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Supplemental Figures: 

 
Figure S1. Scoring of all team submissions based on two measures of in vivo enhancer activity.  
Submissions are grouped by team and approach. The heatmaps visualize the epifluorescence and SSv4 
normalized benchmark metrics for each submission per subclass. Higher benchmark metric values 
represent agreement with the validated enhancer collection. 
 

 
Figure S2. Illustration of biological priors, methods and DNA sequence models 
Illustration of several genomic features and computational methods used by top-performing teams. 
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Figure S3. ATAC-seq signal for peaks called or missed by teams.  
Density plots of ATAC-seq signal for enhancers identified by at least one team or missed by all teams. 
 
 

 
Figure S4. Rates of functional enhancer identification vary by cell type and submission.  
Counts of On-Target enhancers identified for (A) excitatory and (B) inhibitory neuronal types and (C) non-
neuronal types as a function of the number of validated enhancers for each type. Note that for some cell 
types (e.g. L5 IT), only some teams submitted any On-Target enhancer. 
 



3 

 
Figure S5. Summary of the highest ranked enhancers across submissions.  
Enhancers were grouped by in vivo validated activity (e.g. On-Target), and point size indicates the number 
of enhancers that each submission scored the highest (i.e. lowest rank) compared to the other 
submissions. The color corresponds to the median rank of the enhancers included in each point. Note that 
better performing teams had larger, lighter points in the On-Target category (i.e., more enhancers that 
were scored higher) and smaller, darker points in the Mixed-Target, Off-Target, and No-Labeling 
categories (i.e., fewer enhancers that were scored lower). 
 
 

 
Figure S6. Comparison of enhancer rankings across submissions, cell types, and in vivo labeling results.  
Median ranks of enhancers grouped by submission, cell type, and specificity. Rankings were labeled “high 
performance” if the median rank of On-Target enhancers was lower than the rankings of Mixed-Target 
and Off-Target enhancers. If no On-Target enhancer rankings were submitted, then the performance was 
labeled “NA”. 
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Figure S7. Pou3f1 enrichment in CREsted model for AiE0463m. 
The nucleotide contribution score track for enhancer AiE0463m for the L5 ET class of the Aerts CREsted 
model. Two Pou3f1 motifs were identified around position 420 and 485. 
 
 
 

 
Figure S8. DNA sequence conservation of screened enhancers grouped by cell type labeling results.  
Comparison between On-Target and other enhancer categories. *** P < 0.0001, Wilcoxon rank-sum test 
two-sided, unpaired, Bonferroni-corrected P-values. 
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Figure S9. Variable correlation of genomic features with ATAC-seq specificity.  
H3K27ac specificity, ABC score, and open chromatin conservation between mouse and human compared 
to ATAC-seq specificity for all screened enhancers. Note that the candidate enhancers with the highest 
conservation of open chromatin (upper left quadrant of the third plot) were located at promoters and 
lacked cell type-specific activity. 
 
 
 

 
Figure S10. Genomic features compared across high- and low-performance enhancers.  
Enhancer sequence features, species conservation and published bulk ChIP-seq data (ENCODE dataset 
ENCFF203KID) were used to train supervised random forest models to predict in vivo enhancer activity 
based on primary scoring data. Models were developed and optimized using 10-fold cross-validation in 
scikit-learn. Models were then tested using a held-out test set (70% training, 30% testing). Violin plots 
were generated for all features grouped by enhancer activity. * P < 0.05, ** P < 0.01, *** P < 0.001, **** 
P < 0.0001, ANOVA and Tukey post hoc tests, Bonferroni-corrected P-values. 
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Figure S11. Performance comparison of several models predicting in vivo enhancer activity. 
Area under the receiver operator curve to assess performance of enhancer ranking methods using the 
rescored enhancer activities. 
 

