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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): Expert in federated learning, AI, and medical image analysis 

- The authors do not review the extensive FL literature and ignore recent progress, even the ones 

recently published in NatComms. How was the federated mechanism selected? Why not some other FL 

framework? 

 

- The comparison is basically about CDS and FL. Why? The classification accuracy of FL is around 88%. 

Would any other be able to beat that? Let say, a foundation model with or without fine-tuning. Would 

separate fine-tuning of a segmentation model with something like SAM bring the same results (and no 

communication overhead)? The classification can be also trained in conjunction with separate ML 

methods. 

 

- I could find any explanation why the holdout accuracy for TK and AU is so much lower than CDS (Table 

4) 

 

- What was training/testing behaviour at individual sites? Figure 5 provides insight for classes not for 

sites. 

 

 

Reviewer #1 (Remarks on code availability): 

 

At a general glance, the code is of reasonable quality, is commented at a satisfactory level, and will most 

likely help to reproduce the results. 

 

 

 

 

Reviewer #2 (Remarks to the Author): Clinical expert in brain cancer imaging and radiology, and MRI; 



In this study, the authors introduce FL-PedBrain, an extensive federated learning (FL) platform that 

orchestrated collaborative efforts across global sites for the classification and segmentation of pediatric 

posterior fossa brain tumors. The study utilizes a large dataset of posterior fossa (PF) tumor patients, 

consisting of 596 medulloblastomas, 210 ependymomas, 335 pilocytic astrocytomas, and 327 diffuse 

intrinsic pontine gliomas. The study aims to employ federated learning to allow integration of multiple 

datasets from different sources (e.g., hospital systems) to create “big data” sets. The goal of these big 

datasets would be to facilitate AI training and generalizability, without the need to collect and analyze 

datasets at a central location. The main role of FL is therefore to overcome data sharing limitations due 

to privacy concerns, by avoiding the sharing of raw data. The categorization of pediatric brain tumors 

using MRI images is used as a case example. Pediatric brain tumors are relatively rare at individual sites, 

which motivates the combining of datasets from multiple institutions. This pipeline also has the 

advantages of circumventing patient privacy of data elements (HIPPA compliance) which can create 

logistical barriers to analyzing data across hospital systems. Employing a 3D-UNet architecture, the 

federated learning process utilized federated averaging. A warm-up training stage was proposed, 

initiating federated learning between the two most data-abundant sites for initial iterations before 

extending to other sites. The findings indicate that FL can achieve accuracy levels comparable to those 

achieved by centralized data sharing (CDS) training. Of note, the goal of FL is not to improve the 

predictive performance of image-based models, as the use of CDS predictive accuracy serves as an upper 

bound in performance as it has access to all the raw data. 

 

Strengths: 

1. Large relatively balanced dataset of diverse pathologies of the 4 most common pediatric PF tumors. 

2. Relatively high predictive accuracies achieved for PF tumor diagnosis, for both the centralized data 

sharing (CDS) and the FL methods. 

3. Demonstration of an application of FL to overcome data scarcity and privacy limitations 

 

Critiques: 

1. The clinical significance of the findings remains unclear. In many clinical settings, data sharing is 

allowed with proper anonymization and informed consent. In this context, it is unclear how the logistical 

costs of FL compare with those of CDS at each institution and across sites deploying FL (e.g., 

communication overhead, model synchronization, computational resource costs, etc). Also, what are the 

requirements for technical expertise for implementing FL at each site, and are there steps in place for 

quality assurance (QA) of imaging parameters/quality, absence of image artifacts, integrity of pathologic 

diagnosis, visual QA of segmentations, etc? An argument could be made that approaches streamlining 

the CDS method (e.g., pipelines to automate image anonymization and transfer) could avoid some of the 

logistical requirements of FL, while providing opportunities for central oversight and QA. 

2. Even if data sharing is not an option, with the existing experiments and results, it is not clearly 

demonstrated that FL is needed. For instance, deep learning for brain tumor segmentation and 

classification in MRI is a well-studied domain. It may be possible for a site to use more sophisticated 



algorithms with only on-site data and outperform the FL approach presented in the work when making 

predictions on local data. Given that each site is primarily concerned with the performance of the model 

on its specific data, rather than the model's ability to generalize across different sites, such a result could 

disincentivize the participation in FL. A formal comparison of on-site vs federated models for each site to 

demonstrate the need of FL would be helpful to demonstrate the importance of FL in this setting. The 

evaluation of the siloed model on data from other sites may have less relevance. Given the 

heterogeneity of data across sites, it would be expected that a model trained on one site would not be 

generalizable to other sites. 

3. The discussion could be improved by expanding on the real-world utility/feasibility and 

implementation of the proposed method. While the study mentions some of the benefits of more 

sophisticated FL techniques, a clear rationale for their exclusion is not provided. The work could also 

benefit from expanded discussion about algorithm design in terms of computation and communication 

across sites. The training directly uses large volumes of 3D data, necessitating high-memory GPUs at 

each site, yet the potential limitations stemming from this design choice remain unexplored. High 

communication bandwidth and GPU resource requirements should be discussed as limitations to real- 
world application. 

