ± 0.00
69 0◦ ± 2◦ 30.56 ± 1.00 0.59 ± 0.07 0.00 ± 0.00
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Table S6 | Historic data set (continued)

# 𝜑 𝑎c (cm) 𝒢Ic (J/m2) 𝒢IIc (J/m2)

70 0◦ ± 2◦ 38.69 ± 1.00 0.72 ± 0.07 0.00 ± 0.00
71 0◦ ± 2◦ 41.01 ± 1.00 1.43 ± 0.16 0.00 ± 0.00
72 0◦ ± 2◦ 39.06 ± 1.00 0.71 ± 0.07 0.00 ± 0.00
73 0◦ ± 2◦ 37.61 ± 1.00 1.07 ± 0.12 0.01 ± 0.00
74 0◦ ± 2◦ 46.29 ± 1.00 1.68 ± 0.20 0.01 ± 0.01
75 0◦ ± 2◦ 47.90 ± 1.00 1.39 ± 0.14 0.01 ± 0.01
76 0◦ ± 2◦ 56.34 ± 1.00 2.18 ± 0.23 0.01 ± 0.01
77 0◦ ± 2◦ 33.61 ± 1.00 1.28 ± 0.16 0.00 ± 0.00
78 0◦ ± 2◦ 48.23 ± 1.00 1.87 ± 0.21 0.00 ± 0.00
79 0◦ ± 2◦ 52.43 ± 1.00 3.55 ± 0.46 0.00 ± 0.01
80 0◦ ± 2◦ 69.26 ± 1.00 6.22 ± 0.75 0.00 ± 0.01
81 0◦ ± 2◦ 58.13 ± 1.00 4.12 ± 0.50 0.01 ± 0.01
82 0◦ ± 2◦ 71.48 ± 1.00 6.25 ± 0.74 0.01 ± 0.01
83 0◦ ± 2◦ 77.64 ± 1.00 15.16 ± 2.00 0.00 ± 0.01
84 0◦ ± 2◦ 40.21 ± 1.00 1.40 ± 0.16 0.00 ± 0.00
85 0◦ ± 2◦ 32.21 ± 1.00 0.29 ± 0.03 0.00 ± 0.00
86 0◦ ± 2◦ 37.94 ± 1.00 0.78 ± 0.07 0.01 ± 0.00
87 0◦ ± 2◦ 24.82 ± 1.00 0.46 ± 0.05 0.00 ± 0.00
88 0◦ ± 2◦ 32.81 ± 1.00 0.65 ± 0.06 0.00 ± 0.00
89 0◦ ± 2◦ 27.86 ± 1.00 0.41 ± 0.05 0.00 ± 0.00
90 0◦ ± 2◦ 36.42 ± 1.00 0.63 ± 0.07 0.00 ± 0.00
91 0◦ ± 2◦ 26.62 ± 1.00 0.36 ± 0.04 0.00 ± 0.00
92 0◦ ± 2◦ 23.73 ± 1.00 0.29 ± 0.03 0.00 ± 0.00
93 0◦ ± 2◦ 16.65 ± 1.00 0.20 ± 0.02 0.00 ± 0.00
94 0◦ ± 2◦ 31.46 ± 1.00 0.43 ± 0.04 0.00 ± 0.00
95 0◦ ± 2◦ 36.73 ± 1.00 0.54 ± 0.05 0.01 ± 0.00
96 0◦ ± 2◦ 35.24 ± 1.00 0.50 ± 0.05 0.00 ± 0.00
97 0◦ ± 2◦ 28.25 ± 1.00 0.53 ± 0.05 0.00 ± 0.00
98 0◦ ± 2◦ 32.99 ± 1.00 0.54 ± 0.06 0.00 ± 0.00
99 0◦ ± 2◦ 30.27 ± 1.00 0.60 ± 0.06 0.00 ± 0.00

