
Supplementary method  

Estimate genetic interactions with a Bayesian model – ParaBAGEL 

ParaBAGEL is a supervised Bayesian model developed to estimate genetic interactions (GI) by 

utilizing delta log fold change (dLFC) metrics. is an extension of the BAGEL algorithm1,2, 

updated to handle dual knockout multiplex CRISPR perturbation screens. As with BAGEL, the 

method employs positive and negative training sets. In this case, we employed the 13 paralog 

synthetic lethal (SL) gold standards from Esmaeili Anvar et al3 as positive controls and 

empirically derived negative controls from the dLFC distribution. ParaBAGEL  

Initial quality control procedures for gene-level LFC and dLFC were identical to those described 

in Methods. Positive controls (GI) were defined based on the 13-paralog synthetic lethal gold 

standards from Esmaeili Anvar et al. while negative controls (noGI) were derived from the null 

model described in Methods (Figure A).  

The dLFC distributions of positive (GI) and negative (noGI) control gene pairs served as 

reference standards to label the deviation between having GI or not. Kernel density estimation 

was employed to model these distributions in the training sets. For each test pair, we calculated 

the likelihood that the observed dLFC originated from either the GI (red curve) or noGI (blue 

curve) training distributions (Figure A). Using a Bayesian supervised learning approach, we 

calculated a Bayes Factor (BF) score for each gene pair: 

𝐵𝐵𝐵𝐵 𝑓𝑓𝑓𝑓𝑓𝑓 𝐺𝐺𝐺𝐺 =  
Pr (𝐷𝐷|𝑘𝑘𝐺𝐺𝐺𝐺)
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=
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where D represents the observed dLFC for a given gene pair and k denotes the dLFC 

distribution in the training set. A bootstrap resampling approach was used to randomly select 

gene pairs as the training sets. Considering the small sample size of the GI (n=13) control 

groups, we performed under-sampling for the no-GI group to balance the sample sizes. During 

each iteration, the k distributions were computed, and a BF for GI was calculated for each gene 

pair in the test set. The final score is the mean BF across all iterations.   

The separation of GI and noGI distributions caused instability in the log ratio calculation (Figure 

B, green line). To mitigate this, we introduced overlapped normal distributions with smaller 

weights as pseudo-distributions on both the GI and noGI reference distributions. This 

adjustment aimed to enlarge the stable region for Bayes Factor calculation, optimizing four 

parameters: weights and standard deviations of the pseudo-distributions. The means of the 



pseudo-distributions were aligned with those of the GI and noGI distributions. Despite this, 

excessive reliance on pseudo-distributions compromised model performance. 

Given the clear separation between GI and noGI distributions, simpler methods can effectively 

identify synthetic lethal pairs. Consequently, the Bayesian approach with pseudo-distributions 

was deemed unsuitable for this data set. 
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(A) The delta log fold change (dLFC) distributions from a single cell line. The red curve 

represents the kernel density plot of the 13-reference paralog synthetic lethal pairs (positive 

control), while the blue curve shows the kernel density plot of the null model (negative control). 

The dLFC values for all gene pairs are shown in black for reference. (B) The log likelihood 

functions for the red and blue curves from figure A are displayed on the left Y-axis. ParaBAGEL 

calculates the log likelihood ratio (green, right Y-axis) of these two curves. The green curve 

indicates that the stable region of the log ratio is narrow. 
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