OMTM, Volume 32

Supplemental information

A cellular disease model toward gene therapy

of TGM1-dependent lamellar ichthyosis

Laura Sercia, Oriana Romano, Grazia Marini, Elena Enzo, Mattia Forcato, Laura De Rosa, and Michele De Luca

Figure S1. Time-resolved promoter activity by live-cell imaging of HaCaT cells transduced with SIN γ -RVs. Representative bright-field and fluorescent micrographs of HaCaT cells transduced with three different promoters, from top to bottom: the 2.2-Kb human TGM1 full length promoter (TGM1^{full}), the 367-bp human TGM1 minimal promoter (TGM1^{min}), the 637-bp human Involucrin minimal promoter (IVL^{min}), grown in high calcium medium for 6 days. n=3, pictures are representative of what was observed in at least three independent samples or replicates. Scale bars, 50 µm.

Figure S2. TGM1^{min} and IVL^{min} promoters activity in keratinocytes. A) Western blot analysis of keratinocyte differentiation markers (IVL and endogenous TG1) and EGFP in growing (3d), confluent (7-10d) and over-confluent (14d) K82 keratinocytes transduced with (left) a SIN γ -RV carrying EGFP under the control of TGM1^{min} promoter or, (right) a SIN γ -RV carrying EGFP under the control of IVL^{min} promoter. B) EGFP mRNA expression during transgenic keratinocyte differentiation (3d-14d). GAPDH mRNA was used to normalize the qRT-PCR (* p < 0.0001). C) Representative immunofluorescent images of 7 µm-thick cryosections of 3D skin equivalents obtained with TGM1^{min} or IVL^{min} promoter-transduced keratinocytes showing the EGFP fluorescent signal. White dotted line marks the epidermal-dermal junction. Scale bars 20 µm.

Figure S3. Genotype of $\Delta TGM1$ **cellular model.** A) Top: *TGM1*-knockout strategy design. gRNA1 and gRNA2 target Exon 2, exploiting the presence of an SNP in a wild-type strain (K81), while gRNA3 targets Exon 4 of the *TGM1* gene. If the three cutting events occur simultaneously the resulting *TGM1* gene should be shorter as depicted in figure. Bottom: PCR analysis of genomic DNA from wild-type and $\Delta TGM1$ keratinocytes (K81), spanning both the Cas9 target sites to evaluate the excision of the 1.7 Kb genomic region between Exon 2 and Exon 4. Note that the excision of the entire genomic region is a high frequency event. B) TIDE decomposition analysis through Sanger sequencing of edited genomic sequences in $\Delta TGM1$ keratinocytes (K81) with gRNA1/2 (editing *TGM1*-E2) and gRNA3 (editing *TGM1*-E4) showing the overall editing efficiencies and the percentage of indel formation (insertions and deletions) in both edited exons, as compared to a wild-type sequence. The overall editing efficiencies, reaching 100%, is indicated by the absence of non-edited sequences (point 0 of the graphs) and the presence of a significant amount of InDels abolishing the open reading frame and expression of *TGM1*.

Figure S4. TG1 expression in $\Delta TGM1$ keratinocytes cultures at increased cell densities. A) SINyRV vector expressing *TGM1* cDNA under the control of its own promoter (SINy-RV-*TGM1*). B) Western blot analysis of exogenous TG1 (eTG1) and IVL differentiation marker in growing (3d), confluent (7-10d) and over-confluent (14d) keratinocytes transduced with SINy-RV-*TGM1*. n=3, picture is representative of what was observed in at least three independent replicates.

Figure S5. Vector Copy Number (VCN) of transduced HaCaT clones and keratinocytes cultures. ddPCR analysis of EGFP (green) and exogenous TGM1 (red) Vector Copy Number in HaCaT clones (right) and bulk K82 keratinocytes (left) transduced with SIN γ -RV carrying TGM1^{min}, TGM1^{full} or IVL^{min} promoters. For the exogenous TGM1 (red) VCN evaluation was used a custom probe design to recognize the provirus integration, that binds an exon-exon junction. VCN was absolutely quantified considering an internal reference gene (hGAPDH, VCN=2), n=2. Dots represent the single values, while middle line represents the mean value.

Figure S6. Single-cell multiomic analysis of *TGM1***-transduced keratinocytes.** A) DotPlot showing the expression of clonogenic, holoclone and differentiation markers in the five SINγ-RV-*TGM1* keratinocytes populations. Dots size indicates the percentage of cells expressing that gene, the average expression color scale refers to scaled data. B) Percentages of positive cells (bold), containing at least one provirus fragment and negative cells, without provirus integration, for each keratinocytes population. C) Number of SINγ-RV-*TGM1* provirus fragments retrieved in individual cells, for each keratinocytes population.