 
Figure S12. Comparisons of DNA sequence model scores for strong and weak enhancers.  
Boxplots of CREsted scores for candidate enhancers grouped by in vivo validated cell type target and 
strength of activity. Median +/- inter-quartile interval, outliers are points.  
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Figure S13. CREsted model is better at identifying enhancers lacking in vivo activity.  
The negative predictive value (NPV) of the CREsted model is significantly higher than the NPVs of the initial 
and peak-scaled ATAC-seq models. * P < 0.05, *** P < 0.001, Wilcoxon rank-sum test two-sided, unpaired, 
Bonferroni-corrected P-values. 
 
 
 

 
 
Figure S14. Yoshiaki Tanaka lab enhancer prediction overview. cisMultiDeep: Identifying Cell Type-
Specific Cis-Regulatory Regions by Automatically-Tuned Deep Neural Network and SHAP. 
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Figure S15. Kai Zhang lab enhancer prediction overview. 
 
 
 
Supplemental Tables: 
 
Table S1. Summary of validated enhancers. 
Table of validated enhancer data showing all counts. 
 
Table S2. Summary of team submissions. 
Table of benchmark metrics for all submissions during the BICCN challenge. 
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Supplemental Text: 
 
Stein Aerts lab results 

For the blind challenge, we first preprocessed the raw sequencing files and re-analyzed the human and 
mouse scATAC-seq data sets using cisTopic (based on fragment counts, Methods). This validated the 
provided cell type annotation with respect to 2D dimensionality reduction (Supplemental Text Figure 1A). 
Next, we employed four different strategies to generate 4 types of rankings (each type may have one or 
more variants), each containing 19 ranked lists of the top 10,000 scoring intervals, for each of the given 
19 cell types. The first strategy uses only cell-type specific chromatin accessibility to prioritize candidate 
enhancers per cell type by calculating per region the Gini index over the accessibility profile of all cell 
types. As a variant of this approach we took the pseudobulk profiles per cell type are derived from three 
datasets 13,17,29, instead of only the provided mouse dataset, followed by the application of a peak-scaling 
factor (Methods). These ATAC-only models resulted in very high performances according to the BICCN 
challenge scoring (see Supplemental Fig. 1, Supplemental Table 2): 0.4027 for the single dataset ATAC 
rankings, the best ranking in the entire challenge, and 0.4052 for the merged datasets.  

The remaining three strategies all use sequence-based models. In the second strategy (Supplemental Text 
Figure 1C), we trained two types of convolutional neural network models to predict, from the sequence 
of the genomic interval as input, chromatin accessibility across cell types: CREsted peak regression and 
topic classification. We also trained analogous models on the human scATAC-seq clusters and used them 
to score and rank the mouse genomic regions, followed by an order-statistics integration of the mouse- 
and human-based rankings (Methods). Among the sequence-based models, the best performing model is 
a peak regression model (referred to in main text as Aerts CREsted), trained only on the mouse scATAC-
seq data. The 10k rankings sorted on Gini score based on the model’s predictions had a final score of 
0.3556. In the third strategy, we combined the scATAC-seq and scRNA-seq data and inferred enhancer 
gene regulatory networks (eGRNs) using SCENIC+ 17. This provides, as one of its outputs, triplet scores for 
TF-region-gene trios (Supplemental Text Figure 1B). This resulted in the best score in the challenge: 
0.4086. In the fourth strategy, we generated SHAP-based explainability profiles for each candidate region, 
followed by seqlet clustering, and re-annotation of the regions using TFMoDisco-derived patterns 34 
(Supplemental Text Figure 1D). Ranking was then performed using a heterogeneity score that measures 
the complexity of these patterns in each sequence (Methods). Combined with the scATAC-seq rankings, 
this resulted in the second highest score in the challenge: 0.4052 Finally, we also combined multiple 
strategies, using order-statistics, but overall these ensemble rankings did not outperform the ATAC-only 
or the CREsted approaches.  

https://paperpile.com/c/xpdIjD/bdAl+u0DX+ugdf
https://paperpile.com/c/xpdIjD/ugdf
https://paperpile.com/c/xpdIjD/e69e
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Supplemental Text Figure 1: Overview of Aerts lab methods.  