4. There should be expansion of discussion on model design and training procedures, to support an 

understanding of the reproducibility of the work. For instance, the description of preprocessing is 

unclear, and questions remain regarding the selection process for the 64 axial slices and the 

normalization procedure, particularly in the context of different sites. The authors should include 

information about the hyperparameter tuning strategies. There is ambiguity regarding the need/role of 

the validation set, as it appears to be treated as an additional test set. The work recognizes the 

heterogeneity and imbalance of data across different sites, but there is lack of mention of other 

strategies, such as data augmentation or weighting, that could boost the performance of the models. 

5. The paper could benefit from a figure showing the organization of data, including individual sites, 

splitting of training/validation; hold out sites, etc. 

 

 

Reviewer #2 (Remarks on code availability): 

 

appears adequate 

 

 

 

 

Reviewer #3 (Remarks to the Author):  



 

I co-reviewed this manuscript with one of the reviewers who provided the listed reports as part of the 

Nature Communications initiative to facilitate training in peer review and appropriate recognition for co-

reviewers. 
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REVIEWER COMMENTS AND AUTHOR RESPONSES IN BULLET POINTS 1 
 2 
Reviewer #1 (Remarks to the Author): Expert in federated learning, AI, and medical image 3 
analysis 4 
 5 
- The authors do not review the extensive FL literature and ignore recent progress, even the 6 
ones recently published in NatComms. How was the federated mechanism selected? Why not 7 
some other FL framework? 8 
 9 

• Thank you for the review.  We apologize if any literature important to this topic was 10 
omiOed. We had previously cited FL works including the NatComms paper [17]. On this 11 
revision, we now include the following literature [27-29] that discusses advanced 12 
strategies, as well as a recent work on gastric tumors with 4 FL parScipaSng sites 13 
published in NatComms [26].  14 

 15 
References above: 16 
• [17] PaS, Sarthak, et al. "Federated learning enables big data for rare cancer boundary 17 

detecSon." Nature communicaSons 13.1 (2022): 7346.  18 
• [26] Feng, B., Shi, J., Huang, L. et al. Robustly federated learning model for idenSfying 19 

high-risk paSents with postoperaSve gastric cancer recurrence. Nature CommunicaSons. 20 
15, 742 (2024).  21 

• [27] Ye, Mang, et al. "Heterogeneous federated learning: State-of-the-art and research 22 
challenges." ACM CompuSng Surveys 56.3 (2023): 1-44. 23 

• [28] Shao, J., Wu, F. & Zhang, J. SelecSve knowledge sharing for privacy-preserving 24 
federated disSllaSon without a good teacher. Nat Commun 15, 349 (2024).  25 

• [29] Rahimi, M.M., Bhab, H.I., Park, Y., Kousar, H., Kim, D.Y. and Moon, J., 2024. EvoFed: 26 
Leveraging EvoluSonary Strategies for CommunicaSon-Efficient Federated Learning. 27 
Advances in Neural InformaSon Processing Systems, 36. 28 

 29 
• We chose the federated mechanism based on simplicity, popularity, and ease of use. 30 

These came down to Federated Averaging (FedAvg) and Federated Proximal learning 31 
(FedProx). In our custom FL framework, we also included custom training strategies such 32 
as Federated Warm-up. More precisely, in Federated Warm-up, FL is first performed on 33 
the first two of the largest sites (ST and SE) prior to turning on FL on all 16 parScipaSng 34 
sites.  35 

• We have tried other advanced FL strategies (syntheSc data augmentaSon, and weight 36 
transfer-based strategies) that are aimed at heterogeneous, non-IID data but found that 37 
FedAvg with a FedProx hyperparameter of μ=0 works the best for segmentaSon across 38 
all sites.  39 

• We now add a new figure (Figure 1b) that further clarifies on our FL training procedure 40 
and the specific opSmizaSon funcSon(s) used and the hyperparameters involved, as well 41 
as addiSonal discussion in lines 523-530.   42 

• For reproducibility, our code and models can be found on GitHub. 43 
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 44 
- The comparison is basically about CDS and FL. Why? The classificaSon accuracy of FL is around 45 
88%. Would any other be able to beat that? Let say, a foundaSon model with or without fine-46 
tuning. Would separate fine-tuning of a segmentaSon model with something like SAM bring the 47 
same results (and no communicaSon overhead)? The classificaSon can be also trained in 48 
conjuncSon with separate ML methods. 49 
 50 

• Yes, this is a great point. The comparison is mainly between FL and CDS because CDS is 51 
how we typically train AI models and therefore have served as the benchmark. In 52 
pracSce, by pooling data together, CDS achieves the highest average accuracy. This is 53 
because with larger datasets, larger and more complex models can be developed that 54 
can reason well across the data distribuSon shared across the sites. In our work, we 55 
show that FL can enable us to sSll build the same large models with near-CDS 56 
performance in very heterogeneous cohorts and without pooling data. 57 

• Other advanced AI methods such as using a foundaSon model can work and is a topic for 58 
future research. However, this sSll requires a model to first be trained on a large corpus 59 
of 3D imaging data.  60 

