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SYMMETRY TENSORS

Here we give the general symmetry-restricted form of the Edelstein effect response tensor χ for the systems discussed
in the text. In Table I we give the symmetry tensors for Mn3Sn. In Table II we give the symmetry tensors for the
Mn3Ir [111] bilayer. The symmetry of every Mn layer is the same. We note that we have constructed the bilayer in
such a way that there are in fact six Mn sublattices in each layer. However, three of those are connected to the other
three by translation and are thus equivalent. In Tables III and IV we give the T -even resp. T -odd symmetry tensors
for LuFeO3.
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TABLE I. The symmetry tensors for Mn3Sn. A, B, C are the different sublattices as denoted in Fig. 2 of the main text.
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TABLE II. Symmetry tensors for the Mn3Ir bilayer.
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TABLE III. The T -even Edelstein effect symmetry tensors for the LuFeO3.
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TABLE IV. The T -odd Edelstein effect symmetry tensors for the LuFeO3.

MN3SN CALCULATIONS

In Fig. S1 we give the calculation of the local Edelstein effect in Mn3Sn for the sublattices A, B and C. The
sublattices A′, B′ and C ′ are connected by inversion symmetry to the sublattices shown here and thus they must have
the opposite Edelstein effect.
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FIG. S1. Calculation of the local Edelstein effect in Mn3Sn with (dashed lines) and without (solid lines) spin-orbit coupling.
The labeling of the sublattices is given in Fig. 2 of the main text.

LUFEO3 CALCULATIONS

Here we give the result of the Edelstein effect calculations in LuFeO3 for all the sublattices. In Fig. S2 we label
the different sublattices and in Fig. S3 we show the result of the calculations.
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FIG. S2. LuFeO3 structure with sublattice labels.
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FIG. S3. Edelstein effect calculations in LuFeO3 with and without spin-orbit coupling. The left/right column corresponds to
the T -even and T -odd components respectively.
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(a)

(b)

FIG. S4. (a) Mn3Sn/Ru(0001) structure with sublattice labels. (b) The magnetic order used for the slab calculations.

MN3SN/RU(0001) DFT CALCULATIONS

For illustration, we include here also preliminary results of Edelstein effect calculations on Mn3Sn/Ru(0001) slab.
We note that these calculations use a slightly different magnetic phase for Mn3Sn, as shown in Fig. S4(b). The
present calculations are performed in the framework of the density functional theory (DFT) using VASP code. The
parameter conditions mirror those outlined in the main text for bulk calculations of Mn3Sn and LuFeO3. The
Brillouin zone integration is executed employing an (11×11×1) k-points mesh. The interface model was calculated
using a Mn3Sn/Ru surface, which represents a slab with 4 Mn3Sn and 6 Ru layers, stacked in the hexagonal growth
direction [0001]. The slabs are separated from their periodic replicas in the [0001] direction by a 17 Åvacuum layer.
During the geometry optimization stage, relaxation of all slab atoms is performed until the forces acting on them do
not exceed 0.01 eV/Å. All calculations were carried out without considering the spin-orbit coupling interaction. In
the Wannierization process, we employed the d orbitals for the Ru and Mn atoms, while the p orbitals were utilized
for the Sn atoms. The frozen energy window was set to EF = +1eV . In our linear response calculations, we employed
the Linres code with a 480×480×1 k-mesh.

The results for the T -odd and T -even components of the torque, projected on the three magnetic sublattices
as indicated in the sketch of the heterostructure, Fig. S4, are reported in Figs. S5 and S6, respectively. Two
comments are in order: first, the overall magnitude of the effect is comparable to that reported in Fig. 5 of the main
text and computed with a model system. From our viewpoint, this is not surprising as the band structure of this
metallic heterostructure is very dense and the spin transport is rather governed by the interplay between the magnetic
configuration, the bandwidth, and the interfacial orbital hybridization. In the presence of a large number of orbitals,
as is the case here, one expects that the details in the band structure should have a reduced impact.
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FIG. S5. T -odd components of the local Edelstein effect projected on the three magnetic sublattices, as indicated on the crystal
structure.

MN3SN/RU(0001) TIGHT-BINDING CALCULATIONS

Since the DFT calculations of the bilayer slab systems are numerically very demanding we have also performed
tight-binding calculations of the Mn3Sn/Ru bilayer system. This allows considering larger systems than in the DFT
calculations. These calculations allow comparing with the DFT calculations, although we note that the setup of the
system is not exactly the same and the DFT calculations use a slightly different magnetic structure than considered
here and for the bulk calculations. The calculations utilize a simple non-relativistic tight-binding model similar to
the one used for the 3Q system and the Mn3Ir bilayer calculations defined in Eq. (3) of the main text. The only
distinction is that this system require hoppings beyond nearest neighbor. We consider up to 5-th nearest neighbor
and scale the hoppings such that t = 1 eV ∗ d2nn/d, where dnn is the nearest neighbour distance and d is the distance
of the given hopping. We consider J = 1.7 eV as for the Mn3Ir bilayer and we set EF = 0.5 eV. For these calculations
we do not include the Sn atoms as they don’t change the symmetry of the structure and are not necessary for the
simple model we use. Apart from the omission of the Sn atoms the structure is analogous to the one used for the DFT
calculations S4, except with different number of layers. We use 3 atomic layers for Ru and 10 unit cells (corresponding
to 20 Mn layers) of Mn3Sn.
The results of the calculations are shown in Fig. S7. These show that as expected the interfaces break the global

inversion symmetry, which means that the Edelstein effect within each unit cell does not cancel out. The symmetry
breaking is largest close to the interfaces. Such Edelstein effect will likely lead to a torque that can efficiently
manipulate tha magnetic order, however, studying the magnetic dynamics induced by the torque is beyond the scope
of this work.
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FIG. S6. T -even components of the local Edelstein effect projected on the three magnetic sublattices, as indicated on the
crystal structure.
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FIG. S7. The results of the Edelstein effect in the tight-binding model Mn3Sn/Ru calculations. The top row shows the T -even
calculations and the bottom row the T -odd calculations. The dashed line shows the comparison to the sublattices that would be
connected by inversion symmetry in the bulk: for example, for the sublattice A, the solid line shows the result for sublattice A,
whereas the dashed line shows minus the result of the sublattice A′. Thus if the solid and dashed lines are on top of each other
this shows that the Edelstein effect satisfies the bulk inversion symemtry, when they differ it shows the inversion symmetry
breaking.
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NON-RELATIVISTIC SYMMETRY ANALYSIS

For the non-relativistic symmetry analysis we use the Symmetr code [1] in which we have implemented an alghorithm
for identifying the non-relativistic symmetry operations. Once the non-relativistic symmetry operations are identified
the procedure for obtaining the symmetry restricted form of the response tensors is the same as in the case of
relativistic symmetry, as described in Ref. [2].