	Primer name	Sequence (5'-3')	Application	Notes	
#1	TGM1 PromP1_F	ACCTAGTTAACGCTGAGTGTCTGCTCCCAT G	PCR amplification	distal region (-1.6 Kb / -1.4 Kb)	
#2	TGM1 PromP1_R	TACAGGGCCGGCCTCCCAGAGAACCAGTA GGATG	PCR amplification		
#3	TGM1 PromP2_F	ATTCTGGCCGGCCTGCTCCCTCCCTAGC	PCR amplification	proximal region (90 bp / +67 bp)	
#4	TGM1 PromP2_R	GATTTCCATGGTCAGGATGGATGGGAC	PCR amplification		
#5	IVL PromP1_F	TTGGGTTAACAGCTTCTCCATGTGTCATG	PCR amplification	distal region (-	
#6	IVL PromP1_R	GAAGGCCGGCCGGTCTTATGGGTTAGC	PCR amplification	Kb)	
#7	IVL PromP2_F	ATTAGGCCGGCCAGGAATAGTTGAGCTAC CAG	PCR amplification	proximal region (221 bp / +6 bp)	
#8	IVL PromP2_R	GAAATCCATGGTGCTGAGCTGAGCAGGAG	PCR amplification		
#9	TGM1 ^{full} Prom_F	AACTAGTTAACGCCAAGGCTTCAGTGTTT G	PCR amplification	full length promoter (2.2 Kb)	
#10	TGM1 ^{full} Prom_R	ATTATGGCCGGCCGAGGTCTGGGGGGCTTA GG	PCR amplification		
#11	TGM1_Exon2_F	GATGGGCCACGTTCCGATG	KO analysis		
#12	TGM1_Exon3_R	CGGGACAGGAGGAGGAGC	KO analysis		
#13	TGM1_Intron3_F	CAGTGGCTCATACACATTGTG	KO analysis		
#14	TGM1_Exon5_R	CTGCCGCCAATCCTCATGG	KO analysis		

Table S1. List of primers used with specified name, sequence, and application.

TaqMan® probes	Company	Catalog number	
EGFP	Thermo Fisher	Mr00660654_cn	
GAPDH	Thermo Fisher	4352665	
Genomic GAPDH	Thermo Fisher	Hs03929097_g1	
K10	Thermo Fisher	Hs00166289_m1	
TGM1 Exon 14-15	Thermo Fisher	Hs00165929_m1	
Exogenous TGM1	Thermo Fisher	Custom made	

 Table S2. List of TaqMan® probes used for qRT-PCR and catalog number.

Antibody information					Dilution/amount	
Antibody	Company	Catalog number	Description	WB	IF	
anti-TGM1	Invitrogen	PA5-59088	Rabbit polyclonal	1/1000 - 1/4000		
anti-TGM1	Merk	HPA040171	Rabbit polyclonal		1/2000	
anti-Cytokeratin 14	BioLegend	905301	Rabbit polyclonal		1/150,000	
anti-Collagen XVIIA1	Genetex	GTX54647	Mouse monoclonal		1/100	
anti-SPINK5	Merk	HPA011351	Rabbit polyclonal		1/2000	
anti-human GAPDH	Merk	ZRB374 - clone 10B13	Rabbit monoclonal	1/1000		
anti-GAPDH	Abcam	ab8245	Mouse monoclonal	1/10,000		
anti-Involucrin	Leica	NCL-INV	Mouse monoclonal	1/2000	1/1000	
Anti-Loricrin	Abcam	Ab240187	Rabbit monoclonal			
anti-Cytokeratin 10	BioLegend	905403	Rabbit polyclonal	1/500	1/1000	
anti-GFP	Santa Cruz Biotechnology	sc-9996	Mouse monoclonal	1/250		
anti-GFP	Merk	AB10145	Rabbit polyclonal	1/1000	1/500	
anti-Vimentin	BioLegend	699302	Rat		1/1000	
Alexa Fluor 568 anti-rat	Thermo Fisher Scientific	A11077	secondary antibody		1/1000	
Donkey anti-rabbit IgG HRP	Santa Cruz Biotechnology	sc-2313	secondary antibody	1/2000		
Donkey anti-mouse IgG HRP	Santa Cruz Biotechnology	sc-2314	secondary antibody	1/10,000 - 1/20,000		
Donkey anti-Mouse IgG (H+L) Alexa Fluor 568	Thermo Fisher Scientific	A10037	secondary antibody		1/2000 - 1/1000	
Donkey anti-Rabbit IgG (H+L) Alexa Fluor 488	Thermo Fisher Scientific	A21206	secondary antibody		1/2000 - 1/1000	

 Table S3. List of antibodies, source, and concentration.