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Supplementary Information 

 

Sensitive and modular amplicon sequencing of Plasmodium falciparum diversity and 

resistance for research and public health    
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Supplementary Figure 1. Schematic of full protocol, which is based on Paragon Genomic’s 

CleanPlex Amplicon Sequencing1. Suggested quality control (QC) steps by capillary 

electrophoresis are indicated. A full protocol, including didactic materials, can be found online2. 
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Supplementary Figure 2. Diversity module pool D1 includes more highly heterozygous targets 

than other published highly multiplexed panels. 

A-B. SpotMalaria and AmpliSeq’s use SNPs, not the full microhaplotypes. In its original 

publication, AmpliSeq used a 28 SNP barcode focused on Peruvian genetic diversity. Results 

for those 28 SNPs are shown in the first row. Microhaplotypes reconstructed from publicly 

available WGS data for the amplicons that contained the SNP barcodes in each of those panels 

(SpotMalaria* and AmpliSeq*) were used to calculate heterozygosity within Africa (A) and 

perform principal coordinate analysis (B).  
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Supplementary Figure 3. Diversity module pool D1 includes more highly heterozygous targets 

than other published highly multiplexed panels across regions. Heterozygosity distributions for 

all panels in different regions. *SpotMalaria and AmpliSeq are shown both as SNP barcodes 

(intended and current use) and potential microhaplotypes (lighter color)  
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Supplementary Figure 4  

A: Mean read count (N=2) for libraries prepared with either pool D1 or R1.1 show lower yields 

for R1.1, which was noted to result in more primer dimers.  

B: Mean read count (N=2) for libraries prepared with either pools D1, R1.1 and R2, or D1, R1.2 

(a subset of R1.1) and R2, show higher yields for libraries prepared with mixes including R1.2. 

Increasing multiplexed PCR cycles from 15 to 20 only increased yield for mixes containing R1.1 

C: The majority of reads outputted by the sequencer (input reads) can be used for analysis as 

they pass all filters (for primer dimers, quality and alignment).  

D: The number of targets with at least 100 (left) or 10 (right) reads passing all filters increases 

with the total number of reads outputted by the sequence (input reads). For samples with at 

least 100,000 reads, the number of targets with good coverage approximate the maximum 

number of targets in the sample (239, black horizontal line). Samples shown in C and D 

correspond to controls processed in different laboratories and sequenced in different runs, and 

samples with large (>10 fold) differences in coverage in the 2 reactions (likely due to pipetting 
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error) were excluded. Note that many samples include controls with deletions in hrp2/3 and 

thereby are not expected to reach 100% coverage. Additionally, longer amplicons and certain 

targets generally have lower coverage (Supplementary Figure 6). 
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Supplementary Figure 5 

Reproducibility for libraries prepared from the same DBS controls within the same laboratory or 
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across laboratories. A subset of technical replicates prepared at UCSF (A) or prepared in at 

least 2 different laboratories (B) are shown. Occasional systematic differences between 

coverage of pools likely represent pipetting error. Log10(reads) for each amplicon are shown in 

both axes. The DBS control strains are indicated with their composition (e.g. W2;D10 2;98 is 2% 

W2, 98% D10) and parasite density.  
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Supplementary Figure 6. Depth of coverage is negatively correlated with amplicon 

length.  

A. Read counts for all targets in libraries made from mixed DBS controls with varying amplicon 

length amplification bias. The DBS control strains are indicated with its composition (e.g. 

W2;D10 2;98 is 2% W2, 98% D10) and parasitemia. Note that libraries were prepared at the 

same time with 15 multiplex PCR cycles and the same reagent master mixes.   

B. Distribution of slopes of the relationship between log10(read counts) and amplicon length in 

DBS controls libraries made in different laboratories and using different conditions shows they 

are predominantly negative and variable.   
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Supplementary Figure 7 

A. Histogram depicting the distribution of observed alleles at varying WSAF (within locus and 

sample), with true positives (expected based on truth built from monoclonal controls) and false 

positives (not expected alleles) distinguished by different colors. The data was generated in five 

different laboratories from mixed DBS controls with known composition at varying strain 

proportions and parasite densities. The bottom panel is an inset of the top panel to better 

visualize the false positives. Based on these results, we implemented a filtering threshold of 

0.75% within-sample allele frequency (WSAF) as it is approximately the point in which observed 

alleles become predominantly false. 