In the absence of spin-orbit coupling, the symmetry is described by the so-called spin-groups [3, 4]. These differ
from the magnetic space groups that describe the relativistic symmetry in that the spin and spatial rotations are
decoupled. That is, with spin-orbit coupling a rotation is composed of a real space rotation and equivalent spin
rotation. Without spin-orbit coupling, however, the spin rotation can be different from the real space part. Here we
briefly describe the procedure for obtaining all the non-relativistic symmetries. A detailed description of the algorithm
and the code will be published elsewhere.

In the absence of spin-orbit coupling, the symmetry operations for a lattice are composed of rotations (2-fold,
3-fold, 4-fold and 6-fold), spatial inversion, pure spin rotation (that can be in general arbitrary) and time-reversal. In
a non-magnetic system, the spin group is a product of a crystallographic space group, the group containing all spin
rotations and time-reversal. In a magnetic system, the symmetry is reduced. For example, magnetic systems are not
invariant under time-reversal or an arbitrary spin-rotation.

Since all the symmetry operations of the magnetic system must also be symmetry operations of the non-magnetic
system, we use the symmetry operations of the non-magnetic system as a starting point. We assume that the symmetry
of the system is described by assigning magnetic moments to each site. This is usually satisfied; however, it may also
happen that the whole magnetization density needs to be taken into account. In such a case, the symmetry analysis
based on the approach used here would be higher than in the real system. However, the general principles outlined
here would still apply.

The procedure for obtaining the non-relativistic symmetry operations is as follows:

1. Identify all the non-magnetic symmetry operations. For this we use the Findsym code. We consider only the
spatial part of the symmetry operations and we need to find any spin rotations that, together with the spatial
component, are symmetries of the magnetic system.

2. Because the spatial and spin transformations are decoupled, the only aspect of the spatial symmetry operations
that matters for the spin rotation is how they permute the magnetic atoms. That is, under a combined spin-
rotation Rs and spatial transformation R, the magnetic moments of the system will transform as Mi → RsMpi

,
where pi denotes the permutation corresponding to R. The combined operation will be a symmetry of the
system if for all moments Mi → RsMpi .

For example, a symmetry operation may transform atom A to atom B, atom B to atom C and atom C to atom
A. We denote this operation as A → B → C → A and refer to as a permutation chain. Each permutation chain
must end with the same atom as the one it starts with. Each symmetry operation is described by one or more
such chains.

3. Now for every permutation chain we have to find the spin-rotations that leave it invariant, that is spin-rotations
such that RsMci = Mci+1

, where Mci denotes the magnetic moment of each chain. This has to be done sepa-
rately with and without time-reversal. In the following we assume that all the moments have same magnitude,
since otherwise they cannot be symmetry related.

Since the last element of the chain must be the same as the first, we have a condition:

Without time-reversal: MA = Rn
sMA (1)

With time-reversal: MA = (−1)nRn
sMA (2)

where n is the number of unique atoms in the chain (that is for chain A → B → C → A, the length is 3). From
this, it is possible to determine the necessary conditions for the existence of a spin-rotation that leaves the chain
invariant.

If the chain is collinear then the symmetry analysis is quite simple. The only two relevant symmetries are

an arbitrary rotation around the collinear axis R
||
s and a π rotation around any perpendicular axis R⊥

s . The

system can either be invariant under R
||
s or under R⊥

s R
||
s . In this case, the chain has a continuous spin-rotation

symmetry.

For a non-collinear system, the condition for the rotation angle θ are:
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• Without time-reversal or with time-reversal and n even: θ = iπ
n , where i is an even integer.

• With time-reversal and n odd: θ = iπ
n , where i an odd integer.

4. For each permutation pair in the chain, we now have to determine the spin-rotations that leave it invariant
taking into account the restriction on θ. We do this by first considering each pair separately. That is, for
example, for the chain A → B → C → A we have to find spin-rotations Rs that satisfy RsA = B, RsB = C
and RsC = A and then find the spin-rotations that are common to all pairs.

In general, it can be shown that a rotation Rs with an angle θ connecting two vectors MA and MB , will exist
if MA ·MB ≥ cos(θ), that is the angle between the two vectors must greater or equal to θ. The rotation axes
will be given by:

n1+ = cos(α)
MA +MB

||MA +MB ||
+ sin(α)

MA ×MB

||MA ×MB ||
,

n1− = − cos(α)
MA +MB

||MA +MB ||
− sin(α)

MA ×MB

||MA ×MB ||
.

n2+ = cos(α)
MA +MB

||MA +MB ||
− sin(α)

MA ×MB

||MA ×MB ||
, (3)

n2− = − cos(α)
MA +MB

||MA +MB ||
+ sin(α)

MA ×MB

||MA ×MB ||
,

where

α = arccos

(√
2 (MA ·MB − cos(θ))

(1− cos(θ))(1 +MA ·MB)

)
. (4)

The ± axes correspond to opposite sense of rotation. In general only one of the two is correct. It can easily be
checked, which one is the correct one for a given MA, MB and θ.

5. Once we have the spin-rotations that are symmetries of each permutation chain, we find the spin-rotations (if
any) that are common to all chains. These, together with the spatial part of the symmetry corresponding the
permutation and potentially time-reversal, are symmetries of the system.

SYMMETRIZATION OF TENSORS

Here we briefly describe the procedure we use for obtaining the symmetry restriced form of response tensors. This
has also been discussed in Ref. [2]. The basic process is:

1. Obtain the list of symmetry operations for a given crystal and magnetic structure. For this we use the alghorithm
described in the previous section.

