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Methods 14 

 15 

Study recruitment and sample preparation for platelet proteomics 16 

Ethical approval was granted from the Institutional Review Board (IRB) of Papa Giovanni 17 

XXIII Hospital, Bergamo, Italy (IRB approval number 1789/2013) and the Mater 18 

Misericordiae University Hospital, Dublin, Ireland (IRB approval number 1/378/2241). 19 

Patients over the age of 18 with an established diagnosis of MPN (PV n= 41, ET n= 59) 20 

according to the World Health Organization classification criteria (in situ at time of 21 

diagnosis)1, 2, 3 were invited to participate at their routine haematological follow-up (2014-22 

2022).  A control group of healthy donors (n= 40) were recruited from the same clinical sites 23 

and consisted of volunteers (predominantly hospital staff) over the age of 40, with no recent 24 

history of illness, no chronic inflammatory/medical conditions and not taking antiplatelet or 25 

anticoagulant therapy. Full blood count was assessed at the time of blood draw. Controls 26 

were not routinely screened for MPN driver mutations. Following informed consent, samples 27 

of whole blood collected in sodium citrate (0.105mol/L) were obtained by direct 28 

venipuncture. Platelets were isolated from platelet rich plasma (PRP) obtained by 29 

centrifugation of whole blood for 10 minutes at 400 g at room temperature (RT), according to 30 

an established previously published method4. Briefly, PRP was diluted in 1:2 ratio 31 

with Krebs Ringer buffer (4mM KCl, 107 mM NaCl, 20 mM NaHCo3, 2mM Na2SO4, pH 5). 32 

After centrifugation at 1,000 g for 10 min at RT, the platelet pellet was resuspended 33 



in Krebs Ringer buffer supplemented with glucose (0.9 g/L, PH 6) and centrifuged a second 34 

time (1,000 g, 10 min, RT). This washing procedure was repeated twice, and the platelets 35 

were resuspended at a concentration of 1x 109 platelets/mL in phosphate buffered saline 36 

(PBS) or PBS containing 1% Triton, snap frozen on dry ice and stored at -80 °C.   37 

 38 

Mass Spectrometry  39 

Platelets were lysed in RIPA buffer (100 mM Tris pH 8.0, 300 mM NaCl, 2% Triton‐X 100, 40 

0.2% SDS, 1% sodium deoxycholate) with protease and phosphatase inhibitors (Roche). 41 

Samples were precipitated with 95% acetone overnight at -20 °C, centrifuged at 14,000 g at 42 

4 °C for 10 minutes and the supernatant was removed. The protein pellet was resuspended 43 

in PBS and protein concentration was estimated by measuring absorbance at 280nm using a 44 

DS-11 spectrophotometer (DeNovix) as before5, 6. Mass spectrometry sample preparation 45 

was performed using the commercially available PreOmics iST HT 192x kit (P.O.00067). In 46 

brief, 50 µg of protein was simultaneously lysed, reduced, and alkylated for 10 min at 95 °C 47 

and 1000 rpm, transferred to a cartridge and subsequently double-digested with LysC and 48 

trypsin at 37 °C and 500 rpm for 1 hour. Peptides were purified with repeated washes and 49 

eluted. Samples were evaporated at 45 °C and peptides resuspended in LC-load buffer. 50 

Digested peptides were loaded onto C18 trap columns (Evotip) and washed with 20 μL 0.1% 51 

formic acid (FA) followed by the addition of 100 μL storage solvent (0.1% FA). Differential 52 

proteomic signatures were established using liquid chromatography mass spectrometry (LC-53 