B. Distribution of false positive allele counts per sample (mean 4.4, median 3 of a total of 161 

targets). Alleles with ≤ 0.75% WSAF were excluded. 
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Supplementary Figure 8. Observed heterozygosity in samples from Mozambique is highly 

correlated with the expected heterozygosity. Expected heterozygosity was calculated from 

publicly available WGS data while the observed heterozygosity was obtained from a study that 

used MAD4HatTeR to generate allele data. Alleles used to generate the data in this figure are 

not masked in homopolymers and tandem repeats, resulting in higher heterozygosity values 

than the ones in Figure 4G.     
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Supplementary Figure 9 

A. A generalized additive model is used to correct for biases in sequencing depth due to 

amplicon length and differences in primer pools. In addition to that, the raw reads for targets of 

interest (shown in this figure) are corrected by amplicon-specific bias using fold changes 

obtained from controls known not to have duplications or deletions processed in the same 

laboratory within the same timeframe. The corresponding corrected data is shown in Figure 5A. 

The data corresponds to technical replicates of Dd2 (a strain with hrp2 deletion and mdr1 

duplication) with similar total reads were used to estimate fold changes in targets in and around 

hrp2, hrp3, mdr1 and plasmepsin2/3 (pm). A generalized additive model (black line) was applied 

to raw reads. Note that there are two groups of hrp2 targets, those that are deleted in field 

samples (hrp2)3 and those also deleted in Dd2 (hrp2Dd2). Mean reads are shown (N = 3); error 

bars denote standard deviation.  

B. Sample batches show different biases in amplification that are not explained by primer pool 

differences or amplicon length biases. The residuals for each target using a generalized additive 

model accounting for primer pools and amplicon length are shown for the samples used in 

Figure 5, grouped by sample preparation batch (samples prepared in the same laboratory within 

a time frame). CNV targets of interest are also grouped separately. We note that some sample 

batches have very different amplification bias profiles (e.g. UCSF 2), possibly due to differences 

in reagent manufacturing lots. Despite those differences, use of appropriate controls allows to 

detect fold changes in targets of interest.   

C. Estimated fold change for hrp2 targets only deleted in Dd2 (hrp2Dd2), as well as data 

including samples with hrp3 duplications (containing strain FCR3), in laboratory controls 

containing 1 or more strains at known proportions, or in field samples from Ethiopia3 with known 

CNV genotype. Fold changes are obtained using the targets highlighted in A. Linear regression 

and R2 values were calculated with data with parasitemia > 10 parasites/μL.  

D. Distribution of fold changes in controls known not to have a duplication or deletion show that 

the estimations are noisier in samples of lower parasitemia and suggest that the method can be 

used for targets for which we do not have enough validation data (i.e. plasmepsin2/3 

duplications, pm) .  
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Supplementary Figure 10. Comparison of data generated by molecular inversion probes 

(MIPs) and MAD4HatTeR for field samples from Ethiopia previously shown to have hrp2/3 

deletions3. MIP data was generated in the original study, while MAD4HatTeR data was 

generated from the same DNA extracts. Reads were normalized to the total number of reads in 

the chromosome (MIPs) or the primer pool (MAD4HatTeR). Samples are grouped according to 

the breakpoint profiles (P1-4) as described by Feleke et al. Probe and amplicon positions are 

indicated by their start points. MAD4HatTeR targets are indicated by a dot, with colors indicating 

the primer pool they belong to. Targets used in the generalized additive model to estimate fold 

changes are denoted by a dot in dark red or purple at the bottom of the plot. Targets that were 

excluded from the analysis due to variability are shown in gray. To estimate hrp2 fold changes 

using MAD4HatTeR data the model uses the maximum estimated fold change for either the 

target at the end of the hrp2 gene (starting at position 1375205) or the two downstream targets 

combined. For hrp3, the estimated fold change is calculated on all three included targets. Note 

that chromosome positions are not to scale.  
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Supplementary Figure 11. Bioinformatic pipeline benchmarking and optimization 

A. Homopolymer and tandem repeat masking increases precision but also removes real 

biological variation. Heterozygosity was calculated from publicly available WGS data for 

samples from Mozambique using raw alleles or alleles masked for homopolymers and tandem 

repeats. 14 targets showed a sizable decrease in heterozygosity.  