2. For each symmetry operation we determine the transformation of the reponse tensor and set up a system of
linear equations that have to be satisfied for the tensor. For symmetry operations containing time-reversal we
have to separate the tensor into T -even and T -odd parts. In general for the Edelstein effect response tensor,
for symmetry operation without time-reversal we can write the transformation as:

χij = Rs
ikχkl(R

E)−1
lj , (5)

where Rs, RE are the matrices representing the transformation of the spin and the electric field under the
symmetry operation. For symmetry operations with time-reversal the transformation can be written as:

χeven
ij = −Rs

ikχ
even
kl (RE)−1

lj , (6)

χodd
ij = Rs

ikχ
odd
kl (RE)−1

lj , (7)

We note that since spin is odd under time-reversal and the electric field is even, the + sign corresponds to the
odd part of the response tensor and − to the even part.
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3. Eqs. (5), (6),(7) form a set of linear equations for components of the response tensor, which have to be solved.
This system of equations either has no solutions, in which case the response tensor is null or it has infinitely
many solutions. These solutions can be parametrized with free variables and these free variables are then the
independent components of the response tensor. The number of free variables is the dimension of the vector
space formed by the solutions of the equation system.

The system of equations that has to be solved can be written as:

Y χv = 0, (8)

where χv is the vector formed from the components of the χij matrix and Y is a matrix reprensenting the
tranformation of the tensor by the symmetry operation. In the present case, where χ is a rank 2 tensor, Y is
a 9x9 matrix. The easiest way how to solve this is using the Gaussian elimination, i.e. converting the matrix
Y to reduced row echelon form. This allows directly eliminating the dependent tensor components. However,
the Gaussian elimination is not numerically stable and thus for numerical solution it is better to use the SVD
decomposition. We first use SVD decomposition to determine the null space of matrix Y , i.e. the vector space
of all the solutions and then use the gaussian elimination on the basis vectors of the null space, which allows
eliminating the dependent variables.

4. This procedure is then repeated for every symmetry operation in the group. It is sufficient to consider only the
generators of the group since they fully determine the symmetry of the tensor.

This whole procedure is implemented in the open-source code Symmetr [1]. We describe in the next section how
this code can be directly used for determining the symmetry of the materials from MAGNDATA.

SYMMETRY ANALYSIS FOR MATERIALS FROM MAGNDATA

We have used the approach outlined in the previous section to analyze the symmetry of the non-relativistic Edelstein
effect for all the materials from MAGNDATA [5, 6]. In Table V we give only the information on whether each material
has a net or a sublattice non-relativistic Edelstein effect. In a separate file ’sot database out.json’ we give the full
tensors for each material. This file can be loaded into python as follows:

import pandas as pd

df = pd.read_json(’sot_database_out.json’)

The column ’X noso’ contains the symmetry tensors. These can be converted into python dictionary using the ’eval’
command. The individual entries of the dictionary are the even and odd symmetry tensors for the total and sublattice
Edelstein effect. Note that we consider here only non-equivalent magnetic sites for the symmetry analysis.

The symmetry tensors can be converted into internal format used by the Symmetr code, which allows for easy
printing or manipulation of the tensors. To do so the Symmetr python package must be installed, which can be done
using pip. On linux:

pip install symmetr

For example, to convert, the total even tensor for the first row of the table:

from symmetr.tensors import Tensor

X = Tensor.load(eval(df.loc[0][’X_noso’])[’tot’][’even’])

X.pprint()

Alternatively the tensors for the MAGNDATA materials can be directly obtained using the Symmetr code by
specifying their id. For example to obtain the non-relativistic symmetry of the Edelstein effect for LuFeO3:

symmetr res s E --magndata 0.117 --noso
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TABLE V: Non-relativistic Edelstein effect symmetry for materials from
MAGNDATA. The index refers to the MAGNDATA index. For each
material we show whether it has global inversion symmetry, whether it
is antiferromagnetic, whether a global non-relativistic Edelstein effect is
allowed or if it is allowed on some magnetic sublattice.

index material inversion antiferromagnetic total sublattice

0.2 Cd2Os2O7 ✓ ✓ ✗ ✗
0.6 YMnO3 ✗ ✓ ✓ ✓
0.7 ScMnO3 ✗ ✓ ✓ ✓
0.8 ScMnO3 ✗ ✓ ✓ ✓
0.9 GdB4 ✗ ✓ ✓ ✓
0.10 DyFeO3 ✗ ✓ ✓ ✓
0.11 DyFeO3 ✗ ✗ ✓ ✓
0.12 U3(Al3Ru)4 ✗ ✓ ✓ ✓
0.17 FePO4 ✗ ✓ ✓ ✓
0.20 MnTe2 ✓ ✓ ✗ ✗
0.26 TmAgGe ✗ ✗ ✓ ✓
0.27 Y(Fe2Ge)2 ✗ ✓ ✓ ✓
0.28 LiFe(SiO3)2 ✗ ✓ ✓ ✓
0.29 Er2Ti2O7 ✓ ✓ ✗ ✗
0.30 YbMnO3 ✗ ✓ ✗ ✓
0.31 HoMnO3 ✗ ✓ ✓ ✓
0.32 HoMnO3 ✗ ✓ ✓ ✓
0.33 HoMnO3 ✗ ✓ ✓ ✓
0.36 NiF2 ✓ ✗ ✗ ✗
0.37 U3Al2Si3 ✗ ✗ ✓ ✓
0.39 NaNd2RuO6 ✓ ✗ ✗ ✓
0.40 Mn2O3 ✓ ✓ ✗ ✓
0.41 Mn2O3 ✓ ✓ ✗ ✓
0.42 HoMnO3 ✗ ✓ ✓ ✓
0.43 HoMnO3 ✗ ✓ ✓ ✓
0.44 YMnO3 ✗ ✓ ✗ ✓
0.46 BaCaCo4O7 ✗ ✗ ✓ ✓
0.47 Gd2Sn2O7 ✓ ✓ ✗ ✗
0.48 Tb2Sn2O7 ✓ ✗ ✗ ✗
0.49 Ho2Ru2O7 ✓ ✗ ✗ ✗
0.51 Ho2Ru2O7 ✓ ✗ ✗ ✗
0.64 MnV2O4 ✓ ✗ ✗ ✓
0.69 Co2H25C15O7 ✓ ✗ ✗ ✓
0.70 Na3CoC2ClO6 ✓ ✓ ✗ ✗
0.74 Mn3CuN ✓ ✓ ✗ ✗
0.77 Tb2Ti2O7 ✓ ✗ ✗ ✗
0.78 Ni(NO3)2 ✓ ✗ ✗ ✗
0.80 U2InPd2 ✗ ✓ ✓ ✓
0.81 U2SnPd2 ✗ ✓ ✓ ✓
0.85 KCo4(PO4)3 ✓ ✗ ✗ ✓
0.88 LiNiPO4 ✗ ✓ ✓ ✓
0.90 Rb2Fe2As2O9 ✓ ✓ ✗ ✓
0.91 Rb2Fe2As2O9 ✓ ✗ ✗ ✓
0.96 CoSO4 ✓ ✓ ✗ ✗
0.97 Fe(SbO2)2 ✗ ✓ ✗ ✗
0.101 Mn2GeO4 ✓ ✓ ✗ ✓
0.102 Mn2GeO4 ✓ ✓ ✗ ✓
0.103 Mn2GeO4 ✓ ✓ ✗ ✓
0.104 ErVO3 ✓ ✓ ✗ ✗
0.106 DyVO3 ✓ ✗ ✗ ✓
0.107 Ho2Ge2O7 ✗ ✓ ✓ ✓
0.108 Mn3Ir ✓ ✓ ✗ ✗
0.109 Mn3Pt ✓ ✓ ✗ ✗
0.117 LuFeO3 ✗ ✓ ✓ ✓
0.119 CoSe2O5 ✗ ✓ ✓ ✓

