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CONSORT diagram for participants enrollment and selection 
 

 
Figure S1 

Neurofeedback session procedures 
This section summarizes the neurofeedback session procedures described in Tsuchiyagaito, 

Misaki 1. Readers are encouraged to consult this reference for additional information. 
Participants were randomly assigned to the active (N=22) and sham (N=21) groups. We 

confirmed that participants' reports of guessing their group assignment were independent of the 
actual assignment 1. The active group received neurofeedback (NF) of functional connectivity 
between the posterior cingulate cortex (PCC) and the right temporoparietal junction (rTPJ) 
regions, which was correlated with the brooding subscale of the Ruminative Response Style 2 
(RRS) score 3. We focused on the brooding subscale (RRS-B) because it specifically leads to a 
worse prognosis 4. The functional connectivity NF signal was calculated with the two-point 
method 5 and presented at each TR during the regulation task block. In the two-point method, the 
positive feedback signal was presented when the signals of the two regions (i.e., PCC and rTPJ) 
changed in different directions to train participants to reduce the target FC. In our previous work 

Assessed for eligibility (n=479)* 
* Participants were screened as part of the general 
Laureate Institute for Brain Research recruitment for a 
wide range of studies with varying inclusion/exclusion 
criteria, and not specifically for this trial. 

Excluded (n=436) 
• Did not meet inclusion criteria (n=364) 
• Declined to participate (n=5) Other 

reasons (n=67) 

Analyzed (n=16) 
• Excluded from analysis due to excessive 

head motion during rtfMRI-nf runs (n=6) 

Lost to follow-up (n=0) 
Discontinued intervention (n=0) 
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• Received allocated intervention (n=22) 
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Allocated to sham-controlled rtfMRI-nf (n=21) 
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head motion during rtfMRI-nf runs (n=3) 
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3, we elucidated and validated the preference for the two-point method, underscoring its 
association with offline connectivity estimation, resilience to motion artifacts, and the timeliness 
of feedback presentation. The sham group received a feedback signal that was artificially 
synthesized to mimic the probabilistic structure of the real NF signal in the active group. The 
sham feedback signal had the same gain frequency and temporal transition pattern as the real NF 
signal. The probabilistic structure was updated each time a new active participant was enrolled, 
and the initial parameters were evaluated from the results of the healthy participants in a 
previous study 6. Thus, the order of enrollment of the active and sham groups was blinded to the 
experimenter handling the participants. In addition, we calculated the correlation between the 
time courses of the synthesized sham signals and the actual target connectivity measured in real 
time during the scan, and when the absolute correlation exceeded the threshold (> 0.3), the 
feedback signal was made to reduce the absolute correlation. This procedure ensured that the 
sham signal was safely independent of the target brain activity. 

One NF training run was 8 m long with an initial rest block of 90 s, followed by a 100 s 
regulation block with four consecutive presentations of negative feature words (25 s each) and a 
30 s rest (Figure S2). During the regulation block, a participant attempted to regulate negative 
thoughts through reappraisal (i.e., an emotion regulation strategy to reinterpret one's negative 
self-perceptions) while viewing negative words describing one's negative personality traits. 
Participants selected the words from a prepared list that described their personality traits. The 
regulation and rest blocks were repeated three times in one run. Each participant completed three 
neurofeedback training runs between the baseline and transfer runs, in which no feedback signal 
was presented. Participants were engaged in the emotion regulation task (i.e., regulating negative 
thoughts while viewing the negative self-referential adjective word) while receiving connectivity 
NF. The feedback signal is presented at each TR by blue bars displayed to the side of the 
adjective word when the signals of the two regions (i.e., PCC and rTPJ) changed in different 
directions to train participants to reduce the target FC 5, 6. 

 

 
Figure S2. Sequence of a NF training run. 

 
Real-time fMRI NF was performed on a 3T MR750 Discovery MRI (GE Healthcare, 

Milwaukee, WI). Functional BOLD contrast images were acquired using a T2*-weighted 
gradient echo planar imaging with TE/TR=25ms/2s matrix 96x96 on a 240 mm FOV, 40 slices at 
2.9 mm, SENSE = 2. The fMRI signal for NF was subjected to a comprehensive real-time noise 
reduction process using the RTPSpy library 7. This included slice timing correction, motion 
correction, spatial smoothing with a 6 mm FWHM Gaussian kernel within the brain mask, 
scaling to a percentage change relative to the average of the first 28 TRs (in the initial rest 
period), and regressing out noise components. The noise regressors were 12 motion parameters 
(three shifts, three rotations, and their temporal derivatives), eight RETROICOR regressors (four 
cardiac and four respiratory), global signal, white matter mean signal, ventricular mean signal, 
and Legendre polynomial models of slow signal fluctuations. While the connectivity NF signal is 
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susceptible to physiological and motion noise in rtfMRI-NF 8, we confirmed that our real-time 
connectivity NF signal was free of physiological and motion noise after this processing 7, 9. 
These careful controls of the NF signal ensured that the NF signal in the active group reflected 
their real brain activation with minimal noise effect, and the sham group received the same 
treatment with the same NF gain probability as the active group, except that the NF signal was 
not correlated with their brain activation. 