• On the related topic of pretraining, we have found an uplio by leveraging a pretrained 61 
“FoundaSon” model that was pretrained on normal pediatric MRI brain and age data 62 
(n=1667) with ages ranging from 0.1 month to 20 years.  63 

• The state-of-the-art segmentaSon models like SAM have been trained on >11M images 64 
including descripSons. They are considered good few-shot learners that can be 65 
finetuned on a handful of segmentaSon data. However, SAM does not support 3D or 66 
even video inputs (“Currently the model only supports images or individual frames from 67 
videos.”). However, there are on-going efforts to create foundaSon models in radiology 68 
that can be proficient at zero-shot segmentaSon tasks. This requires data and 69 
(centralized) data sharing or Federated approaches. Here, our FL work aims to beOer 70 
understand the extent to which we can create large models without data share.  71 

 72 
- I could [not] find any explanaSon why the holdout accuracy for TK and AU is so much lower 73 
than CDS (Table 4) 74 
 75 

• We found that FL is slightly worse than CDS in classificaSon accuracy. Class imbalance 76 
within the TK and AU sites likely affected the classificaSon performance. Nonetheless, 77 
the segmentaSon performance is almost equivalent between CDS and FL for these two 78 
sites. To clarify, we have now added the following statement in the limitaSon secSon 79 
(lines 562-566).  80 
Class imbalance within TK and AU sites likely contribute to a slightly lower classifica<on 81 
performance.  For segmenta<on task, where the scores are calculated per pixel across 82 
the en<re 256 x 256 x 64 head volume, we observe similar performance between FL and 83 
CDS. 84 

 85 
- What was training/tesSng behaviour at individual sites? Figure 5 provides insight for classes 86 
not for sites. 87 
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• Re: training/tesSng behavior, we had saved all the per-site checkpoints for FL and 88 
performed cross-site validaSon across the 18 sites for every FL round [from Round 1 to 89 
Round 300 (5400 experiments)]. However, this data behavior was too complex to display 90 
in a summary format (for the purpose of the manuscript), and thus we show behavior 91 
for classes (previously Figure 5, now Figure 5a, b) and final site-specific performance 92 
(Figure 2c). If the reviewer wishes, we are glad to add the training convergence per FL 93 
round per site (16 sites) on the GitHub page. 94 

• Upon request by Reviewer 2, we have performed a new ablaSon study (Figure 5c) 95 
showing the effect of adding sites into the FL network on the FL performance. We have 96 
added the following in the revised manuscript (Methods secSon, study design in lines 97 
458-466):   98 

 99 
Be#er performance with more ac1ve FL sites  100 
In our study, we assess the impact of site ac<vity on FL performance by conduc<ng an 101 
abla<on experiment. This experiment measures the FL system's performance rela<ve to 102 
the quan<ty of ac<ve training sites, as depicted in Figure 5(c). We rerun the full FL 103 
experiment by integra<ng more sites into the training process (x-axis), priori<zing those 104 
with larger datasets. The performance evalua<on is based on the F1 score—specifically, 105 
the classifica<on accuracy of the label that performs the poorest. Our findings indicate a 106 
posi<ve correla<on between the number of ac<ve sites and the F1 score: as more sites 107 
par<cipate in the FL network, the F1 score improves, eventually equaling the peak score 108 
achieved when all available sites are ac<ve. 109 

 110 
 111 
Reviewer #1 (Remarks on code availability): 112 
 113 
At a general glance, the code is of reasonable quality, is commented at a saSsfactory level, and 114 
will most likely help to reproduce the results. 115 
 116 

• Thank you!  We appreciate the feedback. 117 
 118 

119  Reviewer #2 (Remarks to the Author): Clinical expert in brain cancer imaging and radiology,   
120  and MRI;   
121   
122  In this study, the authors introduce FL-PedBrain, an extensive federated learning (FL) plaworm 
123  that orchestrated collaboraSve efforts across global sites for the classificaSon and segmentaSon 
124  of pediatric posterior fossa brain tumors. The study uSlizes a large dataset of posterior fossa 
125  (PF) tumor paSents, consisSng of 596 medulloblastomas, 210 ependymomas, 335 pilocySc 
126  astrocytomas, and 327 diffuse intrinsic ponSne gliomas. The study aims to employ federated 
127  learning to allow integraSon of mulSple datasets from different sources (e.g., hospital systems) 
128  to create “big data” sets. The goal of these big datasets would be to facilitate AI training and 
129  generalizability, without the need to collect and analyze datasets at a central locaSon. The main 
130  role of FL is therefore to overcome data sharing limitaSons due to privacy concerns, by avoiding 
131  the sharing of raw data. The categorizaSon of pediatric brain tumors using MRI images is used 
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as a case example. Pediatric brain tumors are relaSvely rare at individual sites, which moSvates 132 
the combining of datasets from mulSple insStuSons. This pipeline also has the advantages of 133 
circumvenSng paSent privacy of data elements (HIPPA compliance) which can create logisScal 134 
barriers to analyzing data across hospital systems. Employing a 3D-UNet architecture, the 135 
federated learning process uSlized federated averaging. A warm-up training stage was 136 
proposed, iniSaSng federated learning between the two most data-abundant sites for iniSal 137 
iteraSons before extending to other sites. The findings indicate that FL can achieve accuracy 138 
levels comparable to those achieved by centralized data sharing (CDS) training. Of note, the goal 139 
of FL is not to improve the predicSve performance of image-based models, as the use of CDS 140 
predicSve accuracy serves as an upper bound in performance as it has access to all the raw 141 
data. 142 
 143 
Strengths:  144 
1. Large relaSvely balanced dataset of diverse pathologies of the 4 most common pediatric PF 145 
tumors. 146 
2. RelaSvely high predicSve accuracies achieved for PF tumor diagnosis, for both the centralized 147 
data sharing (CDS) and the FL methods.  148 
3. DemonstraSon of an applicaSon of FL to overcome data scarcity and privacy limitaSons  149 
 150 
CriSques:  151 
1. The clinical significance of the findings remains unclear. In many clinical sebngs, data sharing 152 
is allowed with proper anonymizaSon and informed consent. In this context, it is unclear how 153 
the logisScal costs of FL compare with those of CDS at each insStuSon and across sites 154 
deploying FL (e.g., communicaSon overhead, model synchronizaSon, computaSonal resource 155 
costs, etc.). Also, what are the requirements for technical experSse for implemenSng FL at each 156 
site, and are there steps in place for quality assurance (QA) of imaging parameters/quality, 157 
absence of image arSfacts, integrity of pathologic diagnosis, visual QA of segmentaSons, etc? 158 
An argument could be made that approaches streamlining the CDS method (e.g., pipelines to 159 
automate image anonymizaSon and transfer) could avoid some of the logisScal requirements of 160 
FL, while providing opportuniSes for central oversight and QA.  161 
 162 