100 0◦ ± 2◦ 28.38 ± 1.00 0.59 ± 0.06 0.00 ± 0.00
101 0◦ ± 2◦ 27.54 ± 1.00 0.54 ± 0.06 0.00 ± 0.00
102 0◦ ± 2◦ 32.86 ± 1.00 0.66 ± 0.07 0.00 ± 0.00
103 0◦ ± 2◦ 60.72 ± 1.00 1.22 ± 0.07 0.09 ± 0.01
104 0◦ ± 2◦ 20.07 ± 1.00 0.41 ± 0.05 0.00 ± 0.00
105 0◦ ± 2◦ 32.31 ± 1.00 0.64 ± 0.06 0.00 ± 0.00
106 0◦ ± 2◦ 41.95 ± 1.00 2.09 ± 0.29 0.00 ± 0.00
107 0◦ ± 2◦ 44.08 ± 1.00 0.56 ± 0.04 0.03 ± 0.00
108 −8◦ ± 2◦ 16.14 ± 1.00 0.17 ± 0.02 0.00 ± 0.00
109 −8◦ ± 2◦ 25.55 ± 1.00 0.27 ± 0.02 0.00 ± 0.00
110 −9◦ ± 2◦ 25.63 ± 1.00 0.27 ± 0.02 0.00 ± 0.00
111 −10◦ ± 2◦ 32.32 ± 1.00 0.63 ± 0.07 0.00 ± 0.00
112 −10◦ ± 2◦ 30.30 ± 1.00 0.39 ± 0.03 0.00 ± 0.00
113 −10◦ ± 2◦ 32.82 ± 1.00 0.73 ± 0.07 0.00 ± 0.00
114 −10◦ ± 2◦ 29.41 ± 1.00 0.59 ± 0.06 0.00 ± 0.00
115 −10◦ ± 2◦ 31.14 ± 1.00 0.69 ± 0.07 0.00 ± 0.00
116 −10◦ ± 2◦ 37.14 ± 1.00 0.98 ± 0.10 0.00 ± 0.00
117 −10◦ ± 2◦ 31.80 ± 1.00 0.48 ± 0.04 0.00 ± 0.00
118 −10◦ ± 2◦ 25.67 ± 1.00 0.49 ± 0.06 0.00 ± 0.00
119 −10◦ ± 2◦ 24.88 ± 1.00 0.53 ± 0.06 0.00 ± 0.00
120 −10◦ ± 2◦ 28.89 ± 1.00 0.60 ± 0.07 0.00 ± 0.00
121 −10◦ ± 2◦ 49.62 ± 1.00 0.89 ± 0.06 0.00 ± 0.00
122 −10◦ ± 2◦ 30.65 ± 1.00 0.52 ± 0.05 0.00 ± 0.00
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Table S6 | Historic data set (continued)