Offline fMRI image processing and block-wise GLM analysis 
We used Analysis of Functional NeuroImage (AFNI; http://afni.nimh.nih.gov/) for offline 

fMRI image preprocessing. The process included discarding the first three TRs to await steady-
state, despike, RETROICOR, and respiratory volume per time (RVT) corrections, slice timing 
and motion corrections, nonlinear warping to the MNI template brain with resampling to 2 mm3 
voxels using the ANTs (http://stnava.github.io/ANTs/), spatial smoothing with a 6 mm FWHM 
Gaussian kernel, and scaling the signal to the percent change relative to the mean in each voxel. 

General linear model (GLM) analysis was used to evaluate a response (beta coefficient) for 
each block of NF regulation. We used a least squares - separate (LS-S) approach 10 in which a 
regressor for a target block and a regressor for all other blocks were entered into the design 
matrix to obtain the estimate for one block. This was repeated for each block in an independent 
GLM analysis. This approach can avoid collinearity problems when block-wise regressors for all 
trials are entered into a GLM design matrix. It has been suggested that this approach can provide 
a better estimate of the block-wise response 10. The GLM was run using the AFNI 3dREMLfit 
command. Each time point with large motion (> 0.3 mm frame-wise displacement [FD]) was 
censored within the GLM, and the design matrix included noise regressors of 12 motion 
parameters (3 shifts, 3 rotations, and their temporal derivatives), three principal components of 
the ventricular signals, event-related response model for the word change, and the local white 
matter average signal (ANATICOR 11). 

The response to the feedback signal was also estimated with the GLM analysis. The 
neurofeedback was the binary signal that was turned on when the PCC and rTPJ signals moved 
in opposite directions and turned off when the signals moved in the same direction. The regressor 
of the NF signal response was a boxcar function indicating the presentation of the positive 
feedback signal, convolved with a canonical hemodynamic response function, and 
orthogonalized to the task block regressors to avoid the confounding effect of the task block 
response. The NF response was evaluated for each block using the LS-S approach 10. 

Whole-brain functional connectivity calculation 
Using the series of beta estimates of each NF regulatory block across runs, whole-brain 

functional connectivity was calculated using the correlation of the beta series 12. Specifically, the 
mean beta values in the Shen 268 atlas regions 13 were calculated and the z-transformed Pearson 
correlation between the beta series of the atlas regions was calculated as the functional 
connectivity. The Shen atlas is a functional brain parcellation based on spectral clustering 
analysis of resting-state fMRI data that has good reproducibility in healthy subjects 13. We chose 
this atlas because it has been widely used for CPM analysis and has shown strong predictive 
performance for various tasks 14-19. Regions not covered by functional images from all 
participants due to limited slice coverage or significant signal attenuation, as well as non-gray 
matter regions, were excluded from the analysis. Supplementary Figure S3 shows the map of the 
excluded regions. The connectivity between the remaining 233 regions was taken as the whole-
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brain connectivity pattern. The beta-series FC for the response to the feedback signal was also 
calculated in the same atlas regions. The interaction between FCs for the regulation task 
(RegTask) and the response to the NF signal (RespNF) was calculated by multiplying the FC 
values for each connectivity after standardizing (zero mean, unit variance) each RegTask and 
RespNF value across all connectivity. 
 

 
Figure S3. Regions excluded from CPM analysis in the Shen 268-node atlas due to limited 
coverage in the fMRI image. The atlas image was downloaded from 
https://www.nitrc.org/frs/download.php/7976/shen_1mm_268_parcellation.nii.gz. The indices of 
the excluded regions were 100, 104, 105, 108, 109, 111, 112, 115, 116, 117, 118, 120, 129, 130, 
131, 132, 133, 217, 236, 237, 239, 240, 242, 243, 246, 249, 250, 252, 255, 256, 257, 265, 266, 
267, 268. 

Connectome-based Predictive Modeling (CPM) 
Connectome-based Predictive Modeling (CPM) is a machine learning approach that builds a 

predictive model of the brain-behavior relationship from whole-brain functional connectivity 
patterns 14. We used CPM to predict the change in symptom score (i.e., RRS-B) one week after 
the NF session. The prediction target was the ratio of RRS-B change from baseline; dRRS-B = 
(RRS-Bpost - RRS-Bpre) / RRS-Bpre. 