• We appreciate the feedback. CDS and FL each offer unique advantages. As the reviewer 163 
correctly notes, CDS is certainly feasible and remains aOracSve where data sharing 164 
across the hospitals is executable, legally acceptable, and aOainable in a Smely fashion.  165 
However, where data share is prohibiSvely Sme-intensive or not possible due to privacy, 166 
security, and legal challenges, we believe FL can be useful. For example, some of our 167 
data use agreements (DUAs) took 2-3 years to execute. As our study shows, FL can 168 
achieve CDS-like performance for both classificaSon and segmentaSon of pediatric brain 169 
tumors even in highly heterogeneous sebngs (a large range of imaging sequence 170 
parameters, missing classes, dataset imbalances).  Also, sebng up the FL network 171 
among partnering sites allows us to rapidly develop models from newer, updated 172 
datasets that could be a hassle to conSnuously update in real-Sme with CDS.  173 

 174 
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• We have now added a new secSon dedicated to address Q1 (as well as Q3, and Q4), as 175 
shown below, on this revised manuscript (Methods secSon lines 458-492).  176 
 177 
In our study, we assess the impact of site ac<vity on FL performance by conduc<ng an 178 
abla<on experiment. This experiment measures the FL system's performance rela<ve to 179 
the quan<ty of ac<ve training sites, as depicted in Figure 5(c). We rerun the full FL 180 
experiment by integra<ng more sites into the training process (x-axis), priori<zing those 181 
with larger datasets. The performance evalua<on is based on the F1 score—specifically, 182 
the classifica<on accuracy of the label that performs the poorest. Our findings indicate a 183 
posi<ve correla<on between the number of ac<ve sites and the F1 score: as more sites 184 
par<cipate in the FL network, the F1 score improves, eventually equaling the peak score 185 
achieved when all available sites are ac<ve. 186 

 187 
Future Challenges and Prac1cal Implementa1on 188 
 189 
FL-PedBrain introduces logis<cal challenges, communica<on overhead, model 190 
synchroniza<on, and computa<onal demands.  191 
 192 
Communica<on and Logis<cal Challenges. In FL, every par<cipa<ng hospital must 193 
regularly exchange model updates — specifically, the model weights aXer each FL 194 
training round. For our classifica<on-segmenta<on model, this equates to transmiYng 195 
approximately 125 MB of model weights per round. With 19 hospitals involved, this 196 
culminates in a data transfer of around 38 GB per hospital for each training session with 197 
300 rounds. Training the largest dataset for 1 epoch consumes approximately 3-4 198 
minutes on a V100 GPU, and the <me to then transfer all 16 models from each hospital 199 
to the central parameter server (coordina<ng hospital) in Figure 1 (a) is roughly 2 200 
minutes at a 1 MB/s internet. This equates to about 6 minutes per round (1 epoch per 201 
round) and 1200 minutes to ship one trained model. And although CDS only requires a 202 
one-<me collec<on of 200-1000 GB of DICOMs, FL offers benefits by removing the need 203 
for data use agreements and the need for deiden<fica<on, which can take a long <me to 204 
establish and verify. Finally, FL provides advantages such as con<nuous quality control 205 
and oversight from each of the sites’ technical model builders. 206 
 207 
Need for on-site Technical Exper<se. Addi<onally, having both clinical and AI experts per 208 
site would greatly enhance and streamline the FL workflow, enabling them to 1) inspect 209 
the training and evalua<on data for any obvious imaging ar<facts or integrity of 210 
diagnosis and 2) monitor the training process as the model evolves. We intend our FL 211 
framework not to be used just for sta<c datasets like in the CDS case but rather a 212 
bedrock for ac<ve learning on growing datasets. Therefore, human integra<on into the 213 
FL pipeline is a very promising future direc<on.  214 

