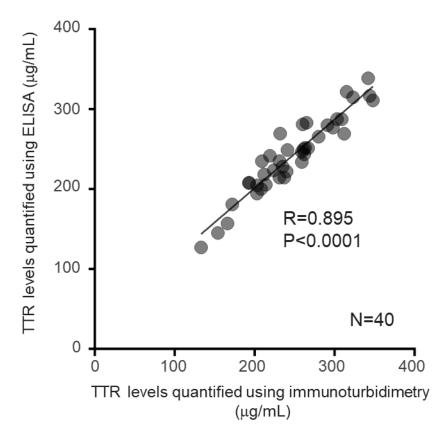

## **Supplementary Information**

Assessment of transthyretin instability in patients with wild-type transthyretin amyloid cardiomyopathy


Takuya Iino<sup>1,2</sup>, PhD; Manabu Nagao<sup>3</sup>\*, MD, PhD; Hidekazu Tanaka<sup>1</sup>, MD, PhD; Sachiko Yoshikawa<sup>1</sup>, MD, PhD; Junko Asakura<sup>1</sup>, MD, PhD; Makoto Nishimori<sup>4</sup>, MD, PhD; Masakazu Shinohara<sup>4,5</sup>, MD, PhD; Amane Harada<sup>2</sup>, PhD; Shunsuke Watanabe<sup>6</sup>, Tatsuro Ishida<sup>1,7</sup>, MD, PhD; Ken-ichi Hirata<sup>1,3</sup>, MD, PhD; Ryuji Toh<sup>3</sup>, MD, PhD.

- 1. Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- 2. Central Research Laboratories, Sysmex Corporation, Kobe, Japan
- 3. Division of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- 4. Division of Molecular Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan
- 5. The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan
- 6. Bio-Diagnostic Reagent Technology Center, Sysmex Corporation, Kobe, Japan
- Division of Nursing Practice, Kobe University Graduate School of Health Sciences, Kobe, Japan



Supplementary Figure S1. Effects of Each Concentrations of Urea for TTR Stability

The residual TTR tetramer formation ratio after urea-induced denaturation of recombinant wild-type TTR, recombinant T119M TTR, recombinant V30M TTR, and recombinant V122I TTR. The urea concentrations used were 0.8 M (A), 1.6 M (B), 2.4 M (C), 3.2 M (D), 4.8 M (E), and 6.4 M (F). Values are expressed as the means  $\pm$  SDs (n = 6). \*\* p < 0.01, \*\*\* p < 0.001 compared to the WT group. Data were analyzed by one-way ANOVA with Dunnett's multiple comparisons test (A-D, F) or by Kruskal-Wallis test, followed by Dunn's post-test (E). TTR, transthyretin; WT, wild-type;



## Supplementary Figure S2. Correlation Between ELISA and Immunoturbidimetry

The correlation between the quantitative results of TTR in plasma samples measured by

ELISA and immunoturbidimetry(n=40).

| TTR<br>(ng/mL) | Luminescence intensity   |                              |                               |  |  |
|----------------|--------------------------|------------------------------|-------------------------------|--|--|
|                | TTR purified from plasma | Recombinant<br>Wild type TTR | Recombinant<br>F87M/L110M TTR |  |  |
| 10             | 18874.5                  | 17017.5                      | 1479.0                        |  |  |
| 5              | 9744.5                   | 9461.5                       | 964.0                         |  |  |
| 2.5            | 5248.5                   | 5055.5                       | 661.0                         |  |  |
| 1.25           | 2959.0                   | 2901.0                       | 470.0                         |  |  |
| 0.625          | 1751.0                   | 1733.0                       | 400.0                         |  |  |
| 0.3125         | 1086.5                   | 1218.0                       | 402.0                         |  |  |
| 0.15625        | 807.0                    | 858.0                        | 383.5                         |  |  |
| 0.078125       | 712.0                    | 672.0                        | 405.0                         |  |  |
| 0.0390625      | 424.5                    | 410.0                        | 406.0                         |  |  |
| 0.0195313      | 432.0                    | 397.5                        | 358.0                         |  |  |
| 0.0097656      | 372.5                    | 383.5                        | 398.0                         |  |  |
| 0              | 335.5                    | 329.0                        | 351.0                         |  |  |

## Supplementary Table 1. Detailed ELISA data

| TTR (ng/mL) | %CV  | Accuracy % |
|-------------|------|------------|
| 10          | 4.1  | 87.8       |
| 5           | 2.4  | 99.0       |
| 2.5         | 2.3  | 107.3      |
| 1.25        | 4.9  | 101.8      |
| 0.625       | 4.8  | 98.9       |
| 0.3125      | 10.5 | 89.6       |
|             |      |            |

Supplementary Table 2. Calibration curve analysis.

## Supplementary Table 3. Dilution linearity of serum

| Dilution factor | Measured concentration | Dilution-corrected concentration | % Change |  |
|-----------------|------------------------|----------------------------------|----------|--|
|                 | (ng/mL)                | (ng/mL)                          |          |  |
| 40000           | 6.39                   | -                                | -        |  |
| 80000           | 3.53                   | 3.19                             | 110.6    |  |
| 160000          | 1.82                   | 1.77                             | 103.0    |  |
| 320000          | 0.86                   | 0.91                             | 94.4     |  |
| 640000          | 0.40                   | 0.43                             | 92.9     |  |

|        | <u>Intra-assay (n = 6)</u> |     |     | Inter-assay $(n=6)$ |     |     |
|--------|----------------------------|-----|-----|---------------------|-----|-----|
|        | Mean, ng/mL                | SD  | %CV | Mean, ng/mL         | SD  | %CV |
| High   | 8.3                        | 0.1 | 1.1 | 8.0                 | 0.6 | 7.8 |
| Medium | 4.8                        | 0.1 | 2.2 | 4.5                 | 0.3 | 7.0 |
| Low    | 2.4                        | 0.1 | 2.5 | 2.3                 | 0.1 | 5.2 |

Supplementary Table 4. Intra- and inter-assay precision