B. DADA2, the denoising algorithm used in the bioinformatic pipeline, can be tuned to optimize 

sensitivity while minimizing false positives. The median proportion of expected alleles observed 

across samples and the median false positive count per sample was calculated for 

combinations of two DADA2 parameters. Decreasing OMEGA_A increases stringency, while 

using pseudo pooling allows for the retrieval of low abundance alleles observed in other 

samples in the sequencing run. Furthermore, post-DADA2 filtering of alleles based on their 

WSAF (using a 0.75% threshold, Supplementary Figure 7) decreases the median false 

positives. Chosen parameter settings used in this study, which maximize recall of expected 

alleles and minimize false positives, are OMEGA_A=1e-120, pseudo pooling and 0.75% 

filtering. 

C. DADA2 parameters mostly affect the recovery of low abundance alleles, and the effect of 

OMEGA_A on sensitivity is minimized by pseudo pooling.    
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Supplementary text 

Library preparation and sequencing 

 

The procedures are described according to the workflows at UCSF unless otherwise noted. 

Minor variations (e.g. equipment) were implemented at other institutions. 

 

To extract DNA, we used the Chelex-Tween method as previously described4. Briefly, we 

punched 6 mm discs from DBS either into 1.5 mL microcentrifuge tubes or 2 mL round bottom 

96 deep-well plates. We incubated the discs in 0.05% Tween 20 (Sigma Aldrich P9416) in 1X 

PBS (Corning 21-040-CV) overnight at 4 °C with constant shaking. We discarded the 

supernatant, washed the discs with chilled 1X PBS for at least 30 minutes at 4 °C with 

continuous shaking, and added 150 uL 10% Chelex 100 (Bio-Rad 1422822) in water. After 

incubating at 95 °C for 10 minutes, we centrifuged the samples for 5 min at 20,000 rcf and 

transferred the supernatant to 0.5 mL sample storage tubes. We stored extracted DNA at -20 

°C. 

 

To estimate P. falciparum parasite density, we ran an ultrasensitive qPCR varATS assay5. We 

made qPCR reactions with 1X Taqman Gene Expression, 0.8 µM forward 

(cccatacacaaccaaytgga) and reverse (ttcgcacatatctctatgtctatct) primers, and 0.4 µM varATS 

probe (6-FAM-trttccataaatggt-NFQ-MGB). We added 5 µL of extracted DNA for a total reaction 

volume of 25 µL. We ran qPCR reactions using the following settings: Pre-incubation: 2 minutes 

at 50°C; Initial Denaturation: 10 minutes at 95°C; Amplification: Denaturation: 15 seconds at 

95°C, Annealing and Elongation: 1 minute at 55°C. We ran each reaction in the QuantStudio 3 

(ThermoFischer A28567) for 60 reaction cycles and read fluorescence at the end of each cycle. 

In every plate, we ran standards at the following parasite concentrations in duplicates: 10,000, 

1,000, 100, 10, 1, 0.1 and 0.05 parasites/μL. We estimated parasite densities using linear 

regression on standards using the QuantStudio Design and Analysis Software. Some 

participating laboratories (ISGlobal, CISM) performed an 18S qPCR6 to estimate parasite 

density.. 

 

We ordered primers for multiplexed amplification already pooled at 5X concentration and used 

the CleanPlex Targeted Library Kit for 2-Pools Panels (Paragon Genomics). We mixed 

compatible modules with equivolume for multiplexed PCR.  
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We made multiplexed PCR reactions with 1X mPCR master mix and varied primer 

concentrations (0.125 - 1X). We used 6 µL of input DNA regardless of parasitemia, and the total 

reaction volume was 10 µL. We ran mPCR reactions using the following settings: Initial 

denaturation: 10 min at 95 °C; Amplification: Denaturation: 15 s at 98 °C with 3°C/s ramping; 

Annealing and elongation: 5 min at 50°C with 2°C/s ramping. We repeated the Amplification 

steps for varying cycles (10-20). We combined mPCR products for the same sample using two 

incompatible primer pools and added 4 µL STOP buffer for a total volume of 24 µL. 