CPM constructed a prediction model using the following steps: 1) selecting connectivity with 
a high absolute Pearson's correlation (r) with the dRRS-B (the r threshold was optimized using 
nested cross-validation), 2) summing the selected connectivity values for each positively and 
negatively correlated ones in each participant, and 3) fitting a linear regression model to predict 
the dRRS-B based on the summed scores of positively and negatively correlated connectivity 
values, respectively 14. The prediction model was built for the combined set of active and sham 
groups. The performance of the prediction model was assessed by Spearman's correlation 
coefficient between the true and predicted values. 

The whole-brain FC patterns of RegTask, RespNF, and their interaction (RegTask:RespNF) 
were used individually to build the CPM model with multiple combinations. Specifically, we 
evaluated five CPM models; 1) the main effect of RegTask: dRRS-B ~ RegTask, 2) the main effect 
of RespNF: dRRS-B ~ RespNF, 3) the sum of these FCs: dRRS-B ~ RegTask + RespNF, 4) the 
sum of these FCs and their interaction: dRRS-B ~ RegTask + RespNF + RegTask:RespNF, and 5) 
the main effect of RegTask with the interaction: dRRS-B ~ RegTask + RegTask:RespNF. For 
example, the CPM model of dRRS-B ~ RegTask + RespNF included four terms (and the intercept) 
in the linear model, including the sum of positively correlated FCs in RegTask, the sum of 
negatively correlated FCs in RegTask, the sum of positively correlated FCs in RespNF, and the 

https://www.nitrc.org/frs/download.php/7976/shen_1mm_268_parcellation.nii.gz
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sum of negatively correlated FCs in RespNF. The model with RegTask:RespNF alone was also 
tested as a post-hoc evaluation. 

Predictive performance was assessed using 5-fold cross-validation, with participants divided 
into training (80%) and test (20%) groups. The division was made to balance age, sex, head 
motion, and active/sham members. The covariate effects of age, gender, and head motion (mean 
FD) were regressed and removed from the individual connectivity and outcome scores (dRRS-
B). Covariate regression was performed as part of cross-validation: a covariate regression model 
was evaluated on the training data, and then the fitted model was used to remove the effects from 
both the training and test sets. The model hyperparameters, such as the absolute correlation 
thresholds for connectivity selection, were optimized through a nested 4-fold cross-validation 
within the training set. The training set was further divided into a training subset (75%) and a 
validation subset (25%). Grid search was used to explore different values for the 
hyperparameters: correlation values (r) ranging from 0.05 to 0.5 with intervals of 0.05. The 
entire process of 5-fold cross-validation was repeated 100 times to obtain a confidence interval 
and a reliable estimate of the predictive performance. 

Permutation test for prediction performance 
The statistical significance of model performance was assessed through a permutation test that 

focused on the median value across cross-validation evaluations, with each evaluation 
characterized by unique random split patterns. This approach was adopted due to the variability 
in prediction performance across different cross-validation splits, as illustrated in Figure 3 of the 
main article. Consequently, assessing a representative value from this distribution offers a more 
robust evaluation of model performance compared to analyzing a score from a single cross-
validation result. 

At each iteration, the prediction target values (dRRS-B) were randomly permuted. The model 
training and prediction procedures, mirroring those applied to the actual dataset including 100 
repetitions of cross-validation, were utilized to assess the null distribution of the median 
prediction performance for each model. Figure S4 illustrates the null distributions of median 
performance scores for each model. The p-value for model performance was determined by 
calculating the proportion of permuted samples that exhibited a prediction performance superior 
to that of the true dataset, divided by the total number of permutations. We used a one-tailed test 
because the prediction model was optimized to identify the best possible positive correlation 
between the true and predicted values. 

 
Figure S4. Null 
distributions of the 
CPM prediction 
performance (as 
measured by the 
Spearman correlation). 
Each point represents a 
median value of 100 
cross-validation 
iterations during a 
single permutation 
iteration. 
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Table S1. Top 10 nodes with the largest absolute sum of FC correlation with RRS-B reduction selected in the CPM prediction for FC 
during the regulation task (RegTask). 
Node FC correlation System Lobe Gyrus Hemi Brainnetome atlas label 
34 12.0 Cingulo-opercular Task Control Temporal Lobe STG R TE1.0 and TE1.2 
169 11.7 Cingulo-opercular Task Control Subcortical Nuclei BG L vmPu 
20 7.9 Salience Frontal Lobe IFG R A45c 
71 7.1 Visual Temporal Lobe ITG R A20cv 
170 6.8 Subcortical Subcortical Nuclei BG L dlPu 
127 5.7 Subcortical Subcortical Nuclei Tha R PPtha 
253 5.6 Cerebellar Cerebellum Cerebellum L Left Crus I 
264 5.1 Subcortical Subcortical Nuclei Tha L cTtha 
15 5.1 Salience Frontal Lobe SFG R A8m 
11 4.9 Salience Frontal Lobe MFG R A8vl 

Node: region index of the Shen 268-node atlas. FC correlation: absolute sum of functional connectivity correlation with RRS-B 
reduction. The sum was taken for all connectivity selected with significant frequency (> 76%, p < 0.001 with Bonferroni correction) in 
the 100 bootstrap of CPM evaluations. Hemi: brain hemisphere. 
 
