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S1 Pharmacokinetic Diagnostic Checks1

Visual comparison of simulations was performed to check for compatibility between2

the simulated data sets and Phase 2 trial data of volunteers [1]. An example of3

two simulated data sets are shown in Figure S1. Recall, for each simulated data

Figure S1: Examples of 2 of the 1000 simulated data sets, each comprising 8 individual

patient PK drug profiles for concentration of cipargamin (ng/mL) over time (hours).

4

set consisting of 8 participants, three chains were run with 2000 iterations each, and5

500 samples discarded as warm-up. To asses model convergence, trace plots were6

produced (Figure S2) and R̂ and neff statistics reviewed [2]. For the population and7

individual-level parameters in the example data set featured in Figure S2, the mean8

effective sample size was 2354 and the minimum was 352. The R̂ values diverged9
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from 1 by less than 0.005. These characteristics are consistent with well-mixed and10

converged chains [2].11

Figure S2: Trace plots from 3 independent chains for 5 population-level PK

parameters, from an MCMC sampler run in Stan to an example 8-patient simulated

PK data set. The first 500 of the 2000 simulations are discarded from each chain as

warm-up.

12

When combined, the 3 chains produce 4500 iterations for each parameter, from which13

a single median values is calculated as the final estimate. This process is repeated14

over the 1000 datasets. The density plots in Figure S3 illustrate the distribution of15

the 1000 posterior median estimates for the 5 population parameters, one from each16

simulated dataset. The 95% intervals of these distributions are shown as blue shaded17

regions.18

19
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Figure S3: Posterior density plots for 5 population-level PK parameters corresponding

to a single example 8-patient simulated PK data set. The shaded blue regions

represent the 2.5% to 97.5% quantiles, with the posterior median shown as a vertical

blue line. The orange line is the parameter value used to simulate the data.

Further evaluation of the model performance was performed via inspection of the 95%20

posterior predictive distributions for each of the 8 patients in a ranomdly selected21

sample of datasets, one of which is presented in Figure S4. The model fits appear22

sensible, with only points near the peak falling outside the credible intervals for some23

patients.24

Inspection of the prior-posterior distribution plots for a randomly chosen example25

dataset (Figure S5) demonstrate the chosen prior distributions are suitably broad to26

facilitate appropriate exploration of the plausible range of parameter values. This27

provides evidence that, even in the absence of robust prior parameter estimates, the28

model is capable of locating and producing suitable posterior estimates.29
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Figure S4: A single simulated dataset of 8 individual patients, with 95% posterior

predictive intervals for concentration of cipargamin (ng/mL) over time (h) shaded in

blue. The black line is the median posterior profile and the simulated data points are

the black circles.
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Figure S5: Prior density distributions for PK parameters (red line) alongside posterior

densities from the MCMC sampler of a single randomly selected dataset (blue line)

and associated 95% credible intervals (blue shading). The black vertical line indicates

the ’true’ underlying parameter value.
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S2 Pharmacodynamic Diagnostic Checks30

As for the pharmacokinetic model, we visually inspected the simulated parasitaemia31

time profiles to confirm a good match between the simulated (Figure S6) and real32

Phase 2 trial data of volunteers shown in Figure 2 (pg 5) of [1]. We note a small33

difference in the post-treatment minimum parasite count, which occurs 8.5 days after34

inoculation in the study data, and at day 8 in the simulated data. We also inspected35

the prior-posterior distribution plots for a random selection of datasets, one shown in36

Figure S9, confirming the suitability of our prior ranges.37

Figure S6: Two example simulated data sets, each comprising 8 individual patient

PD profiles for concentration of parasites (ng/mL) over time (hours).

The 8 patient posterior predictive intervals were plotted for a random sample of38
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3 data sets (Figure S7) which demonstrated that the model was able to consistently39

capture the data well.40
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Figure S7: 95% posterior predictive distributions (blue shading) of parasite time

profiles (days since inoculation) for each of 3 randomly selected simulations consisting

of 8 individual patients. The black line is the median posterior profile and the

simulated data points (with noise removed) are the black circles. The grey shaded

area represents the region of the y-axis below the LLOQ (50 parasites/mL) and the

vertical dashed line is the time the drug is administered (7 days post-inoculation).
10



Figure S8: An example of a dataset where the post-treatment parasitaemia is

underestimated.
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Figure S9: Prior density distributions for PD parameters (red line) alongside posterior

densities from the MCMC sampler of a single randomly selected dataset (blue line)

and associated 95% credible intervals (blue shading). The black vertical line indicates

the ’true’ underlying parameter value
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S3 Pharmacokinetic Model41