Alternatively, we added 10 µL TE buffer and 2 µL Stop Buffer for single-tube reactions. We 

purified amplicons (225-300 bp) and removed primer dimers using 1.3X CleanMag Magnetic 

Beads solution (Paragon Genomics). After incubating for 5 mins at room temperature, we 

washed magnetic beads twice with 70% ethanol in water and eluted DNA in 10 µL TE buffer 

after ethanol evaporation. We degraded non-specific DNA products with Digestion Reagent for 

10 minutes at 37 °C and purified amplicons with 1.3X CleanMag Magnetic Bead as above after 

stopping the reaction with 2 µL Stop Buffer. We further amplified eluted DNA with 1X 2nd PCR 

Master Mix and 0.5 µM indexing primers. Indexing primers were either custom-made 

(comprising the i7 or i5 sequences and TruSeq adapters flanking 12 bp indexes) or CleanPlex 

Plated Unique Dual-Indexed PCR Primers for Illumina (Paragon Genomics). We ran indexing 

PCR reactions using the following settings: Initial denaturation: 10 min at 95 °C; Amplification: 

Denaturation: 15 s at 98 °C with 3°C/s ramping; Annealing and elongation: 1:15 min:s at 50°C 

with 2°C/s ramping. We repeated the Amplification steps for 15 cycles. 

After initial optimization, we identified the following optimal conditions for amplification: (1) 15 

cycles and 0.25 X primer concentration for mPCR for parasite densities equivalent to ≥ 100 

parasites/μL in DBS; (2) 20 cycles and 0.125 X primer concentration for mPCR for <100 

parasites/μL. We note that while 20 cycles do not significantly increase library yields, anecdotal 

information across laboratories indicates that 20 cycles with lower primer concentrations 

increases the success rate of amplification from samples with low parasite densities.  

 

After amplification, we pooled samples accounting for expected differences in yield. We pooled 

DBS-control samples based on starting parasitemia with the following schema: 3 µL for 10,000 

parasites/μL;  6 µL for 1,000; 12 µL for 100; 20 µL for 10; and 30 µL for 1. We pooled up to 96 

samples with 10 µL for each sample where the initial parasitemia was unknown. We purified 

each pool to remove primer dimers further using 1X CleanMag Magnetic Bead Solution as 

above and eluted in 40 µL TE buffer. If necessary, to completely remove primer dimers, we gel-

purified each pool in a 2.5% agarose gel with SyberSafe 1X (S33102) alongside a 100 bp 
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ladder (GeneRuler SM0242). We ran the gel for 60 minutes at a constant voltage set to 140 V. 

We excised the 400 bp band and purified DNA using the NEB Monarch Gel Extraction Kit (New 

England Biolabs, T1020L). We performed a second gel purification if the sample had more than 

5% integrated area in the 150-250 bp region.  

 

We evaluated library preparation performance with capillary electrophoresis using an Agilent 

4150 TapeStation System using D1000 Reagents (5067-5583) and ScreenTape (5067-5582). 

We recommend using these to evaluate library yield. 

 

 We ran pools with 5 or 10% PhiX and observed no large differences with either concentration. 

 

A bioinformatic pipeline for MAD4HatTeR 

Inputs to the pipeline are (a) already demultiplexed sample-based fastq files; (b) a file containing 

information of each amplicon, including primer sequences and genomic locations; (c) a list of 

resistance markers; (d) a reference genome. The pipeline consists of multiple processes: 

(1) CREATE_REFERENCE_SEQUENCES: Reference sequences are used to identify 

polymorphisms in the amplicon data and generate pseudo-CIGAR strings. This module 

creates reference sequences for each amplicon using a user-provided genome and 

coordinates supplied in the amplicon information table and stores reference sequences 

in a fasta file. This module is skipped if the user provides reference sequences for each 

amplicon. 