Continued on next page
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index material inversion antiferromagnetic total sublattice

0.121 Li2Co(SO4)2 ✓ ✗ ✗ ✗
0.127 Dy ✓ ✓ ✗ ✓
0.129 Cu3Mo2O9 ✗ ✓ ✓ ✓
0.130 Cu3Mo2O9 ✗ ✓ ✓ ✓
0.132 Mn(C2N3)2 ✓ ✗ ✗ ✗
0.133 Ni3B7ClO13 ✗ ✓ ✓ ✓
0.134 Mn3B7IO13 ✗ ✓ ✓ ✓
0.135 Ni3B7BrO13 ✗ ✓ ✓ ✓
0.136 Co3B7BrO13 ✗ ✓ ✓ ✓
0.140 Lu(Fe2Ge)2 ✗ ✓ ✓ ✓
0.141 Tb5Ge4 ✗ ✓ ✓ ✓
0.145 Co3TeO6 ✗ ✓ ✓ ✓
0.150 NiS2 ✓ ✓ ✗ ✗
0.152 LiFePO4 ✗ ✓ ✓ ✓
0.157 Yb2Sn2O7 ✓ ✗ ✗ ✗
0.158 Yb2Ti2O7 ✓ ✗ ✗ ✗
0.159 DyCoO3 ✗ ✓ ✓ ✓
0.160 TbCoO3 ✗ ✓ ✓ ✓
0.164 Y2MnCoO6 ✓ ✗ ✗ ✗
0.165 SrMnVHO5 ✗ ✗ ✓ ✓
0.167 Nd3Mg2Sb3O14 ✓ ✗ ✗ ✗
0.168 Fe2H4NF6 ✓ ✓ ✗ ✓
0.169 U3As4 ✗ ✗ ✗ ✓
0.170 U3P4 ✗ ✗ ✗ ✓
0.171 DyScO3 ✗ ✓ ✓ ✓
0.175 Ca2CoSi2O7 ✗ ✗ ✓ ✓
0.177 Mn3GaN ✓ ✓ ✗ ✗
0.179 FeH10N2Cl5O ✗ ✗ ✓ ✓
0.182 KCrF4 ✗ ✓ ✓ ✓
0.184 Nd5Si4 ✗ ✗ ✓ ✓
0.185 Nd5Ge4 ✓ ✗ ✗ ✓
0.188 CeMnAsO ✗ ✓ ✓ ✓
0.191 BaCuF4 ✗ ✗ ✓ ✓
0.192 RbFe2F6 ✓ ✓ ✗ ✓
0.196 Nb2Co4O9 ✗ ✓ ✓ ✓
0.197 Nb2Co4O9 ✗ ✓ ✓ ✓
0.199 Mn3Sn ✓ ✓ ✗ ✓
0.200 Mn3Sn ✓ ✓ ✗ ✓
0.203 Mn3Ge ✓ ✗ ✗ ✓
0.204 Ca2MnReO6 ✓ ✗ ✗ ✗
0.207 Tl5(Fe4Se5)2 ✓ ✓ ✗ ✓
0.210 Sr2CoOsO6 ✓ ✓ ✗ ✗
0.218 Co2SiO4 ✓ ✓ ✗ ✓
0.219 Co2SiO4 ✓ ✓ ✗ ✓
0.220 Mn2SiO4 ✓ ✗ ✗ ✓
0.221 Fe2SiO4 ✓ ✓ ✗ ✓
0.236 Ca(Al2Fe)4 ✓ ✓ ✗ ✗
0.237 Er2Sn2O7 ✓ ✓ ✗ ✗
0.238 Er2Sn2O7 ✓ ✓ ✗ ✗
0.240 Er2Cu2O5 ✗ ✓ ✓ ✓
0.242 Tm2Cu2O5 ✗ ✗ ✓ ✓
0.253 Cs2FeH2Cl5O ✗ ✗ ✓ ✓
0.262 FeCoPO5 ✓ ✓ ✗ ✓
0.268 Tb2MnNi ✗ ✗ ✓ ✓
0.269 Tb2MnNi ✓ ✗ ✗ ✓
0.273 Mn3ZnN ✓ ✓ ✗ ✗
0.279 Mn3As ✓ ✓ ✗ ✓
0.280 Mn3As ✓ ✓ ✗ ✓
0.281 V2Co2O7 ✗ ✓ ✓ ✓
0.287 SrVCoHO5 ✗ ✓ ✓ ✓

Continued on next page
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index material inversion antiferromagnetic total sublattice