MS) with a Bruker TimsTOF mass spectrometer connected to an EvoSep liquid 54 

chromatography system operated by the UCD Conway Proteomics Core facility.  55 

 56 

Samples were loaded onto the Evosep One LC system and separated with an increasing 57 

acetonitrile gradient over 40 minutes at a flow rate of 250 nl/min at room temperature. The 58 

mass spectrometer was operated in positive ion mode with a capillary voltage of 1500V, dry 59 

gas flow of 3 l/min and a dry temperature of 180 °C. All data was acquired with the 60 



instrument operating in trapped ion mobility spectrometry (TIMS) mode. Trapped ions were 61 

selected for MS/MS using parallel accumulation serial fragmentation (PASEF).  62 

 63 

Identified peptides from platelet samples were searched against a human FASTA (July 64 

2022) using MaxQuant (2.0.3.0) with specific parameters for trapped ion mobility spectra 65 

data dependent acquisition (TIMS DDA). In the main Andromeda search precursor, mass 66 

and fragment mass had an initial mass tolerance of 6 ppm and 20 ppm, respectively. The 67 

search included fixed modification of carbamidomethyl cysteine. Minimal peptide length was 68 

set to seven amino acids, and a maximum of two miscleavages was allowed. The false 69 

discovery rate (FDR) was set to 0.01 for peptide and protein identifications. The normalized 70 

protein intensity of each identified protein was used for label free quantitation (LFQ) as 71 

previously described7. 72 

 73 

Data analyses  74 

Continuous data were summarized as medians and IQRs and categorical data are 75 

presented as frequencies and percentages. To compare differences in clinical variables 76 

between healthy controls and MPN subtypes (ET and PV), we used violin and box plots and 77 

conducted Mann-Whitney U test for non-parametric data. For unsupervised clustering and 78 

visualization, we performed principal component analyses (identifying MPN subtypes by 79 

color). All analyses were performed using the R studio interface (version 2023.03.1+446). 80 

Statistical analysis of the LFQ intensities was performed using Perseus (version 2.0.10) and 81 

R (version 4.3.1). Protein identifications were filtered to eliminate identifications from the 82 

reverse database, proteins only identified by site, and common contaminants. For 83 

downstream analysis, only proteins identified in at least 50% of samples in at least one 84 

group (control/ET/PV) were included. Missing values were imputed using the random forest 85 

method (Missforest package, R/Bioconductor).  Data was log2-transformed and differential 86 

protein expression was established using the Limma software package within 87 

R/Bioconductor.  88 



 89 

Differential protein expression was adjusted for batch, patient age, sex, and treatment 90 

(antiplatelet and cytoreductive therapy) as potential confounding variables within the linear 91 

model in Limma (design <- 92 

model.matrix(~patientvar$Subtype+patientvar$Batch+patientvar$Age+patientvar$Sex+patie93 

ntvar$ASAnum+patientvar$HYDnum). Controlling for multiple comparisons was performed 94 

using the Benjamini-Hochberg defined false discovery rate (FDR). Significant differential 95 

protein expression was pre-specified as proteins with an FDR < 0.05 and a fold change of 96 

1.5 in MPN, as compared to healthy controls.  97 

 98 

A heatmap of the top 10 differentially expressed proteins (based on fold change and FDR 99 

<0.01) was generated using the pheatmap R package, and its built-in functions for 100 

hierarchical cluster analysis on the sample-to-sample Euclidean distance matrix of the 101 

expression data.  102 

 103 

 104 

Proteomic quality control and validation analysis 105 

To assess intra-donor platelet proteomic reproducibility, 6 patient samples were analyzed as 106 

technical replicates (5 in duplicate, 1 in triplicate). Pearson correlation coefficient (r) was 107 

performed on the log2 transformed LFQ- intensity of all proteins quantified (n= 1771) across 108 

technical replicate samples (Figure S1). To assess biological (inter-donor) variability in 109 

protein abundances, Pearson correlation coefficient (r) was performed on the log2 110 

transformed LFQ-intensity of all proteins quantified (n= 1952) across biologic replicate 111 

samples (control n= 40; MPN n= 100) (Figure S2, Tables S12 & S13).  112 

 113 

Pathway/Gene set enrichment analysis for differentially expressed (DE) proteins. 114 