(2) MASK_SEQUENCES: (optional) Regions in the reference sequences that contain short 

tandem repeats, identified using Tandem repeats finder7, or homopolymers longer than a 

user-determined threshold (default is 5), are masked. These low-complexity regions are 

known error-prone sites in PCR and Illumina sequencing8. Masked sequences have 

each nucleotide base replaced with an ‘N’ character.  

(3) CUTADAPT: Fastq files are filtered based on read quality, and primer dimers are 

removed based on the presence of Illumina adapter sequences in the read using 

cutadapt. Here, we use the following parameters: `-e 0` - This sets the allowed number 

of mismatched bases to zero when identifying adapters in the sequence.; ’--no-indels` - 

This prevents adapters from being identified if there are any insertions or indels in the 

sequence; `--minimum-length` - This is set to 100, and removes reads that are shorter 

than this threshold; `--untrimmed-output` / `--untrimmed-paired-output` - Any forward 
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reads that do not contain the Illumina adapter in their sequence are written to file. 

Adapter dimers are also captured for quality control. 

These reads are further demultiplexed to generate individual fastq files for each 

amplicon in each sample using a second cutadapt step to identify primer sequences 

flanking the reads. We use the same parameters above to identify primer sequences 

(only exact matches anchored to the beginning of the read are allowed), and filter reads 

that are less than 100 bases after primer removal. Error filtering is conducted based on 

sequencer: if the data is generated with a MiSeq, `--trim-n -q 10` is set to remove 

ambiguous base calls and remove low-quality bases (less than 10) on the 3’ end of the 

read. If the data is generated with a NextSeq, '--nextseq-trim=20' is used to remove low-

quality bases (less than 20) and high-quality G bases found on the 3’ end of the read. 

(4) QUALITY_REPORT: Per-sample and per-amplicon summaries are made based on 

three numbers: reads inputted, reads that passed filters in the first cutadapt step, and 

reads that were demultiplexed using primer sequences. 

(5) DADA2: DADA2’s filterAndTrim, learnErrors, dada, mergePairs, and 

removeBimeraDenovo functions are used to filter fastqs demultiplexed by amplicon and 

sample, parameterize an error model based on read quality, infer ‘true’ variants 

(amplicon sequence variants, ASV) and remove chimeras in each fastq file. During 

filtration, we remove reads that have more than at least two expected errors (MAXEE=2) 

to generate consistent error models between dataset runs. Forward and reverse reads 

with a PHRED quality score of less than 5 are also truncated (trunqQ=5), and all reads 

have their leftmost base trimmed (trimLeft = 1). All reads less than 75 bases (after 

truncation) are filtered out, and the rest of the filtration parameters are set to the 

package defaults. To train the error model, samples are randomly selected until the 

default minimum number of bases requirement is met (nbases=1e8), and all other 

parameters use the package defaults. Finally, the allele inference algorithm uses custom 

`OMEGA_A=1e-120` and `POOL=pseudo` settings to identify real biological sequences 

from the dataset and was run in SELF_CONSIST mode to maintain error model 

estimation after each sample composition inference step.  

Merging of clustered forward and reverse reads is done with custom code that identifies 

targets without a minimum overlap and uses DADA2’s mergePairs function. Targets with 

an overlap of at least 10 base pairs are merged; reads are concatenated otherwise.   

(6) DADA2_POSTPROCESSING: DADA2 ASV data is passed onto custom code to 

rearrange the data and filter out ASVs by alignment to reference sequences using 
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Needleman-Wunsh global alignments with the Biostrings package from Bioconductor. 

Alignment scores are calculated for each comparison and the best alignment is kept, 

penalizing mismatches (-1) and gaps (openings = -8, extension = -5).  A default 

alignment score of 60 is used to filter out particularly poor alignments caused by off-

target sequences and can be adjusted by the user as needed. Optionally, homopolymers 

and tandem repeats can be masked to reduce spurious output from sequencing errors. 