 215 
2. Even if data sharing is not an opSon, with the exisSng experiments and results, it is not clearly 216 
demonstrated that FL is needed. For instance, deep learning for brain tumor segmentaSon and 217 
classificaSon in MRI is a well-studied domain. It may be possible for a site to use more 218 
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sophisScated algorithms with only on-site data and outperform the FL approach presented in 219 
the work when making predicSons on local data. Given that each site is primarily concerned 220 
with the performance of the model on its specific data, rather than the model's ability to 221 
generalize across different sites, such a result could disincenSvize the parScipaSon in FL. A 222 
formal comparison of on-site vs federated models for each site to demonstrate the need of FL 223 
would be helpful to demonstrate the importance of FL in this sebng. The evaluaSon of the 224 
siloed model on data from other sites may have less relevance. Given the heterogeneity of data 225 
across sites, it would be expected that a model trained on one site would not be generalizable 226 
to other sites.  227 
 228 

• Deep learning for adult brain tumors (mainly gliomas) is indeed a well-studied domain 229 
(e.g., Sheller et al., PaS et al. [16,17]). However, pediatric brain tumor studies remain 230 
sparse, if any, and of our magnitude and scale – that includes mulSple internaSonal 231 
sites.  Also, pediatric tumors are disSnct as they commonly arise in the posterior fossa 232 
(brainstem and cerebellum), unlike the typical adult gliomas (cerebral), and harbor 233 
biologically divergent tumor pathologies (e.g., embryonal origins pilocySc astrocytomas, 234 
and other glial cell origins) with their own unique albeit, heterogeneous MRI features. 235 
Even pediatric supratentorial gliomas are considered biologically disSnct from adult 236 
counterparts.  237 
 238 

• It certainly is a great idea to consider pre-exisSng models.  We had iniSally tried 239 
finetuning a state-of-the-art adult segmentaSon model trained on adult BRATS to our 240 
pediatric dataset. However, we found that the results were not as promising as when 241 
using a very clean FL strategy from scratch with pediatric normal controls.  242 

 243 
• We also felt that an FL study and model development dedicated to pediatric tumors is of 244 

interest to both the clinical and research community, in light of their divergent tumor 245 
composiSons, surgical implicaSons (curaSve versus risk-miSgaSng approaches), and 246 
many new and ongoing immunotherapy trials that could benefit from more precise 247 
pediatric tumor evaluaSon strategies (e.g., CAR-T cell therapies for DIPG; [Majzner et al. 248 
Nature 2022; Vitanza et al. Cancer Disc. 2023]).  Unlike some of the prior adult tumor 3D 249 
segmentaSon models (e.g., BRATS dataset) or prior adult glioma FL works (Sheller et al., 250 
PaS et al. [16,17]), our 3D Ped-FL model does not require skull stripping or brain 251 
registraSon into a common atlas, which we think would facilitate clinician user 252 
experience and translaSon.  253 

 254 
In response to: A formal comparison of on-site vs federated models for each site to demonstrate 255 
the need of FL would be helpful to demonstrate the importance of FL in this sebng. 256 

 257 
• Thank you for bringing this up; the reviewer is right. We built a siloed model built for 258 

each site and tested against that site’s validaSon set. It performs ~5 to 30% worse in 259 
classificaSon and 40-50% worse in Dice score on the segmentaSon task. As shown in 260 
Figure 2c, even the siloed model trained solely on the site with the largest cohort 261 
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performs significantly worse in segmentaSon Dice Score (~40% lower) on the validaSon 262 
set of the same site when compared to FL or CDS.  263 
 264 

• Despite being the most common solid cancer of childhood, pediatric brain tumors, are 265 
relaSvely sparse in each hospital.  The reviewer is correct to note that some sites with a 266 
large data of its own may be de-incenSvized to parScipate in FL, as long as they can build 267 
their own site-specific models that outperforms FL. But even a model built proprietarily 268 
with the largest site (ST), the siloed model fails to work well even on its own cohort (as 269 
shown by Figure 2c). In our study, we show that federated models offer CDS-like levels of 270 
performance without the need for data share.   271 
 272 

• In response to: Given the heterogeneity of data across sites, it would be expected that a 273 
model trained on one site would not be generalizable to other sites. We think that this 274 
depends on the source of heterogeneity. The models built with FL and CDS learn to 275 
capture >95% of the common knowledge across all sites about posterior fossa tumors, 276 
structural brain development across age (using the 1667 pediatric normal brains). The 277 
last ~5% we believe are due site-specific difference or out-of-distribuSon sources such as 278 
scanner hardware and imaging sooware parameters and protocols, and other site-279 
specific factors [e.g., terSary care pediatric centers may capture tumors at an earlier 280 
phase among those who are screened for geneSc risks (e.g., P53 mutaSons, NF1), 281 
whereas in some community hospitals, paSents may present at a later symptomaSc 282 
phase when the tumors are larger or more aggressive]. We believe that an FL or CDS- 283 
trained model can be further fine-tuned (if necessary) on the site before deployment to 284 
account for that last 5% of variaSon.     285 