Gene set enrichment analysis (GSEA)8, a well-established method for determining 115 

regulatory patterns in co-expressed genes, was performed on the entire DE protein set for 116 



each MPN subtype (PV & ET), using the Cancer Hallmarks gene sets from MSigDB9. The 117 

‘GSEA Pre-ranked’ function was used with a metric score that combines fold change and 118 

adjusted p-value together for improved gene ranking.  We used default settings with 1,000 119 

gene set permutations to generate p and q values and compared MPN subtypes. In these 120 

analyses, to allow for a broad comparison, we assessed all proteins that were differentially 121 

expressed according to FDR/adjusted p < 0.25 as recommended by the authors of GSEA8.  122 

 123 

 124 

 125 

Supplementary Tables 126 
 127 
Table S1: Characteristics of MPN Patients & Controls  128 
 129 
 ET PV Control 
Subject Count, n 59 41 40 
Sample Count, n 59 41 40 
Median age, y (range) 61 (32-86) 63 (38-83) 45 (24-61) 
Female, n (%) 32 (54) 22 (54) 24 (60) 
Platelet count (X109/L), median 
(25% quartile, 75% quartile) 

540 (422, 778) 465 (318, 638) 244 (220, 
265) 

White cell count (X109/L), median 
(25% quartile, 75% quartile) 

6.9 (6, 8.1) 8.9 (7.6, 11.2) 6.5 (5.2, 8.4) 

Hemoglobin (g/dL), median (25% 
quartile, 75% quartile) 

14.1 (13.4, 15.3) 14.5 (13.4, 
15.4) 

14 (13.2. 
14.4) 

Hematocrit (%), median (25% 
quartile, 75% quartile) 

41.7 (40.3, 45.1) 44.3 (42.2, 
46.9) 

40 (37, 43) 

History of arterial thrombosis, n 
(%) 

5 (8.5) 6 (14.6) 0 (0) 

History of venous 
thromboembolism, n (%) 

2 (3.4) 1 (2.4) 0 (0) 

Median time from diagnosis, y 
(range) 

7 (1-31) 4 (1-30) NA 

MPN driver mutation, n (%) 
JAK2 V617F 
CALR 
MPL 
Triple Negative  
Missing 

 
26 (44) 
18 (31) 
2 (3) 
12 (21) 
1 (1) 

 
41 (100) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
 

 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
 

Therapy, n (%) 
           Aspirin & hydroxyurea 

Aspirin only 
Hydroxyurea only 
JAK inhibitor 
No treatment 

 
27 (46) 
20 (34) 
4 (7) 
0 (0) 
8 (13) 

 
28 (68) 
12 (30) 
0 (0) 
0 (0) 
1 (2) 

 
0 (0) 
0 (0) 
0 (0) 
0 (0) 
40 (100) 



  

 130 
Table S1: MPN patient and healthy control characteristics recruited across two sites (Papa 131 
Giovanni XXIII Hospital, Bergamo, Italy and Mater Misericordiae University Hospital, Dublin, 132 
Ireland) for proteomic analysis. 133 
 134 

Table S2 135 

Candidate 
protein 
(Gene name) 

Platelet differential 
expression by MPN 
subtype  
Absolute fold change 
(direction of change) 

Cellular function and relationship to 
procoagulant, proinflammatory, and profibrotic 
pathways in other published work. 

MMP1 PV: 4.5 (increased) 
ET: 5.2 (increased) 
 
 

MMP1, an interstitial collagenase, is known to cleave 
protease-activated receptor 1 (PAR1) and promote 
platelet activation and regulate thrombogenesis in 
vitro10, 11, 12. Furthermore, MMP1 mediates tumor 
invasion by compromising vascular barrier integrity 
and has been associated with inferior prognosis in 
solid organ malignancies13, 14, 15.   