0.288 NdMnO3 ✓ ✗ ✗ ✗
0.289 NdMnO3 ✓ ✗ ✗ ✓
0.292 NiTe2O5 ✓ ✓ ✗ ✓
0.294 Cu4H6BrO6F ✓ ✗ ✗ ✓
0.295 Cu2H3ClO3 ✓ ✓ ✗ ✓
0.296 Cu2ClO3 ✓ ✗ ✗ ✓
0.298 BaNa2V2FeO8 ✓ ✗ ✗ ✗
0.311 CoGeO3 ✗ ✓ ✓ ✓
0.313 MnGeO3 ✗ ✓ ✓ ✓
0.314 ZrCo2(GeO3)4 ✓ ✗ ✗ ✗
0.316 DyCrWO6 ✗ ✓ ✓ ✓
0.318 Tm2MnCoO6 ✓ ✗ ✗ ✓
0.319 Tm2MnCoO6 ✓ ✗ ✗ ✓
0.320 U2InPd2 ✗ ✓ ✓ ✓
0.321 U2SnPd2 ✗ ✓ ✓ ✓
0.324 Yb2CdS4 ✓ ✓ ✗ ✗
0.326 Nd2Sn2O7 ✓ ✓ ✗ ✗
0.328 KMnF4 ✓ ✓ ✗ ✗
0.337 NdFeO3 ✓ ✓ ✗ ✓
0.339 Nd2Hf2O7 ✓ ✓ ✗ ✗
0.340 Nd2Zr2O7 ✓ ✓ ✗ ✗
0.342 Tb3Ge5 ✗ ✓ ✓ ✓
0.347 Er2ReC2 ✗ ✓ ✓ ✓
0.349 Nd2NiO4 ✓ ✗ ✗ ✓
0.350 TbAlO3 ✗ ✓ ✓ ✓
0.352 TbFeO3 ✓ ✗ ✗ ✓
0.353 TbFeO3 ✗ ✓ ✓ ✓
0.357 CaFe5O7 ✓ ✗ ✗ ✓
0.368 CoH9C4NO6 ✓ ✗ ✗ ✗
0.369 CoH9C4NO6 ✓ ✗ ✗ ✗
0.370 NdMnO3 ✓ ✗ ✗ ✗
0.371 NdMnO3 ✓ ✗ ✗ ✓
0.375 La2CoIrO6 ✓ ✗ ✗ ✗
0.377 Mn3Ge ✓ ✓ ✗ ✓
0.385 LiCoPO4 ✗ ✓ ✓ ✓
0.387 Fe3BO5 ✗ ✗ ✓ ✓
0.388 Al2Co3(SiO4)3 ✗ ✓ ✓ ✓
0.394 CdCu2(BO3)2 ✗ ✓ ✓ ✓
0.396 MnGaPt ✓ ✗ ✗ ✗
0.398 Ca2RuO4 ✓ ✓ ✗ ✗
0.407 NdSi ✓ ✗ ✗ ✓
0.408 PrSi ✓ ✗ ✗ ✓
0.409 TmNi ✓ ✗ ✗ ✓
0.411 Tb5Ge4 ✗ ✓ ✓ ✓
0.412 Tb5Ge4 ✗ ✓ ✓ ✓
0.422 EuMnSb2 ✗ ✓ ✓ ✓
0.424 EuMnSb2 ✗ ✓ ✓ ✓
0.425 Na2CoP2O7 ✗ ✓ ✓ ✓
0.430 Yb3Pt4 ✗ ✓ ✓ ✓
0.431 Cu(BO2)2 ✗ ✓ ✓ ✓
0.437 Ho3NiGe2 ✓ ✗ ✗ ✓
0.438 Pr3CoGe2 ✓ ✗ ✗ ✓
0.440 SrCu(TeO3)2 ✗ ✓ ✓ ✓
0.441 Nb2Fe4O9 ✗ ✓ ✓ ✓
0.446 MnCoGe ✓ ✗ ✗ ✓
0.449 Tb2Pt ✓ ✗ ✗ ✓
0.450 Nd5Ge4 ✓ ✗ ✗ ✓
0.473 La(MnSi)2 ✗ ✗ ✗ ✗
0.478 SmCrO3 ✓ ✓ ✗ ✓
0.479 SmCrO3 ✓ ✗ ✗ ✓

Continued on next page
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index material inversion antiferromagnetic total sublattice

0.480 HoNi ✓ ✗ ✗ ✓
0.481 HoNi ✓ ✗ ✗ ✓
0.487 Er(CrSi)2 ✗ ✗ ✗ ✗
0.488 YbMnO3 ✗ ✓ ✓ ✓
0.489 YbMnO3 ✗ ✓ ✓ ✓
0.490 YbMnO3 ✗ ✗ ✓ ✓
0.491 NdB4 ✗ ✓ ✓ ✓
0.492 NdB4 ✗ ✓ ✓ ✓
0.495 La(MnSi)2 ✗ ✗ ✗ ✗
0.496 La(MnSi)2 ✗ ✗ ✗ ✗
0.497 La(MnSi)2 ✗ ✗ ✗ ✗
0.506 Cs2Cu3SnF12 ✓ ✓ ✗ ✓
0.511 Ta2Co4O9 ✗ ✓ ✓ ✓
0.520 TbCoO3 ✗ ✓ ✓ ✓
0.521 DyCoO3 ✗ ✓ ✓ ✓
0.529 Nb2Co4O9 ✗ ✓ ✓ ✓
0.530 SrCu(TeO3)2 ✗ ✓ ✓ ✓
0.544 Mn2FeReO6 ✓ ✗ ✗ ✓
0.545 Mn2FeReO6 ✓ ✗ ✗ ✓
0.550 Mn3ReO6 ✓ ✓ ✗ ✓
0.551 Mn3ReO6 ✓ ✓ ✗ ✓
0.552 Mn(PbO2)2 ✗ ✓ ✓ ✓
0.564 U2Si5Rh3 ✓ ✓ ✗ ✓
0.565 Ce2Ni3Ge5 ✓ ✓ ✗ ✓
0.571 CoSO4 ✓ ✓ ✗ ✗
0.572 Na2CrNiF7 ✓ ✗ ✗ ✗
0.573 Na2CrNiF7 ✓ ✗ ✗ ✗
0.574 MnFeH4O2F5 ✗ ✗ ✓ ✓
0.576 Cr2F5 ✓ ✗ ✗ ✗
0.577 BaMnFeF7 ✓ ✗ ✗ ✓
0.578 BaNaFe2F9 ✓ ✗ ✗ ✓
0.579 Na2FeNiF7 ✓ ✗ ✗ ✗
0.580 Na2FeNiF7 ✓ ✗ ✗ ✗
0.583 Fe2H4O2F5 ✓ ✗ ✗ ✗
0.584 Fe2H4O2F5 ✓ ✗ ✗ ✗
0.588 PrCrO3 ✓ ✗ ✗ ✓
0.589 NdCrO3 ✓ ✓ ✗ ✓
0.590 ErCrO3 ✓ ✓ ✗ ✓
0.612 Cu2SO5 ✓ ✗ ✗ ✓
0.625 U2InPd2 ✗ ✓ ✓ ✓
0.641 Mn3Ga ✓ ✗ ✗ ✗
0.652 HoMnO3 ✗ ✓ ✓ ✓
0.656 Nd(MnGe)2 ✗ ✗ ✗ ✗
0.657 Pr(MnGe)2 ✗ ✗ ✗ ✗
0.658 BaCu(TeO3)2 ✗ ✓ ✓ ✓
0.663 Mn3Sn2 ✓ ✗ ✗ ✓
0.664 Mn3Sn2 ✓ ✗ ✗ ✓
0.684 TbPt ✓ ✗ ✗ ✓
0.685 ErPt ✓ ✗ ✗ ✓
0.686 HoPt ✓ ✗ ✗ ✓
0.687 DyPt ✓ ✗ ✗ ✓
0.688 TmPt ✓ ✗ ✗ ✓
0.697 SmCrO3 ✓ ✗ ✗ ✓
0.698 SmCrO3 ✓ ✓ ✗ ✓
0.707 Tb2(Ga3Ir)3 ✓ ✗ ✗ ✓
0.715 HoCrWO6 ✗ ✓ ✓ ✓
0.716 HoCrWO6 ✗ ✓ ✓ ✓
0.724 BaCoSiO4 ✗ ✓ ✓ ✓
0.727 CsMn2F6 ✓ ✗ ✗ ✓
0.740 Dy3Ga5O12 ✓ ✓ ✗ ✓