 286 
3. The discussion could be improved by expanding on the real-world uSlity/feasibility and 287 
implementaSon of the proposed method. While the study menSons some of the benefits of 288 
more sophisScated FL techniques, a clear raSonale for their exclusion is not provided. The work 289 
could also benefit from expanded discussion about algorithm design in terms of computaSon 290 
and communicaSon across sites. The training directly uses large volumes of 3D data, 291 
necessitaSng high-memory GPUs at each site, yet the potenSal limitaSons stemming from this 292 
design choice remain unexplored. High communicaSon bandwidth and GPU resource 293 
requirements should be discussed as limitaSons to real-world applicaSon. 294 
 295 

• Thank you for the feedback. We have included real-world and pracScal challenges in the 296 
secSon including communicaSon overheads (see above under Q1). We have also 297 
included Sme of FL training (minutes) with communicaSon overhead. Furthermore, we 298 
have also included a web interacSve demo of an FL learned model that anyone can use. 299 
See the GitHub webpage where we show a demo movie as an example of an FL learned 300 
model that a non-technical clinician can use. We share a link interacSve website in the 301 
GitHub. 302 

 303 
4. There should be expansion of discussion on model design and training procedures, to support 304 
an understanding of the reproducibility of the work. For instance, the descripSon of 305 
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preprocessing is unclear, and quesSons remain regarding the selecSon process for the 64 axial 306 
slices and the normalizaSon procedure, parScularly in the context of different sites. The authors 307 
should include informaSon about the hyperparameter tuning strategies. There is ambiguity 308 
regarding the need/role of the validaSon set, as it appears to be treated as an addiSonal test 309 
set. The work recognizes the heterogeneity and imbalance of data across different sites, but 310 
there is lack of menSon of other strategies, such as data augmentaSon or weighSng, that could 311 
boost the performance of the models.  312 
 313 

• All hyperparameters are kept extremely simple. We now add these numbers in the 314 
GitHub, as well as a new figure (Figure 1b), which contains the math and the exact 315 
opSmizaSon loss that was used. We have now added in lines 337-346 (next paragraph), 316 
specific details about the preprocessing procedure, as well as the preprocessing script, 317 
which is kept extremely simple and naive to imaging sequence parameters and slice 318 
thicknesses. This model can accommodate the extremely large variaSon of different T2 319 
sequence parameters and slice thicknesses. We have also tried other methods such as 320 
data augmentaSon using syntheSc data and other advanced FL methods. However, we 321 
have found that these results were mixed and would only complicate and dilute the 322 
main novelty of our work. Future research is always welcome with the dataset provided 323 
and potenSal challenges that we are excited to organize in the future. 324 
 325 
Data Preprocessing 326 
Each site must possess the small but important knowledge to manage consistent data 327 
preprocessing, a task that, under CDS, would typically be centralized by a trusted party. 328 
To streamline preprocessing, we have minimized any complex preprocessing steps (e.g., 329 
brain registra<on to a common atlas or skull-stripping.). Preprocessing only includes: 1) 330 
normaliza<on of each 3D image to a simple 0-255 intensity range and 2) volume 331 
extrac<on of 64 congruent axial slices of 256 x 256. These preprocessing steps are 332 
executed via an automated script applied to the DICOM data across all 19 sites. The 333 
number of 64 slices was chosen such that it can handle virtually all of the varia<ons of 334 
the individual sites’ T2 sequence parameters (e.g., TSE, FSE, Propeller, etc.) with a large 335 
range of slice thicknesses 1-5 mm based on site scanner technology and protocol. 336 
Therefore, our FL system can accommodate a large range of sequence parameters and 337 
axial slices... 338 

 339 
• Finally, we have also added another secSon in lines 458-466, Be#er performance with 340 

more ac1ve FL sites, which describes an ablaSon study showing the impact of acSve FL 341 
sites on model performance.   342 
 343 

 344 
5. The paper could benefit from a figure showing the organizaSon of data, including individual 345 
sites, splibng of training/validaSon; hold out sites, etc. 346 
 347 

• Thank you! Done, we now include a new figure (Figure S1) in the Supplement.  348 
 349 
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350   
351  Reviewer #3 (Remarks to the Author):   
352   
353   
354  I co-reviewed this manuscript with one of the reviewers who provided the listed reports as part 
355  of the Nature CommunicaSons iniSaSve to facilitate training in peer review and appropriate 
356  recogniSon for co-reviewers. 
357   

• Thank you again for your Sme and the feedback! 358 
 359 
 360 
 361 
 362 
 363 
 364 
 365 
 366 
Final author comments: 367 
 368 
Thank you very much for everyone’s review. We have started the data upload process for the FL 369 
data training and tesSng under hOps://doi.org/10.25740/bf070wx6289. And will conSnually 370 
upload Sll all of the parScipaSng sites are represented. For this and other details posted in this 371 
review, we’d like to guide you to the github page for future updates.  372 

https://doi.org/10.25740/bf070wx6289


REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

All my comments have been addressed. Though authors have added some references to be 

comprehensive, still some recent ones like "proxyFL" are missing (Kalra, et al. "Decentralized federated 

learning through proxy model sharing." Nature communications 14.1 (2023): 2899.). 