FcγRIIA  PV: 2 (increased) 
ET: 2 (increased) 
 

Unbalanced FcγRIIA-mediated platelet aggregation 
was previously reported to promote thrombosis16. 

SERPINH1 PV: 2 (increased) 

 

There is evidence of decreased expression or 
ablation of this collagen binding, platelet adhesion 
protein in immobilized mammals as a 
thromboprotective mechanism17, 18, 19. 

LGALS1 PV: 6.7 (increased) 
ET: 4.7 (increased) 
 

Galactin-1 is a beta-galactosidase binding protein 
which is reported to promote tumour cell proliferation 
and survival in haematological malignancies20. 
Recent data  delineates the contribution of galactin-1 
to disease severity in myelofibrosis and identified the 
protein as a potential drug target with disease 
modifying effects21. 

S100A6 ET: 2 (increased) 
 

The S100 family of proteins is a major player in 
hematopoietic proliferation and recent work has 
identified proinflammatory/profibrotic roles for 
S100A6, S100A8, S100A9 in bone marrow, 
granulocytes, and plasma in MPN21, 22, 23, 24, 25, 26. 

PDIA6 
 

PV: 1.7 (increased) 

 

Protein disulfide isomerases (PDIs) are key 
mediators of platelet ER homeostasis and the 
relationship between PDIs, ER & oxidative stress, 
platelet activation and thrombosis has recently been 
elucidated27, 28.  
 

HPSE PV: 1.8 (increased) 

 

Heparanase cleaves heparan sulfate 
proteoglycans and participates in extracellular matrix 
remodeling. It has been shown to be increased in the 
plasma extracellular vesicles of patients with PV29.  



DIAPH1 PV: 1.9 (increased) 
ET: 1.8 (increased) 
 

We find increased expression of protein diaphanous 
homolog-1 (DIAPH1) possibly suggesting altered 
megakaryopoiesis in peripherally circulating platelets 
in PV and ET. DIAPH regulates proplatelet formation 
via Rho-mediated actin polymerization and 
microtubule assembly30. 

RAB4A PV: 3.7 (increased) 
ET: 2.3 (increased) 
 

 

A Ras GTPase signaling protein which regulates 
platelet alpha granule release31.  

CD63 PV: 2.6 (decreased) 

 

Downregulation of CD63 has been associated with 
proliferation and metastasis in solid organ 
malignancy regulated by IL-6, IL-27 and STAT3 
signaling32.  

CTSC PV: 2 (increased) 

 

Abundant Cathepsin C drives inflammation through 
macrophage activation via NF-ĸB signaling 
pathway33. 

VAMP8 ET: 1.7 (increased) 

 

VAMP8 regulates platelet granule secretion and 
thrombosis in vivo34. 

EIF4G1 PV: 2.1 (increased) 
ET: 1.74 (increased) 
 

EIF4G1 has been identified as a prognostic 
biomarker in breast cancer35. 

HSP90AB1 
 

ET: 1.5 (increased) 
 
 

We find increased expression of heat shock proteins  
in ET (HSP90AB1, TRAP1) and PV (HYOU1, 
HSPH1, DNAJA2). Heat shock protein 70 kDa and 
heat shock protein 90 kDa are two families of 
chaperone networks with integral roles in protein 
folding, degradation, trafficking, and maturation. 
They are known to promote oncogenesis by 
protecting a spectrum of cancer related proteins36, 37, 

38. 
SLC25A2  PV: 1.9 (decreased) 

 
SLC25A2 is decreased in PV (with SLC2A3 and 
SLC44A1 differentially expressed in ET).  Solute 
membrane carrier proteins have been associated 
with venous thromboembolism in genome wide 
association studies and in vivo models39, 40. 

RAB32 PV: 2.1 (increased) 
ET: 1.6 (increased) 
 

RAB32 is increased in ET (along with mitochondrial 
membrane protein TOMM22). Mitochondria are 
recognized as key regulators of platelet procoagulant 
function41. Loss of mitochondrial protein RAB32 is 
associated with dense granule storage pool disease 
Hermansky-Pudlak syndrome42. 