# 𝜑 𝑎c (cm) 𝒢Ic (J/m2) 𝒢IIc (J/m2)

123 −13◦ ± 2◦ 17.31 ± 1.00 0.19 ± 0.02 0.00 ± 0.00
124 −15◦ ± 2◦ 17.13 ± 1.00 0.18 ± 0.02 0.00 ± 0.00
125 −15◦ ± 2◦ 17.15 ± 1.00 0.17 ± 0.02 0.00 ± 0.00
126 −17◦ ± 2◦ 19.43 ± 1.00 0.20 ± 0.02 0.00 ± 0.00
127 −18◦ ± 2◦ 29.08 ± 1.00 0.80 ± 0.08 0.01 ± 0.00
128 −18◦ ± 2◦ 53.46 ± 1.00 4.55 ± 0.57 0.01 ± 0.01
129 −18◦ ± 2◦ 42.11 ± 1.00 2.90 ± 0.38 0.01 ± 0.01
130 −18◦ ± 2◦ 37.17 ± 1.00 1.03 ± 0.10 0.00 ± 0.00
131 −18◦ ± 2◦ 21.40 ± 1.00 0.29 ± 0.03 0.00 ± 0.00
132 −18◦ ± 2◦ 56.46 ± 1.00 3.97 ± 0.39 0.08 ± 0.02
133 −19◦ ± 2◦ 19.72 ± 1.00 0.18 ± 0.02 0.01 ± 0.00
134 −19◦ ± 2◦ 36.74 ± 1.00 0.32 ± 0.02 0.00 ± 0.00
135 −19◦ ± 2◦ 64.28 ± 1.00 1.83 ± 0.11 0.00 ± 0.00
136 −20◦ ± 2◦ 56.61 ± 1.00 2.26 ± 0.22 0.02 ± 0.01
137 −20◦ ± 2◦ 37.04 ± 1.00 1.08 ± 0.11 0.02 ± 0.01
138 −20◦ ± 2◦ 22.70 ± 1.00 0.26 ± 0.02 0.00 ± 0.00
139 −20◦ ± 2◦ 33.21 ± 1.00 0.47 ± 0.03 0.00 ± 0.00
140 −20◦ ± 2◦ 18.30 ± 1.00 0.20 ± 0.02 0.01 ± 0.00
141 −20◦ ± 2◦ 25.11 ± 1.00 0.33 ± 0.04 0.01 ± 0.00
142 −20◦ ± 2◦ 45.98 ± 1.00 1.28 ± 0.12 0.02 ± 0.01
143 −20◦ ± 2◦ 50.44 ± 1.00 2.11 ± 0.22 0.02 ± 0.01
144 −20◦ ± 2◦ 56.14 ± 1.00 2.49 ± 0.26 0.02 ± 0.01
145 −20◦ ± 2◦ 60.99 ± 1.00 4.58 ± 0.52 0.03 ± 0.01
146 −21◦ ± 2◦ 23.12 ± 1.00 0.17 ± 0.02 0.00 ± 0.00
147 −21◦ ± 2◦ 17.00 ± 1.00 0.11 ± 0.01 0.00 ± 0.00
148 −21◦ ± 2◦ 32.07 ± 1.00 1.61 ± 0.17 0.05 ± 0.01
149 −21◦ ± 2◦ 22.58 ± 1.00 0.15 ± 0.01 0.00 ± 0.00
150 −21◦ ± 2◦ 18.01 ± 1.00 0.12 ± 0.01 0.00 ± 0.00
151 −21◦ ± 2◦ 35.25 ± 1.00 0.38 ± 0.03 0.00 ± 0.00
152 −21◦ ± 2◦ 19.23 ± 1.00 0.23 ± 0.02 0.01 ± 0.00
153 −21◦ ± 2◦ 6.46 ± 1.00 0.04 ± 0.01 0.00 ± 0.00
154 −21◦ ± 2◦ 6.36 ± 1.00 0.04 ± 0.01 0.00 ± 0.00
155 −21◦ ± 2◦ 26.25 ± 1.00 1.12 ± 0.11 0.05 ± 0.01
156 −21◦ ± 2◦ 41.73 ± 1.00 1.86 ± 0.19 0.05 ± 0.01
157 −22◦ ± 2◦ 19.97 ± 1.00 0.13 ± 0.01 0.00 ± 0.00
158 −22◦ ± 2◦ 16.85 ± 1.00 0.19 ± 0.02 0.00 ± 0.00
159 −23◦ ± 2◦ 42.76 ± 1.00 0.37 ± 0.03 0.00 ± 0.00
160 −24◦ ± 2◦ 31.09 ± 1.00 0.39 ± 0.04 0.02 ± 0.00
161 −25◦ ± 2◦ 15.46 ± 1.00 0.07 ± 0.01 0.00 ± 0.00
162 −25◦ ± 2◦ 26.50 ± 1.00 0.33 ± 0.03 0.00 ± 0.00
163 −26◦ ± 2◦ 26.53 ± 1.00 0.21 ± 0.02 0.00 ± 0.00
164 −26◦ ± 2◦ 30.78 ± 1.00 0.26 ± 0.02 0.00 ± 0.00
165 −27◦ ± 2◦ 23.61 ± 1.00 0.52 ± 0.04 0.02 ± 0.00
166 −27◦ ± 2◦ 25.41 ± 1.00 0.55 ± 0.04 0.02 ± 0.00
167 −28◦ ± 2◦ 27.67 ± 1.00 0.12 ± 0.01 0.00 ± 0.00
168 −28◦ ± 2◦ 29.35 ± 1.00 0.14 ± 0.01 0.00 ± 0.00
169 −28◦ ± 2◦ 29.84 ± 1.00 0.17 ± 0.01 0.00 ± 0.00
170 −28◦ ± 2◦ 32.07 ± 1.00 0.54 ± 0.04 0.00 ± 0.00
171 −28◦ ± 2◦ 41.74 ± 1.00 0.57 ± 0.07 0.00 ± 0.00
172 −30◦ ± 2◦ 44.29 ± 1.00 0.81 ± 0.06 0.02 ± 0.01
173 −31◦ ± 2◦ 36.61 ± 1.00 0.33 ± 0.03 0.01 ± 0.00
174 −32◦ ± 2◦ 40.96 ± 1.00 0.92 ± 0.06 0.01 ± 0.00
175 −33◦ ± 2◦ 66.99 ± 1.00 1.66 ± 0.13 0.02 ± 0.01
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Table S6 | Historic data set (continued)

# 𝜑 𝑎c (cm) 𝒢Ic (J/m2) 𝒢IIc (J/m2)

176 −34◦ ± 2◦ 66.21 ± 1.00 3.28 ± 0.35 0.05 ± 0.01
177 −34◦ ± 2◦ 60.86 ± 1.00 1.07 ± 0.07 0.00 ± 0.00
178 −35◦ ± 2◦ 39.18 ± 1.00 0.31 ± 0.02 0.00 ± 0.00
179 −35◦ ± 2◦ 23.03 ± 1.00 0.43 ± 0.03 0.02 ± 0.00
180 −35◦ ± 2◦ 20.70 ± 1.00 0.37 ± 0.03 0.02 ± 0.00
181 −36◦ ± 2◦ 44.30 ± 1.00 0.99 ± 0.07 0.07 ± 0.02
182 −36◦ ± 2◦ 37.65 ± 1.00 1.33 ± 0.13 0.12 ± 0.02
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