The 2-compartment 1st order absorption PK model with linear elimination has the42

following structure:43

C(t) = D(Ae−αt∗ + Be−βt∗ + Ce−t∗ − (A + B + C)e−kat∗),

where44

• C(t) = Concentration at time t (mg/L)45

• D = Dose (mg)46

• t = Time (h)47

• tlag = Absorption lag time (h)48

• tdose = Time of dose (h)49

• Cl = Elimination clearance (L/h)50

• Vc = Central compartment volume (L)51

• Q = Inter-compartmental clearance rate (L/h)52

• Vp = Peripheral compartment volume (L)53

• ka = Absorption rate constant (h−1)54

and55

• α =
(

Cl
Vc

Q
Vp

)
/β56

• β = 1
2

(
Cl
Vc

+ Q
Vc

+ Q
Vp

−
√

(Cl
Vc

+ Q
Vc

+ Q
Vp

)2 − 4Cl
Vc

Q
Vp

)
57

• A = ka

Vc

Q/Vp−α
(ka−α)(β−α)58

• B = ka

Vc

Q/Vp−β
(ka−β)(α−β)59
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• C = −(A(ka−α)+B(ka−β))
ka

60

• t∗ = t − tlag − tdose61

The trial data from McCarthy et al. [1] shows a drop in parasitaemia immediately62

after drug administration. Therefore, we assumed cipargamin had a direct impact63

on the parasites, and no effect-delay parameters (i.e., ke0, tlag) were included in the64

model.65
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S4 Hierarchical Simulations66

Each of the 8 patient’s individual PK parameters, θi, (Cl, Vc, Q, Vp, Ka), were drawn67

from distributions centred at the population-level parameter estimates (θ, Table 3) via68

the following procedure. We represented individual PK parameters, θi, i = 1, . . . , 8,69

using a logistic transformation with bounds to ensure biologically plausible values,70

71

ϕi = log
(

θi − a

b − θi

)
(Fraction is element-wise)

= log
(

θ − a

b − θ

)
+ ηi

= ϕ + ηi,

where ϕi are logistic-transformed population average PK parameters, vectors a

and b are vectors containing the upper and lower bounds (respectively) for each

parameter, and ηi are multivariate normal-distributed variations of each individuals

parameter values from the logistic-transformed population averages ϕ. The individual

deviations from these averages followed a multivariate normal distribution with mean

0 and covariance matrix Σ. That is,

ηi ∼ MV N(0, Σ).

The variance matrix Σ was set to the between-individual standard deviation for

each PK parameter, ω, estimated in the target trial [1], and correlation between the

PK parameters was sampled from a standard uniform distribution separately for each

of the 1000 simulated datasets, such that:

Σ = diag(ω)Rdiag(ω), R = LLT ,
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where L is a lower-diagonal matrix with entries ai distributed uniformly between 072

and 1:73

diag(ω) =



0.325 0 0 0 0

0 0.227 0 0 0

0 0 0.1 0 0

0 0 0 1 0

0 0 0 0 0.1


L =



a1 0 0 0 0

a2 a3 0 0 0

a4 a5 a6 0 0

a7 a8 a9 a10 0

a11 a12 a13 a14 a15


, ai ∼ U(0, 1).

Finally as described in the main text, multiplicative error terms for individual observations74

were drawn from a normal distribution with a mean of 0 with variance σ2, and75

exponentiated. The σ2 value was generated individually for each dataset, drawn from76

a log-normal distribution centred at 0.1.77

The PD model follows an essentially identical structure for the 7 key parameters,78

θi; (ipl, µipl, σipl, PMF, Emax, EC50, γ), Table 5. The input values for the diagonal79

matrix ω =
[
0.2 0.2 0.2 0.0242 0.2 0.2 0.2

]
were based upon the between-80

subject variances estimated from the analysis of the trial data in McCarthy et al.81

(2021) [1], but again these values are chosen to be a base for the random variance-82

covariance matrix.83
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S5 Pharmacodynamic Prior Bound Justifications84

The PD parameter prior bounds (a and b in Table 5) were selected to be suitably85

broad and unrestrictive, whilst still biologically plausible.86

The initial parasite load (which is known to have a high degree of accuracy in volunteer87

infection studies, as observed in McCarthy et al. [1]) was given bounds of 300 parasites88

either side of the inoculation value of 1800 in McCarthy et al. [1].89

The initial parasite distribution mean age µipl was limited to ages at which the90

parasites are still circulating (1 to 24 hours old), as the parasites could not have91

sequestered already at time of inoculation.92

Similarly, the spread of parasite ages, σipl, was allowed to vary between 1 and 14,93

where 1 represents a highly synchronous infection, and 14 would represent a highly94

synchronous infection, and 14 would represent a highly asynchronous infection with95

parasites distributed across the entire lifespan (1-40h). The PMF value has been96

estimated in studies to have values as low as 8 [3] and as high as 32 [4], therefore97

5–50 were sufficiently broad limits that include all potentially feasible values.98

The maximum killing effect, Emax, is a percentage value, so we allowed drug99

effect to range from 5-100%, assuming a true effect of <5% kill rate would prevent100

a potential drug from reaching clinical trials (and encompasses our chosen value for101

simulation of 23%).102

The concentration of 50% maximum kill rate, EC50, was allowed to range from103

very low (0.5 ng/mL) to moderately high (30ng/mL) at approximately 30% of the104

maximum drug concentration achieved in the clinical study. Lastly, studies have105

found the γ parameter, which controls the sharpness of the concentration-effect curve,106

often has a value around 2-3 [5]. Artemisinin-derived compounds, which have an107

extremely sharp cutoff, have a high value around 4-6 [5]. Therefore, our chosen limits108
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of 1-10 were conservatively selected to cover these plausible values.109
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