PSMD11 PV: 2 (increased) 
ET: 1.7 (increased) 
 

We show evidence of dysregulated protein 
degradation pathways with upregulation of PSMD11 
along with differential expression of lysosomal 
proteins (SORT1 and ATP6V) and other 
proteasomal subunits. This reflects the work of other 
groups who have shown that protein quality-control 
pathways may be important in the pathogenesis of 
MPN and other prothrombotic diseases and 
represent novel therapeutic targets43, 44, 45. 

 136 



Table S2: Select/representative candidate proteins that may variably influence the 137 
proinflammatory, pro-thrombotic, and profibrotic processes in MPNs. Fold change reflects 138 
relative quantification in MPN subtypes compared to healthy controls.  139 
 140 
Table S3: 1952 proteins were quantified (LFQ intensity, see Methods) across PV, ET, and 141 
control platelet lysate samples. 142 
 143 
Table S4: 1315 proteins taken forward for downstream analysis. Proteins filtered to remove 144 
contaminants, proteins identified by site only, or in reverse. Proteins included were quantified 145 
across all groups (PV, ET, and control) and were present in at least 50% of samples in at 146 
least one group (see Methods). 147 
 148 
Table S5: Full list of 227 differentially expressed platelet proteins (Benjamini Hochberg false 149 
discovery rate <0.05) identified between ET and control samples. 150 
 151 
Table S6: Full list of 166 differentially expressed platelet proteins (Benjamini Hochberg false 152 
discovery rate <0.05) identified between PV and control samples. 153 
 154 
Table S7: Full list of 178 differentially expressed platelet proteins (Benjamini Hochberg false 155 
discovery rate <0.05) identified between PV and JAK2 V617F positive ET samples. 156 
 157 
Table S8: No significantly differentially expressed platelet proteins (Benjamini Hochberg 158 
false discovery rate <0.05) identified between JAK2 V617F and CALR positive ET patients. 159 
 160 
Table S9: Full list of 90 differentially expressed platelet proteins (Benjamini Hochberg false 161 
discovery rate <0.05) identified between triple-negative and mutation positive ET samples. 162 
 163 
Table S10: Full data for all molecular pathways identified in platelet proteome of ET patient 164 
cohorts. 165 
 166 
Table S11: Full data for all molecular pathways identified in platelet proteome of PV patient 167 
cohorts. 168 
 169 
Table S12: Correlation matrix with Pearson correlation coefficient (r) of log2 transformed 170 
LFQ intensity from biologic replicates of control (n= 40) samples. 171 
 172 
Table S13: Correlation matrix with Pearson correlation coefficient (r) of log2 transformed 173 
LFQ intensity from biologic replicates of MPN (PV n= 41; ET n= 59) samples. 174 
 175 
 176 
 177 
 178 
 179 
 180 
Supplementary Figures 181 



182 
 183 
Figure S1: Strong correlation between platelet proteome technical replicates.  184 
Pearson correlation coefficients (r) from representative samples (A-D) demonstrate intra-185 
donor reproducibility with strong correlation of log transformed LFQ intensities from technical 186 
replicates of the platelet proteome.  187 
 188 
 189 
 190 
 191 
 192 
 193 



194 
 195 
 196 
Figure S2: Strong correlation between platelet proteome biologic replicates 197 
Correlation matrix of Pearson correlation coefficients (r) from biologic replicates show 198 
uniformly strong inter-donor reproducibility of the LFQ-proteomic analysis between biologic 199 
replicates from (A) controls (average r = 0.90 ± 0.04, min r = 0.75, max r= 0.97) and (B) 200 
MPN (average r = 0.88 ± 0.06, min r = 0.57, max r = 0.98) patient samples.  201 
 202 
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