A. Overview of challenge data from human and mouse using UMAP representation labeled by cell type. 
Schematic of data processing for subsequence methods. B. Schematic of the TF-region-gene trios SCENIC+ 
and topic assignment to peaks using pycisTopic. C. Schematic of DNA sequence models used to predict 
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cell type-specific ATAC-Seq signal. D. Schematic of seqlet based methods which utilized motif scoring to 
determine enhancer specificity. 
 
Saroja Somasundaram lab results 
 
PeakRankR seeks to identify a minimal set of ATAC-seq features – namely, specificity, magnitude, 
sensitivity, and shape-related features like modality, skewness and kurtosis (Methods) – for each 
enhancer. Together, these features can be used to prioritize peaks simply and efficiently, like how experts 
select peaks using the UCSC genome browser. To assess the performance of PeakRankR, we investigated 
how well the method organized On-Target enhancers in the top predicted ranks and Mixed-Target, Off-
Target and No-Labeling enhancers in lower ranks.  Overall, PeakRankR performed comparable with or 
better than most other methods.   
 
To evaluate the importance of each ATAC-seq feature in predicting the validated enhancers, we re-
prioritized and evaluated peaks for the universe peak set using each PeakRankR feature separately. We 
find that specificity and magnitude using the bigWigSummary tool from UCSC optimize benchmark scores 
most efficiently, indicating that these aspects of peaks are the most important for prioritizing functional 
enhancers.   
 
Additionally, PeakRankR is easily extendable in that additional peak features can be incorporated into the 
model’s peak prioritization process. To determine whether peak shape impacts performance we 
additionally included modality, skewness and kurtosis (Methods) in a revised PeakRankR challenge 
submission. However, inclusion of these additional features did not improve upon the model leveraging 
specificity, magnitude and sensitivity. Identifying the most parsimonious set of features is needed for 
solving an optimization problem.   
 
The lightweight and simple nature of PeakRankR enables rapid investigation of individual peak metrics 
and provides an efficient method to prioritize functional enhancers in the mammalian brain.  
 
However, after the challenge concluded, we noted that PeakRankR utilized cell type calls and peaks 
filtered from ArchR as input. Therefore, PeakRankR was not provided with the complete set of ATAC-seq 
peaks, including some On-Target enhancers and cell types due to the filtered input. Inclusion of these 
peaks may have improved PeakRankR’s score in the challenge.  Scores for all PeakRankR submissions, both 
pre and post challenge, are included in the challenge GitHub repository.  
 
Jesse Gillis lab results 

We assessed the accuracy of our methods predictions using a set of experimentally validated enhancers 
from Ben-Simon et al. 6. Our evaluation focused on determining the presence of cell type-specific 
enhancers based on evaluating accessibility and activity per cell type.  

We evaluated our methods against the validation set using the area under the Receiver Operating 
Characteristic (AUROC) curve and Precision-Recall (PR) curve as performance metrics for this multi-label 
classification task (Supplemental Text Figure 2). Higher values of AUROC and PR area indicate stronger 
performance for each of our predictive models. We find that meta-ATAC-seq demonstrates marginally 
superior performance compared to leveraging individual ATAC-seq experiments, showcasing the 
predictive capability of robust ATAC-seq signals in identifying cell-type-specific enhancers. Interestingly, 
metaATAC combined with metaHi-C showed a marginal improvement over meta-ATAC-seq in PR curves. 

https://paperpile.com/c/xpdIjD/hNln
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This suggests that incorporating ATAC-seq data along with contact density at enhancer regions is an 
important feature to enhancer prediction. Our finding aligns with observations from analogous activity by 
contact (ABC)23 models for predicting gene expression. However, the ATAC-seq signal itself remains the 
most important feature when predicting cell-type specificity of enhancers. Additionally, we examined the 
AUC and AUPRC scores for each subclass and found that predicting enhancer specificity for non-neuron 
subclasses is relatively easier compared to neurons. 

