Supplementary Materials

Supplementary Tables

Table S1. Plasmids reported in this study.

Supplemental Figure legends

Figure S1. Adephagia protein expression and solubility assay. Mycobacteriophage Adephagia proteins were cloned as N-terminal fusions to mRuby2 and overexpressed in *E. coli*. Cultures were lysed to create a whole cell lysate (W) and centrifuged to isolate a soluble fraction (S) in the supernatant. The solubility of each protein after autoinduction at 17 °C (gray) or 37 °C (orange) was assessed with plate reader assays quantifying the mRuby2 signal in the soluble fraction versus the whole cell lysate, **a**. The expression and solubility of each protein after expression at 17 °C was assessed by SDS-PAGE analysis, **b**. A marker (M) indicates size standards and the W and S samples of each culture are indicated above each well; the expected size of the fusion protein is shown below each well set.

Figure S2. AlphaFold2 models of Adephagia proteins resulting in cytotoxic and small colony phenotypes in *M. smegmatis* mc²155. a. AlphaFold2-predicted tertiary structures for Adephagia-encoded proteins that are cytotoxic when systematically overexpressed on a Tet-on inducible vector, colored rainbow from N- (blue) to C-terminus (red), and b. predicted Adephagia protein models conferring a small colony phenotype to ATc-induced colonies. The size of each model is scaled relative to each structure.

Figure S3. Raw data for cytotoxicity biological triplicates. Biological triplicates of the assay shown in Figure 2a, demonstrating log-reductions in colony growth on uninduced and induced

plates as indicated at the bottom of the figure. The protein being expressed (or the empty vector control) is indicated above each set of plates. Next to each biological replicate are cytotoxicity scores of '++', '+++', or '++++', indicating 2-5 log reduction in viability, respectively.

Figure S4. Small colony phenotype analysis. *M. smegmatis* mc²155 transformants carrying expression vectors encoding Adephagia genes that demonstrate small colony phenotypes were diluted and plated onto solid media with and without 100 ng/ml ATc inducer as indicated. Adephagia proteins are labeled above the corresponding set of plates, along with an empty vector control. Violin plots quantifying the total surface area of each colony-forming unit (cfu) in millimeters-squared on the uninduced (grey) and induced (red) solid medium plates are shown next to each plate set. Significance as determined by an unpaired t-test is denoted with asterisks as follows: $p \le 0.01$ (**), ≤ 0.001 (***), ≤ 0.0001 (****), ns = not significant.

Figure S5. Adephagia TA-system superinfection defense screen. Mycobacteriophages from 61 different clusters/subclusters, with phage names indicated on the left and cluster/subcluster designation in parentheses, were serially diluted and spotted onto bacterial lawns to assess for superinfection defense. The bacterial strains tested included *M. smegmatis* mc²155 as a control and lysogens mc²155(wild-type Adephagia), mc²155(Adephagia Δ 90 Δ 91).

Figure S6. Temperature dependence of TA system. a. The generation of derivatives of Adephagia $\Delta 90$ which plaque on a non-complementing strain is described. Five independent lysates of Adephagia $\Delta 90$ (top line) were plated on the complementing strain for single plaques (middle line); two plaques from each initial lysate were propagated as lysates on the complementing strain. The 10 lysates were then plated on a 10X concentrated non-

complementing strain for single plaques and two isolated plaques per lysate were picked (bottom line). The 90-91 regions of these plaque picks were amplified by PCR and sequenced with Sanger sequencing; the character of the resulting gp9 is displayed below each plague pick and color coded (red for wild type gene 91 sequence, blue for a sequence with missense mutations to gene 91). These plaques were propagated as lysates on a complementing strain and DNA was extracted and subjected to complete sequencing via NextSeq; the mutations uncovered are indicated beneath the Sanger results and include SNPs and indels in the ESAS region of derivatives with wild type gene 91 sequences. The mutations to gene 91 and the ESAS region (bottom) are summarized in gp91 and ESAS sequences at the bottom of this panel. **b.** Ten-fold serial dilutions of *M. smegmatis* cultures carrying plasmids as shown on the left were plated on solid media either with or without ATc inducer and incubated for three days at 37° C or for nine days at 25° C. c. