
Supplementary Materials for
High-performance fault-tolerant quantum computing with

many-hypercube codes

Hayato Goto

Corresponding author: Hayato Goto, hayato.goto@riken.jp

Sci. Adv. 10, eadp6388 (2024)
DOI: 10.1126/sciadv.adp6388

This PDF file includes:

Supplementary Text
Figs. S1 to S6
Tables S1 to S3

Supplementary Text

Results at level 2 using the Steane method for error detection

The crosses in Fig. S1 show the results at level 2 using the Steane method in error-detection

gadgets instead of the flag-based method in the main text (see Table S3 for the numbers of trials

of the simulation). As found from Fig. S1, the Steane method leads to no performance

improvement and a larger space overhead, compared to the flag-based method. This is the reason

why we use the flag-based method at level 2.

Results at level 4 using the encoder in Fig. 5B

The squares and triangles in Fig. S2 show the results at level 4 using the encoder in Fig. 5B,

instead of Fig. 5G, with 𝐿D = 1 and 2 (see Materials and Methods), respectively (see Table S3

for the numbers of trials of the simulation). As found from Fig. S2, the encoder in Fig. 5B with

𝐿D = 1 results in the rapid increase of the space overhead with respect to 𝑝circ and also the one

with 𝐿D = 2 leads to a lower overhead but higher logical controlled-NOT (CNOT) error

probabilities, compared to the encoder with Fig. 5G. This is the reason why we propose the

encoder in Fig. 5G at level 4.

Details and flowcharts of the proposed level-by-level minimum distance decoding

Here we explain our proposed decoding method in more detail using flowcharts. As an example,

we focus on the level-3 case.

Figure S3 shows the whole process of the decoding in the level-3 case. Since the

subroutines Sub1 and Sub2 are well explained in Materials and Methods, here we explain the

subroutine Sub3 in detail.

Figure S4 shows the process of Sub3. The subroutine Sub31 for b2=6 is shown in Fig. S5,

where N1 to N5 denote the numbers of the minimum-distance candidates of the first to fifth level-

2 blocks, respectively, selected in Sub2. If the total number of candidates, N1N2N3N4N5, is larger

than a preset threshold Nth3, we reduce the number by randomly choosing one of the candidates

from the level-2 block with the largest N, in order to keep the decoding time short. In this work,

we set Nth3 to 105. Then we determine the encoded bit string of the sixth level-2 block using the

n1-th to n5-th minimum-distance candidates of the first to fifth level-2 blocks, respectively,

according to the parity-check condition (Z-stabilizer condition). More concretely, the encoded bit

string of the sixth level-2 block is determined as follows:

𝑥𝑖′,𝑗′,6
(2)

= 𝑥
𝑖′,𝑗′,1

(2)
+ 𝑥

𝑖′,𝑗′,2

(2)
+ 𝑥

𝑖′,𝑗′,3

(2)
+ 𝑥

𝑖′,𝑗′,4

(2)
+ 𝑥

𝑖′,𝑗′,5

(2)
(mod 2 and 𝑖′, 𝑗′ = 1, … ,4)

In general, the level-2 encoded bit string determined above is not included in the minimum-

distance candidates of this block selected in Sub2. Therefore, in the subroutine Sub32, we

evaluate the distance of this encoded bit string. Figure S6 shows Sub32 for b2=6, where M1 to M6

denote the numbers of the minimum-distance candidates of the first to sixth level-1 blocks,

respectively, selected in Sub1 in the sixth level-2 block. If M1+M2+M3+M4+M5+M6 is larger

than a preset threshold Mth2, we reduce the number by randomly choosing one of the candidates

from the level-1 block with the largest M. In this work, we set Mth2 to 6. We first determine the

encoded bit strings of the five level-1 blocks other than the b-th level-1 block in the sixth level-2

block using the mb-th minimum-distance candidate of the b-th level-1 block selected in Sub1 and

the level-2 encoding bit string determined in Sub31 according to the parity-check condition and

the definition of the encoded Z operator. More concretely, when b=1, the encoded bit strings of

the five level-1 blocks are determined as follows:

𝑥
𝑖′,2,6

(1)
= 𝑥

𝑖′,1,6

(1)
+ 𝑥

𝑖′,1,6

(2)
(mod 2 and 𝑖′ = 1, … ,4)

𝑥
𝑖′,3,6

(1)
= 𝑥

𝑖′,2,6

(1)
+ 𝑥

𝑖′,2,6

(2)
(mod 2 and 𝑖′ = 1, … ,4)

𝑥
𝑖′,5,6

(1)
= 𝑥

𝑖′,2,6

(1)
+ 𝑥

𝑖′,1,6

(2)
+ 𝑥

𝑖′,2,6

(2)
+ 𝑥

𝑖′,3,6

(2)
+ 𝑥

𝑖′,4,6

(2)
(mod 2, and 𝑖′ = 1, … ,4)

𝑥
𝑖′,4,6

(1)
= 𝑥

𝑖′,5,6

(1)
+ 𝑥

𝑖′,3,6

(2)
(mod 2 and 𝑖′ = 1, … ,4)

𝑥
𝑖′,6,6

(1)
= 𝑥

𝑖′,5,6

(1)
+ 𝑥

𝑖′,4,6

(2)
(mod 2 and 𝑖′ = 1, … ,4)

In general, the level-1 encoded bit strings determined above are not included in the

minimum-distance candidates of the level-1 blocks selected in Sub1. Therefore, we evaluate the

distances of the encoded bit strings. This distance evaluation can easily be achieved at level 1.

By summing the distances of the six level-1 blocks, we obtain the distance of the sixth level-2

block. In Sub32, we finally select the minimum distance of the sixth level-2 block among all the

choices of a level-1 block and its minimum-distance candidates.

As shown in Fig. S5, then we evaluate the distances of the level-3 codewords by summing

the distances of their six level-2 blocks. We finally select level-3 encoded bit strings with

minimum distance, as shown in Fig. S4.

The decoding of the level-4 many-hypercube code is done in a similar manner to the above

level-3 case. In the level-4 case, we set the level-4 threshold Nth4 corresponding to the above

level-3 threshold Nth3 to the same value 105 and the level-3 threshold Mth3 corresponding to the

above level-2 threshold Mth2 to 12.

Fig. S1. Results at level 2 with the Steane method for error detection. (A) Logical controlled-

NOT (CNOT) error probability. (B) The total number of physical qubits for the zero-state

encoder.

10-3 10-210-4

10-9

10-3

10-1

L
o
g
ic

a
l
C

N
O

T
 e

rr
o
r

p
ro

b
a
b
ili

ty

10-5

10-7

A

10

N
u
m

b
e
r

o
f

p
h
y
s
ic

a
l
q
u
b
it
s

102

5×10-3430 1 2

B

Steane

Flag-based

Steane

Flag-based

Fig. S2. Results at level 4 with the zero-state encoder in Fig. 5B. (A) Logical controlled-NOT

(CNOT) error probability. (B) The total number of physical qubits for the zero-state encoder.

Encoder in Fig. 5G, LD=2

Encoder in Fig. 5B, LD=2

Encoder in Fig. 5B, LD=1

10-210-3

10-9

10-3

10-1

L
o
g
ic

a
l
C

N
O

T
 e

rr
o
r

p
ro

b
a
b
ili

ty

10-5

10-7

A

10

N
u
m

b
e
r

o
f

p
h
y
s
ic

a
l
q
u
b
it
s

102

103

104

105

106

107

5×10-3430 1 2

B

Encoder in Fig. 5G, LD=2

Encoder in Fig. 5B, LD=2

Fig. S3. Flowchart of the whole process of the level-by-level minimum distance decoding in

the level-3 case. See Fig. S4 for the details of the subroutine Sub3.

Start

End

Input physical-qubit measurement outcomes

Output one of the level-3 encoded bit strings

Select level-1 encoded bit strings with minimum distance

from the measurement outcomes

Select level-2 minimum-distance encoded bit strings

using the level-1 encoded bit strings selected in Sub1

Sub1

Sub2

Sub3
Select level-3 minimum-distance encoded bit strings

using the level-2 encoded bit strings selected in Sub2

Fig. S4. Flowchart of the subroutine Sub3 in Fig. S3. See Fig. S5 for the subroutine Sub31

when b2=6.

Sub3 Start

Loop: b2=1,…,6

Loop: b2

Sub31

Sub3 End

Select level-3 minimum-distance encoded bit strings

Construct level-3 codewords and evaluate their distances

using the level-2 encoded bit strings selected in Sub2

in the five level-2 blocks other than the b2-th one

Fig. S5. Flowchart of the subroutine Sub31 in Fig. S4 when b2=6. Nb denotes the number of

candidates of the b-th level-2 block selected in Sub2. See Fig. S6 for the subroutine Sub32.

Sub31(b2=6) Start

Loop: n1,n2,n3,n4,n5

Loop: n1=1,…,N1, n2=1,…,N2, n3=1,…,N3,

n4=1,…,N4, n5=1,…,N5

Evaluate distance of the encoded bit string

of the 6th level-2 blockSub32

Randomly choose one candidate

from level-2 block with largest N

until N1N2N3N4N5 ≦Nth3

N1N2N3N4N5≦Nth3

No

Yes

Sub31(b2=6) End

Determine encoded bit string of the 6th level-2 block

using other five ones (nj-th one from j-th block)

according to parity-check condition

Construct level-3 codeword and evaluate its distance

using level-2 encoded bit strings and their distances

Fig. S6. Flowchart of the subroutine Sub32 in Fig. S5. Mb denotes the number of candidates of

the b-th level-1 block selected in Sub1.

Sub32(b2=6) Start

Loop: b

Loop: b=1,…,6

Randomly choose one candidate

from level-1 block with largest M

until M1+M2+M3+M4+M5+M6≦Mth2

M1+M2+M3+M4+M5+M6≦Mth2
No

Yes

Sub32(b2=6) End

Evaluate minimum distance of the 6th level-2 block

Evaluate distance of the encoded bit string

of the 6th level-2 block

Loop: mb=1,…,Mb

Evaluate distances of the encoded bit strings

of the five level-1 blocks

Determine encoded bit strings of five level-1 blocks

other than the b-th one in the 6th level-2 block

using the mb-th encoded bit string of the b-th level-1 block selected in Sub1

and the encoding bit string of the 6th level-2 block determined in Sub31

according to parity-check condition and definition of encoded Z operator

Loop: mb

Table S1. The numbers of trials of the simulation for Fig. 4. The values in parentheses are

those of 𝑝circ.

Figure Level 2 Level 3 Level 4

Fig. 4A 560000 560000 560000

Fig. 4B 5600000 5600000 5600000

Fig. 4C

20000000 (0.001–0.009)
1000000 (0.01–0.1)

20000000 (0.002–0.008)
1200000 (0.01–0.1)

20000000 (0.015–0.025)
200000 (0.03–0.05)
120000 (0.06–0.1)

Table S2. The numbers of trials of the simulation for Fig. 6. The values in parentheses are

those of 𝑝circ.

Level 2 Level 3 Level 4

56000 560000 (0.0001–0.0009)
56000 (0.001–0.005)

5600 (0.0001–0.0009)
560000 (0.001)
112000 (0.002)
11200 (0.003)
1120 (0.004)
560 (0.005)

Table S3. The numbers of trials of the simulation for Figs. S1 and S2. The values in

parentheses are those of 𝑝circ.

Crosses Squares Triangles

56000 5600 (0.0001–0.0009)
1120 (0.001–0.002)

560 (0.0001–0.0009,0.003–0.005)
56000 (0.001)
11200 (0.002)