 

 

Supplemental Text Figure 2: Assessment of Gillis lab methods against validated enhancers.  

A. Area under the receiver operator curve to assess performance of enhancer ranking methods using a 
reduced set of enhancers which were included in Gillis lab predictions. B. Performance of enhancer 
ranking methods using a reduced set of enhancers which were included in Gillis lab predictions. AP, 
average precision. C. Box plot of AUROC per method split by class (Glutamatergic, Gabaergic and Non-
neurons). D. Box plot of AUCPR per method split by class (Glutamatergic, Gabaergic and Non-neurons).  
 
Yoshiaki Tanaka results 
 

https://paperpile.com/c/xpdIjD/ArcM
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The cell type is determined by expression of a specific set of genes that are governed by cis-regulatory 
elements (CREs), such as promoters and enhancers. CREs are characterized with open chromatin 
structure, in which transcription factors (TFs) are accessible. TF-bound CREs physically contact the target 
genes by forming chromatin loops, and transfer the regulatory information to the genes 43. Importantly, 
the expression patterns of the cell type-specific genes and TFs are conserved across species 44,45, whereas 
cell type-specific CREs are more susceptible to evolutionary divergence 46,47 , although some highly 
regulatory CREs are conserved 48. In addition, the cell type-specific gene expression also coincides with 
epigenetic modifications, such as DNA methylation (mCG and mCH). In particular, recent studies indicated 
that intragenic DNA methylation is negatively correlated with the gene expression 49,50. These 
observations suggest that the cell type-specific transcriptional programs are associated with various 
determinants, including conservation, chromatin looping, and open chromatin, and the framework to 
integrate such multiple omics data is essential. Here, we introduce a pipeline, cisMultiDeep 
(https://github.com/ytanaka-bio/cisMultiDeep), that employs automatically-tuned deep learning with 
Shapley Additive exPlanation (SHAP) feature importance assessment in cross-species single-cell multi-
omics data: RNA, ATAC, mCG, mCH, and Hi-C. First, this method identifies ‘conserved’ cell type-specific 
genes from RNA, mCG, and mCH profiles. Subsequently, ‘conserved’ and ‘non-conserved’ cell type-specific 
CREs are identified from ATAC profiles and linked with ‘conserved’ cell type-specific genes using deep 
learning. Finally, the contribution of each CRE to the cell type-specific gene expression is assessed by SHAP 
value and Hi-C contact map. 

To evaluate our method we first intersected the validated enhancer collection with our top 10,000 CRE 
list. Amongst the 677 validated enhancers 27 peaks are unique to humans and do not have liftOver mouse 
genomic coordinates and were removed from subsequent assessment (Supplemental Text Fig. 3A). In 
addition, 131 peaks were also removed, since their coordinates were not overlapped with any mouse 
ATAC peaks from Zemke et al. 2023 13. in the remaining 519 validated enhancers, only 92 (17.8%) were 
detected in our top 10,000 CRE list. If we expanded the per-cell type ranked list to top 50,000 we detect 
333 (64.1%).  

To dissect the characteristics of CREs predicted by our model, we analyzed: (1) conservation, (2) 
magnitude, (3) distance from TSS, (4) specificity, (5) H3K27ac, and (6) ABC score23. We found that our 
model preferentially detected the conserved peaks (p<3.68e-275 by hypergeometric test) (Supplemental 
Text Fig. 3B) with high magnitude (p<2.2e-16 by T test) (Supplemental Text Fig. 3C). We note that the 
magnitude of the validated peaks was much lower than that of the predicted CREs (p=7.95e-10 by T test). 
Usually, ATAC peaks in proximal CREs to genes are likely to display higher magnitude than those in distant 
CREs. Thus, we also compared the distance of the predicted CREs from transcription start sites (TSSs), and 
found that our model preferentially identified proximal CREs, whereas many validated enhancers are 
distal CREs (p<2.2e-16 by T test) (Supplemental Text Fig. 3D). Furthermore, the rank of our top 10,000 
CRE list was positively correlated with specificity and H3K27ac signal, but not ABC score (Supplemental 
Text Fig. 3E). Taken together, these assessments indicated that our model preferentially detected cell 
type-specific promoter elements, and requires refinement to capture distal CREs. 