Masked sequences can be provided by the user, or can be created using Tandem 

repeats finder7 as part of the pipeline, which will identify short tandem repeats using 

Smith-Waterman local alignments and is controllable by user settings (defaults: 

period_size = 3, alignment_score = 25). Homopolymers can also be masked depending 

on the set user threshold (default: homopolymer_threshold = 5), and will mask leading 

and trailing bases to hide substitution errors caused by phasing. While masking is 

optional, benchmarking suggests it can improve precision and sensitivity results. To 

store alignment and masking information, we used a pseudoCIGAR representation of 

the aligned ASVs to the masked references. This pseudoCIGAR indicates: 

(a) Masked regions: the start of the masked region followed by its length (α+βN, 

where α is the start position and β is the length) 

(b) Substitutions: the substitution position and the base it’s substituted to (αX, where 

α is the start position and X is the substituting base) 

(c) Insertions: the start of the insertion and the sequence inserted (αI=X`, where α is 

the start position, I indicates an insertion, and X` is the base or bases inserted) 

(d) Deletions: the start of the deletion and the sequence deleted (αD=X`, where α is 

the start position, D indicates a deletion, and X` is the base or bases deleted) 

(e) Perfect match. Denoted by the period symbol (.). 

 

Bioinformatic pipeline benchmarking 

 

We benchmarked the bioinformatic pipeline to identify optimal parameters for sensitivity and 

precision using data generated from DBSs containing combinations of 9 cultured strains (FCR3, 

V1S, W2, U659, D10, D6, HB3, Dd2, 3D7). To build a set of expected (true) alleles 

(Supplementary Tables 9 and 10), we used at least 1 monoclonal sample for each strain, using 

the pipeline with restrictive DADA2 parameters (OMEGA_A=10-120 and pool=false). After filtering 

out pseudoCIGARs with < 10 reads, the true allele for each strain at each locus was identified 



 

22 

as the major (>90%) pseudo cigar at that locus.  

 

DADA2 parameters OMEGA_A and pooling can have a large impact on both sensitivity and 

precision. OMEGA_A sets the threshold for DADA2 to classify an entity as abundant enough to 

form its own ASV. Setting this threshold too conservatively can reduce the number of false 

positives, but it also decreases sensitivity, potentially overlooking rare variants. On the other 

hand, sample pooling strategies (none, pseudo-pooling, or pooling) can help inform the 

inference of ASVs in each sample with the ASVs observed in others. We discarded true pooling 

as it is highly computationally intensive. When pseudo pooling is enabled, DADA2 performs a 

second round of inference, using ASVs identified in the first round across all samples within the 

run as a prior. This iterative approach can enhance the sensitivity of ASV detection for minor 

alleles that are common within a run (and ultimately can be defined for a population) but it can 

also lead to the retrieval of spurious sequences or, more importantly, low-level contaminants. In 

addition to these DADA2 parameters, we built a masking algorithm into the pipeline to identify 

tandem repeats and homopolymers and ignore any variation observed within them. This 

strategy removes true biological variation (14 targets showed a > 0.1 drop in heterozygosity 

when masked, Supplementary Figure 11A). Nevertheless, it allows us to discard false positives 

in hotspots; we observed a drop in false positives per sample from 28 to 21. Further 

characterization of real biological variation and sequencing and PCR artifacts, will be needed to 

fine-tune masking parameters, including masking regions ad hoc. The pipeline also reports 

unmasked ASVs to give the users the option to use either. We proceeded with masking for the 

rest of the analysis.  

 

To fine-tune the balance between stringency and rare variant recovery afforded by DADA2 we 

processed sequencing runs with combinations of OMEGA_A (10-40,10-60,10-120) and pooling 

methods (pseudo, false). To evaluate its impact, we estimated precision and sensitivity using 

targets in the diversity module D1 genotyped in 158 controls (72 unique combinations of strains 

at different proportions) sequenced across 12 sequencing runs in the 5 participating sites. Most 

runs included field samples prepared with MAD4HatTeR that are not part of this study which 

could be sources of contamination and lead to false positives.  Sensitivity was defined as the 

median(TP/(TP+FN)) across all loci in a sample; the median sensitivity across samples was 

then used to evaluate the effect of different parameters. Precision was evaluated with the 

median number of false positives per sample. The truth generated from the monoclonal samples 

was used to classify pseudoCIGARs returned by the pipeline into true or false positives. False 



 

23 

negatives were identified if the true pseudoCIGAR was not observed, irrespective of the 

presence of other true or false positive pseudoCIGARs in that locus and sample. We noticed 

that irrespective of parameters, a large amount of very low abundance false positives were 

retrieved, most of which were not expected as the minimum minor WSAF in the set was 1%. 