 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors have addressed nearly all of our previous questions/suggestions. This has strengthened the 

manuscript. There are a couple aspects we ask the authors to address: 

 

1. The authors have justified the need for federated learning by training models on each site individually 

and showing their poorer performance compared to federated learning. Specifically, the authors “built a 

siloed model built for each site and tested against that site’s validation set. It performs ~5 to 30% worse 

in 260 classification and 40-50% worse in Dice score on the segmentation task. As shown in Figure 2c, 

even the siloed model trained solely on the site with the largest cohort 7 performs significantly worse in 

segmentation Dice Score (~40% lower) on the validation set of the same site when compared to FL or 

CDS. “ 

We believe the manuscript would be strengthened by including these results in the published work, in 

addition to inclusion of figures (such as in Figure 2c). These can be included in the supplementary 

data/figures. This would help to reflect the data heterogeneity across sites to the readership, instead of 

only showing a single siloed model trained on the largest site, 

 

2. The authors added a section titled "Future Challenges and Practical Implementation." In this section, 

an idealized scenario is presented, concluding that 1200 minutes are needed to train the federated 

learning model. While the use of real numbers is appreciated, this section could be improved as there 

are a few mistakes and unrealistic assumptions: 

o This section mentions training for 300 rounds, whereas the rest of the text uses 200 rounds. 



o The parameter data transfer calculation only considered the time for one-way transfer. In reality, each 

round requires model parameters to be sent from the hospitals to the central server and back. 

o The time required for data transfer only considered non-central server hospitals. The central server 

would need to transfer 15x the data. Considering this and the previous point, solely the data transfer in 

each round would take over 1 hour with 1MB/s internet, rather than the stated 2 minutes. 

o Synchronization challenges were not expanded upon. In practice, not all hospitals would have the 

same computation speeds or internet bandwidth. Federated learning would be bottlenecked by the 

slowest site each round. 

o Computational cost challenges were not expanded upon. The work assumed each site would train on a 

V100 GPU, which may not be commonly available at hospitals. Using 3rd party cloud services with 

capable GPUs is possible, but could introduce privacy risks. These points may be better suited for the 

limitations section rather than results. 

 

 

 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

I co-reviewed this manuscript with one of the reviewers who provided the listed reports. This is part of 

the Nature Communications initiative to facilitate training in peer review and to provide appropriate 

recognition for Early Career Researchers who co-review manuscripts. 



REVIEWER COMMENTS AND AUTHOR RESPONSES IN BULLET POINTS 
 
Reviewer #1 (Remarks to the Author): Expert in federated learning, AI, and medical image 
analysis 
 
 
REVIEWER COMMENTS Reviewer #1 (Remarks to the Author): All my comments have been 
addressed. Though authors have added some references to be comprehensive, sKll some recent 
ones like "proxyFL" are missing (Kalra, et al. "Decentralized federated learning through proxy 
model sharing." Nature communicaKons 14.1 (2023): 2899.).  
 
Thank you for your review. We have added this reference in line 497: 
Recent methods for heterogeneous FL [30] can poten8ally alleviate communica8on and compute 
overheads. 
 
 
Reviewer #2 (Remarks to the Author): The authors have addressed nearly all of our previous 
quesKons/suggesKons. This has strengthened the manuscript. There are a couple aspects we 
ask the authors to address: 1. The authors have jusKfied the need for federated learning by 
training models on each site individually and showing their poorer performance compared to 
federated learning. Specifically, the authors “built a siloed model built for each site and tested 
against that site’s validaKon set. It performs ~5 to 30% worse in 260 classificaKon and 40-50% 
worse in Dice score on the segmentaKon task. As shown in Figure 2c, even the siloed model 
trained solely on the site with the largest cohort 7 performs significantly worse in segmentaKon 
Dice Score (~40% lower) on the validaKon set of the same site when compared to FL or CDS. “  
 
We believe the manuscript would be strengthened by including these results in the published 
work, in addiKon to inclusion of figures (such as in Figure 2c). These can be included in the 
supplementary data/figures. This would help to reflect the data heterogeneity across sites to 
the readership, instead of only showing a single siloed model trained on the largest site,  
 
Thank you, we strongly agree, and have added another table in the Supplemental Figure secKon 
(Supplemental Table 1). We also added this secKon in lines 432-436: 
Supplementary Table 1 presents the classifica8on and segmenta8on results for the 16 
independently trained models, each using its respec8ve site-specific dataset. The outcomes 
suggest subpar performance across the board, aFributable to the limited size of individual 
datasets. Notably, models from sites UT and CP showed the highest segmenta8on Dice Scores, 
reaching 0.57. However, models from five sites did not converge. 
  
 
 
 
2. The authors added a secKon Ktled "Future Challenges and PracKcal ImplementaKon." In this 
secKon, an idealized scenario is presented, concluding that 1200 minutes are needed to train 



the federated learning model. While the use of real numbers is appreciated, this secKon could 
be improved as there are a few mistakes and unrealisKc assumpKons: 
o This secKon menKons training for 300 rounds, whereas the rest of the text uses 200 rounds.  
o The parameter data transfer calculaKon only considered the Kme for one-way transfer. In 
reality, each round requires model parameters to be sent from the hospitals to the central 
server and back.  
 