Table S2. Top 10 nodes with the largest absolute sum of FC correlation with RRS-B reduction selected in the CPM prediction for the 
FC interaction between the regulation task and in response to the neurofeedback signal (RegTask:RespNF). 
Node FC correlation System Lobe Gyrus Hemi Brainnetome atlas label 
30 3.5 Fronto-parietal Task Control Frontal Lobe MFG R A6vl 
11 3.2 Salience Frontal Lobe MFG R A8vl 
126 2.5 Subcortical Subcortical Nuclei Hipp R cHipp 
17 2.1 Default mode / limbic Frontal Lobe OrG R A12/47l 
91 2.0 Salience Frontal Lobe PCL R A1/2/3ll 
156 2.0 Ventral attention Frontal Lobe IFG L A44op 
14 2.0 Fronto-parietal Task Control Frontal Lobe PrG R A6cvl 
170 1.9 Subcortical Subcortical Nuclei BG L dlPu 
253 1.9 Cerebellar Cerebellum Cerebellum L Left Crus I 

Node: region index of the Shen 268-node atlas. FC correlation: absolute sum of functional connectivity interaction with RRS-B 
reduction. The sum was taken for all connectivity selected with significant frequency (> 76%, p < 0.001 with Bonferroni correction) in 
the 100 bootstrap of CPM evaluations. Hemi: brain hemisphere. 
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Association of other factors with RRS-B changes 
The ANOVA table below presents the results of a linear model analysis for RRS-B change (ratio 
to baseline) with respect to age, sex, head motion (mean FD), self-rating of regulation success 
(self-rating), duration of positive feedback presentation (PFB-duration), the interaction between 
self-rating of regulatory success and group, and the interaction between positive feedback 
duration and group. No significant effects were found for any of these variables. 

 SS df F p 
age 0.009 1 0.172 0.682 
sex 0.021 1 0.431 0.517 
mean FD 0.065 1 1.313 0.262 
self-rating 0.129 1 2.597 0.119 
PFB duration 0.000 1 0.002 0.961 
self-rating:group 0.109 1 2.193 0.151 
PFB duration:group 0.003 1 0.065 0.801 
Residuals 1.291 26   

SS: Sum of Squares, df: degree of freedom, FD: frame-wise displacement, PFB: positive 
feedback. 

Voxel-wise activation analysis for the association with RRS-B change 
Voxel-wise mass univariate analysis was performed on the RegTask and RespNF beta maps 

and their interaction map to determine whether the voxel-wise activation associated with the 
treatment effect was present in these responses. We used linear mixed effects (LME) model 
analysis with the beta maps as the dependent variable and the fixed effects of group 
(active/sham), run, dRRS-B, age, sex, and participant as a random effect on the intercept. The 
LME analysis was performed using the lme4 package 20 with the lmerTest package  21 in the R 
language and statistical computing, and the map of each contrast was computed using the 
emmeans package. The statistical map of the voxel-wise LME analysis was thresholded at p < 
0.001 voxel-wise, and then a cluster extent threshold of p < 0.05 was applied. The cluster extent 
threshold was evaluated using AFNI 3dClustSim with an improved spatial autocorrelation 
function. 

LME analyses for the RegTask beta maps showed a significant main effect of dRRS-B in the 
left lateral occipital region, whose activation was negatively correlated with dRRS-B (Figure S5 
in SI). Greater activity in this region during regulation was correlated with greater RRS-B 
reduction. As this region is associated with visual motion perception, this may suggest that 
increased attention to the change in the feedback signal was associated with a more effective 
treatment outcome. 

The significant interaction of dRRS-B by run was found in the right superior frontal regions, 
right precentral gyrus, and right thalamus (Figure S6 in SI). Participants who showed reduced 
activation across runs in these areas showed a greater reduction in RRS-B. This pattern could 
suggest that as one perhaps becomes more efficient or familiar with the task, there might be a 
reduced demand for certain control and cortical activations. It is also plausible that  these 
regional associations could reflect variety of factors, including potential adaptations to the 
training, rather than solely reflecting changes in emotional state. 



 
 

9 

Analysis of the beta maps of RespNF and the RegTask:RespNF interaction showed no 
significant effect on the main effect of dRRS-B and its interactions with Run and Group. 

 

 
Figure S5. 

 
 

 
Figure S6. 
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