Thus, we also imposed different within-sample allele relative cutoffs to filter out alleles. A WSAF 

of 0.75% minimized false positives while maintaining false negatives low (Supplementary Figure 

11B). More restrictive OMEGA_A values decreased sensitivity, but this effect was counteracted 

by pseudo-pooling; in the presence of pseudo-pooling, OMEGA_A had little to no effect on 

sensitivity, while it still improved precision (Supplementary Figure 11B). Pseudo-pooling 

improved the recall of alleles expected below 40%, leading to an overall improvement in 

sensitivity, while marginally increasing the number of false positives (Supplementary Figure 

11C). 

 

We note that the interplay between these parameters and the experimental processes can lead 

to biased results. For example, the use of pseudo-pooling can disproportionately increase the 

retrieval of contaminants because inference is informed by the presence of ASVs in other 

samples within the same run. Indeed, the increase of false positives was more marked in 

samples that already had higher false positive rates, suggesting that these are generally 

contaminated at low levels. Using absolute and relative abundance filters minimizes this effect. 

 

Copy Number Variation 

 

We used the following laboratory strains to benchmark CNV detection using MAD4HatTeR data: 

hrp2 deletions in Dd2 and D10, mdr1 duplications in Dd2 and FCR3, hrp3 deletion in HB3, and 

hrp3 duplication in FCR39. We also used a set of field samples previously shown to have 

deletions in and around hrp2 and hrp3, including multiple breakpoints3. For sensitivity analysis 

using field samples, we estimated COI using moire10 and excluded polyclonal samples due to 

the uncertainty in their true genotypes. Two field samples were excluded from the analysis due 

to discordance in breakpoint classification, possibly due to sample mislabeling and sequencing 

depth, respectively. 

We estimated read depth fold changes from data for each gene of interest (hrp2, hrp3 and 

mdr1). We did not have sufficient data to validate CNVs in plasmepsin 2 and 3. We excluded 

targets with high variability in depth across samples (N = 220, Supplementary Table 6). Only 

samples with at least 180/220 targets with > 10 reads each, and with < 100-fold difference in 
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depth between reactions were used. Filters left the following number of targets for each gene: 6 

for hrp2, 3 for hrp3, and 5 for mdr1. Samples with deletions around hrp2 can be clustered based 

on their breakpoint3 (Supplementary Figure 10). One target (Pf3D7_08_v3-1375205-1375450-2) 

used in the analysis allows the detection of deletions in hrp2, while 2 other targets can detect 

deletions downstream of hrp2. That downstream deletion is observed in all hrp2 deletions3. To 

increase specificity and sensitivity and ensure true deletions in the hrp2 gene were detected, we 

used the maximum fold change observed for either Pf3D7_08_v3-1375205-1375450-2 or the 

downstream targets. The other three hrp2 targets are in an upstream region deleted only in Dd2 

and they are grouped independently. 

 

Fold changes were estimated using a generalized additive model on reads (dependent variable) 

per target and sample. The model incorporated a smooth spline function of amplicon length 

(due to the correlation between depth and length, Figure 5A) with basis dimension k set to 4, 

and a categorical variable for each primer pool and linear terms for predictors that identify the 

targets corresponding to each gene of interest (hrp2, hrp2 Dd2 targets, hrp3, and mdr1). Biases 

in amplification that were not explained by length or primer pools varied across sample 

preparation batches. Thus, we first calculated the median residuals for the targets in each gene 

in controls within a batch (defined as data generated in the same laboratory within a time frame 

that did not lead to stark changes in biases within the controls) and corrected the reads for 

those targets in each of the queried samples. Controls were monoclonal 3D7 where available, 

or other strains known to lack CNV in the assayed genes. For one batch of samples a mixed 

control with 98% non-CNV was used as a 100% non-CNV control was not available. Corrected 

reads in queried samples were then applied to the model as explained above and the coefficient 

for each group of targets was reported as a proxy for the gene depth fold change.  
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