Thank you for the catch. The 2x factor was indeed a typo but we tried to keep everything 
somewhat on the approximate order. The 300 rounds should be 200 rounds. We have fixed this.  
  
o The Kme required for data transfer only considered non-central server hospitals. The central 
server would need to transfer 15x the data. Considering this and the previous point, solely the 
data transfer in each round would take over 1 hour with 1MB/s internet, rather than the stated 
2 minutes.  
 
Yes, the central hospital (parameter server) will be burdened by a 15-way transfer. We had 
iniKally assumed that this server’s network would accommodate for this and the transfers 
would be boilenecked by the other 15 sites’ bandwidth. But with calculaKon, you are correct. 
The server in pracKce would not necessarily be a physical point like a hospital but some cloud 
service (e.g., AWS, Azure) that has end-points in different regions (e.g., Ireland hospital would 
send parameters to the UK endpoint) and each of these cloud endpoints would transmit to a 
central endpoint. However, even with cloud end-points, the FL Kmes are sKll boilenecked by 
the slowest internet connecKon to and from one of the hospitals (1 MB/s). 
 
o SynchronizaKon challenges were not expanded upon. In pracKce, not all hospitals would have 
the same computaKon speeds or internet bandwidth. Federated learning would be 
boilenecked by the slowest site each round. 
 
 o ComputaKonal cost challenges were not expanded upon. The work assumed each site would 
train on a V100 GPU, which may not be commonly available at hospitals. Using 3rd party cloud 
services with capable GPUs is possible but could introduce privacy risks. These points may be 
beier suited for the limitaKons secKon rather than results.  
 
We appreciate the feedback. With the above comments, we have revised the secKon in lines 
480-496 as shown in purple. 
 
Communica8on and Logis8cal Challenges. In FL, every parKcipaKng hospital must regularly 
exchange model updates — specifically, the model weights aoer each FL training round. For our 
classificaKon-segmentaKon model, this equates to transmipng approximately 125 MB of model 
weights per round. This culminates in a data transfer of around 74 GB per hospital for each 
training session with 200 rounds. Training the largest dataset for 1 epoch consumes 
approximately 3-4 minutes on a V100 GPU, and the Kme to then transfer all 16 models from 
each hospital to the central parameter server (coordinaKng hospital) in Figure 1 (a) is roughly 7 
minutes at 1 MB/s internet upload rate, assuming that the central server’s download rate is 



much faster than 1 MB/s. This equates to about 10 minutes per round (1 epoch per round) and 
2000 minutes to ship one trained model. And although CDS only requires a one-Kme collecKon 
of 200-1000 GB of DICOMs, FL offers benefits by removing the need for data use agreements 
and the need for deidenKficaKon, which can take a long Kme to establish and verify. Finally, FL 
provides advantages such as conKnuous quality control and oversight from each of the sites’ 
technical model builders. The provided figures are rough esKmates; actual performance will 
vary as hospitals differ in compuKng power, communicaKon standards, and data transfer 
speeds. Asynchronous Federated Learning (FL) is parKcularly beneficial in environments where 
hospitals exhibit diversity not just in data but also in computaKonal and networking resources. 
 
 
Reviewer #3 (Remarks to the Author): I co-reviewed this manuscript with one of the reviewers 
who provided the listed reports. This is part of the Nature CommunicaKons iniKaKve to facilitate 
training in peer review and to provide appropriate recogniKon for Early Career Researchers who 
co-review manuscripts. 



REVIEWERS' COMMENTS 

 

Reviewer #2 (Remarks to the Author): 

 

In the revised manuscript, the authors have added a supplemental table showing that individual siloed 

training can not rival FL in performance. The authors have also corrected the typographical errors and 

provided justifications for the new time estimates for model training. As such, the authors have 

adequately addressed the previous comments. 

 

 

Reviewer #3 (Remarks to the Author): 

 

I co-reviewed this manuscript with one of the reviewers who provided the listed reports. This is part of 

the Nature Communications initiative to facilitate training in peer review and to provide appropriate 

recognition for Early Career Researchers who co-review manuscripts. 

 

 

 

 



  
 
Thank you everyone for the reviews!  
 
The revised manuscript contains changes made based on the author checklist. Any changes 
are made in green this time (as opposed to blue and red previous revisions). 
 
 
REVIEWERS' COMMENTS Reviewer #2 (Remarks to the Author): In the revised manuscript, the 
authors have added a supplemental table showing that individual siloed training can not rival FL 
in performance. The authors have also corrected the typographical errors and provided 
justifications for the new time estimates for model training. As such, the authors have 
adequately addressed the previous comments.  
 
Thank you for your review. 
 
Reviewer #3 (Remarks to the Author): I co-reviewed this manuscript with one of the reviewers 
who provided the listed reports. This is part of the Nature Communications initiative to facilitate 
training in peer review and to provide appropriate recognition for Early Career Researchers who 
co-review manuscripts. 
 
Thank you for your review. 
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