Continued on next page
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index material inversion antiferromagnetic total sublattice

0.741 Er3Ga5O12 ✓ ✓ ✗ ✓
0.743 Ho3Al5O12 ✓ ✓ ✗ ✓
0.744 Tb3Al5O12 ✓ ✓ ✗ ✓
0.745 Ho3Ga5O12 ✓ ✓ ✗ ✓
0.746 Tb3Ga5O12 ✓ ✓ ✗ ✓
0.756 V4GaS8 ✗ ✗ ✓ ✓
0.761 SrFe2Se2O ✗ ✓ ✓ ✓
0.762 SrFe2S2O ✗ ✓ ✓ ✓
0.763 Mn5P4(HO2)10 ✓ ✗ ✗ ✓
0.764 Mn5P4(HO2)10 ✓ ✗ ✗ ✓
0.765 Mn5P4(HO2)10 ✓ ✗ ✗ ✓
0.768 SrMnSb2 ✗ ✗ ✓ ✓
0.773 NdMnSi2 ✓ ✗ ✗ ✓
0.782 NdScO3 ✗ ✓ ✓ ✓
0.783 NdInO3 ✗ ✓ ✓ ✓
0.785 NdVO3 ✓ ✓ ✗ ✓
0.788 YVO3 ✓ ✓ ✗ ✗
0.803 MnNbP ✗ ✓ ✓ ✓
0.809 Fe2WO6 ✗ ✓ ✓ ✓
0.810 Fe2WO6 ✓ ✗ ✗ ✓
0.812 Fe2WO6 ✗ ✓ ✓ ✓
0.818 Ta2MnO6 ✗ ✓ ✓ ✓
0.819 MnNb2O6 ✗ ✓ ✓ ✓
0.831 BaCaFe4O7 ✗ ✗ ✓ ✓
1.0.4 CsNiCl3 ✗ ✓ ✓ ✓
1.0.8 Ba3MnNb2O9 ✗ ✓ ✗ ✗
1.0.14 CsFeCl3 ✗ ✓ ✗ ✗
1.0.22 K2Mn3V2CO11 ✗ ✓ ✗ ✓
1.0.24 ThMn2 ✗ ✓ ✗ ✓
1.0.31 Eu(InAs)2 ✗ ✓ ✓ ✓
1.0.32 Eu(InAs)2 ✗ ✓ ✓ ✓
1.0.33 FeF3 ✓ ✓ ✗ ✗
1.0.35 CsMnBr3 ✗ ✓ ✗ ✗
1.0.40 RbFeCl3 ✗ ✓ ✗ ✗
1.0.41 RbNiCl3 ✗ ✓ ✗ ✗
1.0.42 CsNiCl3 ✗ ✓ ✗ ✗
1.0.44 Ba3CoSb2O9 ✗ ✓ ✗ ✗
1.0.45 Ba3CoSb2O9 ✗ ✓ ✗ ✗
1.0.46 Ba3MnSb2O9 ✗ ✓ ✓ ✓
1.0.49 BaCoSiO4 ✗ ✓ ✓ ✓
1.0.50 CoGeO3 ✓ ✗ ✗ ✓
1.0.52 Tb7Ag27 ✗ ✓ ✓ ✓
1.2 CuSe2O5 ✓ ✓ ✗ ✗
1.13 Ba3Nb2NiO9 ✗ ✓ ✗ ✗
1.14 BaHo2NiO5 ✓ ✓ ✗ ✓
1.15 BaHo2NiO5 ✓ ✓ ✗ ✓
1.19 PrMn2O5 ✗ ✓ ✓ ✓
1.25 KFe3(SO7)2 ✓ ✓ ✗ ✗
1.34 HoGeAu ✗ ✓ ✗ ✓
1.36 BaDy2NiO5 ✓ ✓ ✗ ✓
1.38 NaNd2OsO6 ✓ ✓ ✗ ✓
1.39 LiFe(GeO3)2 ✓ ✓ ✗ ✓
1.44 NdNiO3 ✗ ✓ ✗ ✓
1.48 HoNiO3 ✗ ✓ ✓ ✓
1.51 Cs2CoCl4 ✗ ✓ ✓ ✓
1.53 BaEr2NiO5 ✓ ✓ ✗ ✓
1.54 GdMn2O5 ✗ ✓ ✓ ✓
1.67 TmInPt ✗ ✓ ✓ ✓
1.68 NaNdFeWO6 ✗ ✓ ✓ ✓
1.73 CaV2O4 ✓ ✓ ✗ ✓

Continued on next page
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index material inversion antiferromagnetic total sublattice