 

https://paperpile.com/c/xpdIjD/10Lx
https://paperpile.com/c/xpdIjD/zv3m+vmzv
https://paperpile.com/c/xpdIjD/KMDZ+9OtC
https://paperpile.com/c/xpdIjD/tgmI
https://paperpile.com/c/xpdIjD/BAJT+uwv2
https://github.com/ytanaka-bio/cisMultiDeep
https://paperpile.com/c/xpdIjD/bdAl
https://paperpile.com/c/xpdIjD/ArcM
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Supplemental Text Figure 3. Assessment of cisMultiDeep model.  
A. Overlap of the validated peaks with the predicted CREs. B. Percentage of conserved ATAC peaks in top 
10,000 CRE list. C. Density plot showing magnitude of our top 10,000 CREs, validated enhancers, and other 
ATAC peaks. D. Cumulative plot showing distance from TSS in our top 10,000 CREs, validated enhancers, 
and other ATAC peaks. E. Boxplot showing spearman correlation of specificity, H3K27ac and ABC score 
with the rank of our top 10,000 CRE list. 

Kai Zhang results 
 
We developed a machine learning algorithm leveraging the pre-trained Enformer model 19 to predict gene 
expression from DNA sequence and chromatin accessibility around TSS regions. Our model achieved great 
accuracy in predicting gene expression at varying abundance (PCC = 0.91, Supplemental Text Fig. 4A). To 
identify candidate enhancers, we performed in-silico perturbation of chromatin accessibility at each ATAC 
peak, and used the model to compute the changes of predicted gene expression before and after 
perturbation. These values were named enhancer scores. We used the experimentally validated cell-type-
specific enhancers to assess the accuracy of our predictions (Supplemental Text Fig. 4B). We find that the 
average AUC in all cell types is 0.52. We selected the top 10,000 peaks with the highest enhancer scores 
as candidate enhancers in each of the 19 cell types. We found out that this set covered about 18% of the 
validated enhancers, and the coverage increased to 84% when we retained the top 100,000 peaks from 
each cell type (Supplemental Text Fig. 4C) 
 
To further evaluate the correlation between enhancers and other information of peaks, we selected 
mouse enhancers with cell type specific ATAC-seq, identifying a total of414 enhancers. We calculated the 
AUC for these enhancers using ABC score (Supplemental Text Fig. 4D), H3K27ac signal (Supplemental 
Text Fig. 4E), and ATAC signal (Supplemental Text Fig. 4F) of peaks for different cell types, giving an 
average AUC of 0.82, 0.82, and 0.93, respectively. Of all the validation enhancers, 328 enhancers were 
located in the regions around genes’ TSS.  
 

https://paperpile.com/c/xpdIjD/cfon
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Supplemental Text Figure 4. Assessment of an Enformer-based model.  
A. Scatter plot comparing predicted gene expression to actual gene expression. A total of 18,073 genes 
were downsampled to 400, ensuring an equal representation of genes across different expression ranges 
(0-2, 2-4, 4-6, >6). B. The ROC curve for 19 distinct cell types was generated using the enhancer score from 
our model. C. Scatter plot illustrating the number of experimentally validated enhancers captured by our 
predictions against the total number of enhancers predicted by our model. D. The ROC curve for 17 
distinct cell types (excluding two cell types which were not accessible) was generated using the ABC scores 
of peaks. E. The ROC curve for 17 distinct cell types (excluding two cell types that were not accessible) was 
generated using the H3K27ac values of peaks. F. The ROC curve for 19 cell types was generated using 
RPKM ATAC signals of peaks. 
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