1.74 Mn2BiO5 ✗ ✓ ✓ ✓
1.75 Mn2BiO5 ✗ ✓ ✓ ✓
1.76 DyMn2O5 ✗ ✓ ✓ ✓
1.77 Sr2IrO4 ✓ ✓ ✗ ✓
1.83 Ba2Fe2O5 ✓ ✓ ✗ ✓
1.85 Mn ✗ ✓ ✓ ✓
1.88 Mn5Si3 ✓ ✓ ✗ ✓
1.89 DyFe3(BO3)4 ✗ ✓ ✓ ✓
1.92 HoFe3(BO3)4 ✗ ✓ ✓ ✓
1.93 HoFe3(BO3)4 ✗ ✓ ✗ ✓
1.95 BaNd2O4 ✓ ✓ ✗ ✓
1.96 BaNd2O4 ✓ ✓ ✗ ✓
1.98 Dy(Fe2Ge)2 ✗ ✓ ✓ ✓
1.99 CsCoH4Cl3O2 ✓ ✓ ✗ ✓
1.102 U2InNi2 ✓ ✓ ✗ ✓
1.108 TbMn2O5 ✗ ✓ ✓ ✓
1.109 HoMn2O5 ✗ ✓ ✓ ✓
1.114 Ca4IrO6 ✓ ✓ ✗ ✗
1.115 Dy3(Al3Ru)4 ✓ ✓ ✗ ✓
1.116 MnVAgO4 ✓ ✓ ✗ ✗
1.117 NaFePO4 ✓ ✓ ✗ ✗
1.118 GdPO4 ✓ ✓ ✗ ✓
1.122 Cu3BiSe2BrO8 ✓ ✓ ✗ ✓
1.123 YCu3Se2ClO8 ✓ ✓ ✗ ✓
1.124 BaYFe4O7 ✗ ✓ ✓ ✓
1.126 NaCoSO4F ✓ ✓ ✗ ✗
1.127 NiBiPO5 ✓ ✓ ✗ ✓
1.128 CoBiPO5 ✓ ✓ ✗ ✓
1.129 Fe3AgH6(SO7)2 ✓ ✓ ✗ ✗
1.133 Cu(SbO3)2 ✓ ✓ ✗ ✗
1.135 Co2H4C8O11 ✓ ✓ ✗ ✓
1.138 MgV2O4 ✗ ✓ ✓ ✓
1.147 Li2Fe(SO4)2 ✓ ✓ ✗ ✗
1.161 PrFe3(BO3)4 ✗ ✓ ✓ ✓
1.167 NiS2 ✓ ✓ ✗ ✗
1.170 Tm5(In2Ni)2 ✗ ✓ ✓ ✓
1.185 Cu2GeO4 ✗ ✓ ✗ ✓
1.196 MnV2O6 ✓ ✓ ✗ ✓
1.197 Fe4Si2Sn7O16 ✓ ✓ ✗ ✗
1.201 Cr2ReO8 ✓ ✓ ✗ ✓
1.202 CrReO4 ✓ ✓ ✗ ✓
1.203 Si(NiO2)2 ✓ ✓ ✗ ✓
1.204 Si(NiO2)2 ✓ ✓ ✗ ✓
1.207 U2SnRh2 ✓ ✓ ✗ ✓
1.216 BaNd2NiO5 ✓ ✓ ✗ ✓
1.217 BaTb2NiO5 ✓ ✓ ✗ ✓
1.218 BaTm2NiO5 ✓ ✓ ✗ ✓
1.224 Nb2CoO6 ✗ ✓ ✓ ✓
1.226 CeCo2(GeO3)4 ✓ ✓ ✗ ✗
1.227 Ca2Cr2O5 ✗ ✓ ✓ ✓
1.235 BaTiCu4P4O17 ✗ ✓ ✓ ✓
1.237 VCl2 ✗ ✓ ✗ ✗
1.238 VBr2 ✗ ✓ ✗ ✗
1.266 SmFe3(BO3)4 ✗ ✓ ✗ ✓
1.267 Dy2(Al3Co)3 ✗ ✓ ✓ ✓
1.272 CeNiAsO ✗ ✓ ✓ ✓
1.274 DyFeWO6 ✗ ✓ ✓ ✓
1.279 Ho2Cu2O5 ✗ ✓ ✓ ✓
1.280 Yb2Cu2O5 ✗ ✓ ✓ ✓
1.299 GdMn2 ✗ ✓ ✓ ✓

Continued on next page
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1.300 GdMn2 ✗ ✓ ✓ ✓
1.301 MnBiTeO6 ✓ ✓ ✗ ✓
1.302 Ba2CoO4 ✓ ✓ ✗ ✓
1.303 Dy3(Al3Ru)4 ✓ ✓ ✗ ✓
1.306 BaNa2MnV2O8 ✓ ✓ ✗ ✗
1.307 Mn5Si3 ✗ ✓ ✓ ✓
1.323 CoGeO3 ✓ ✓ ✗ ✓
1.324 DyMn2O5 ✗ ✓ ✓ ✓
1.326 PrMn2O5 ✓ ✓ ✗ ✓
1.327 LaMn2O5 ✓ ✓ ✗ ✓
1.328 Yb2MnCoO6 ✗ ✓ ✓ ✓
1.330 Lu2MnCoO6 ✗ ✓ ✓ ✓
1.338 U2InNi2 ✓ ✓ ✗ ✓
1.340 LuMnO3 ✗ ✓ ✗ ✓
1.342 Co3(PO4)2 ✓ ✓ ✗ ✓
1.343 Ba2Co9O14 ✓ ✓ ✗ ✓
1.345 NaMnF4 ✓ ✓ ✗ ✗
1.350 BaNd2CoO5 ✓ ✓ ✗ ✓
1.352 Ba2Ni2ClF7 ✓ ✓ ✗ ✓
1.357 Ho3Ge4 ✓ ✓ ✗ ✓
1.359 Dy3Ge4 ✓ ✓ ✗ ✓
1.362 Er3Ge4 ✓ ✓ ✗ ✓
1.380 Sr2FeClO3 ✗ ✓ ✗ ✓
1.381 Sr2FeBrO3 ✗ ✓ ✗ ✓
1.382 Ca2FeClO3 ✗ ✓ ✗ ✓
1.383 Ca2FeBrO3 ✗ ✓ ✗ ✓
1.385 Sr2FeO3F ✗ ✓ ✗ ✓
1.386 Sr2FeO3F ✗ ✓ ✗ ✓
1.387 Sr2FeO3F ✗ ✓ ✗ ✓
1.418 Cu4O3 ✗ ✓ ✗ ✓
1.431 Ca2Mn3O8 ✓ ✓ ✗ ✓
1.441 NaFe3H6(SO7)2 ✓ ✓ ✗ ✗
1.443 BaGd2CuO5 ✗ ✓ ✓ ✓
1.444 Er2Pt ✗ ✓ ✓ ✓
1.455 Mn6Si7Ni16 ✓ ✓ ✗ ✓
1.456 Sr2Cu3(SeO)2 ✗ ✓ ✗ ✗
1.476 Ba2CoO4 ✓ ✓ ✗ ✓
1.477 Ba2CoO4 ✓ ✓ ✗ ✓
1.484 Li2MnGeO4 ✗ ✓ ✓ ✓
1.498 CuSi(HO2)2 ✓ ✓ ✗ ✓
1.499 CsFe(MoO4)2 ✗ ✓ ✓ ✓
1.519 CoSO4 ✓ ✓ ✗ ✗
1.524 MnInO3 ✗ ✓ ✗ ✓
1.525 MnInO3 ✗ ✓ ✗ ✓
1.528 Fe4Bi2O9 ✓ ✓ ✗ ✓
1.533 TbC2 ✗ ✓ ✓ ✓
1.549 U2InNi2 ✓ ✓ ✗ ✓
1.577 SrNd2O4 ✓ ✓ ✗ ✓
1.584 PrFeAsO ✓ ✓ ✗ ✓
1.587 NdFeAsO ✓ ✓ ✗ ✓
1.595 CaCoSO ✗ ✓ ✓ ✓
1.599 DyMn2O5 ✗ ✓ ✓ ✓
1.622 CoGeO3 ✓ ✓ ✗ ✓
1.649 Sr3ZnIrO6 ✓ ✓ ✗ ✗
1.651 BaHo2CuO5 ✓ ✓ ✗ ✓
1.657 LuNiO3 ✗ ✓ ✓ ✓
1.660 FeSb6(Pb2S7)2 ✓ ✓ ✗ ✗
1.661 La2NiIrO6 ✓ ✓ ✗ ✗
1.662 La2NiIrO6 ✓ ✓ ✗ ✗
2.2 Sr2Fe2S2OF2 ✓ ✓ ✗ ✓
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2.3 HoNiO3 ✗ ✓ ✓ ✓
2.5 Mn3CuN ✓ ✗ ✗ ✓
2.6 Nd2CuO4 ✓ ✓ ✗ ✗
2.7 Sm2CuO4 ✓ ✓ ✗ ✗
2.8 SrHo2O4 ✗ ✓ ✓ ✓
2.9 Ca3CuNi2(PO4)4 ✓ ✓ ✗ ✓
2.10 HoP ✓ ✗ ✗ ✗
2.11 TbMg ✓ ✗ ✗ ✗
2.12 TbMg ✓ ✗ ✗ ✗
2.13 UP ✓ ✓ ✗ ✗
2.14 NdMg ✓ ✓ ✗ ✗
2.18 Sc2MnNiO6 ✓ ✓ ✗ ✓
2.19 Mn3ZnC ✓ ✗ ✗ ✗
2.20 UAs ✓ ✓ ✗ ✓
2.21 TbHO2 ✗ ✓ ✓ ✓
2.22 Ta2FeO6 ✓ ✓ ✗ ✗
2.23 Sr2CoAg2(SeO)2 ✓ ✓ ✗ ✗
2.24 Ba2CoAg2(SeO)2 ✓ ✓ ✗ ✗
2.27 Sr2Mn3(SbO)2 ✗ ✓ ✗ ✓
2.28 NpGa5Ni ✓ ✗ ✗ ✗
2.29 Mn3O4 ✓ ✗ ✗ ✓
2.31 Mn3ZnN ✓ ✓ ✗ ✓
2.33 Na2Mn3Se4 ✓ ✓ ✗ ✓
2.35 CrSe ✗ ✓ ✗ ✗
2.48 Pr2CuO4 ✓ ✓ ✗ ✗
2.49 La2Fe2Se2O3 ✓ ✓ ✗ ✓
2.51 EuMnBi2 ✗ ✗ ✗ ✓
2.52 Mn3O4 ✗ ✗ ✓ ✓
2.53 Ba2Mn3(SbO)2 ✗ ✓ ✗ ✓
2.54 Sr2Cr3(AsO)2 ✓ ✓ ✗ ✓
2.55 Sr2Fe3Se2O3 ✗ ✓ ✓ ✓
2.56 La2Fe2S2O3 ✓ ✓ ✗ ✓
2.57 Tb(MnSi)2 ✓ ✗ ✗ ✓
2.60 Nd(MnSi)2 ✓ ✗ ✗ ✓
2.61 Fe3H4(OF4)2 ✓ ✓ ✗ ✗
2.62 TbCrO3 ✗ ✓ ✓ ✓
2.63 DyCrO3 ✓ ✓ ✗ ✓
2.64 DyCrO3 ✓ ✓ ✗ ✓
2.66 FeSn2 ✗ ✓ ✗ ✗
2.67 FeSn2 ✓ ✓ ✗ ✗
2.68 FeGe2 ✗ ✓ ✗ ✗
2.70 GdMg ✓ ✗ ✗ ✗
2.71 HoRh ✓ ✓ ✗ ✗
2.72 Nb3VS6 ✗ ✗ ✗ ✓
2.73 BaNd2ZnO5 ✓ ✓ ✗ ✓
2.75 Sr2Fe3S2O3 ✓ ✓ ✗ ✓
2.76 Sr2Fe3Se2O3 ✗ ✓ ✓ ✓
2.77 Eu2CuO4 ✓ ✓ ✗ ✗
2.78 Nd2CuO4 ✓ ✓ ✗ ✗
2.79 Pr2CuO4 ✓ ✓ ✗ ✗
2.81 Er(MnSi)2 ✓ ✗ ✗ ✓
2.82 Er(MnSi)2 ✓ ✗ ✗ ✓
2.83 Er(MnGe)2 ✓ ✗ ✗ ✓
2.84 Er(MnGe)2 ✓ ✗ ✗ ✓
2.85 BaHo2CuO5 ✗ ✓ ✓ ✓
2.86 Ta2FeO6 ✓ ✓ ✗ ✗
3.1 TmAgGe ✗ ✓ ✓ ✓
3.2 UO2 ✓ ✓ ✗ ✗
3.4 MgCr2O4 ✗ ✓ ✗ ✓
3.6 DyCu ✓ ✓ ✗ ✗
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3.7 NpBi ✓ ✓ ✗ ✗
3.8 NdZn ✓ ✓ ✗ ✗
3.9 NpS ✓ ✓ ✗ ✗
3.10 NpSe ✓ ✓ ✗ ✗
3.11 NpTe ✓ ✓ ✗ ✗
3.12 NpSb ✓ ✓ ✗ ✗
3.13 CeB6 ✓ ✓ ✗ ✓
3.18 HoRh ✓ ✓ ✗ ✗
3.19 CoO ✓ ✓ ✗ ✗
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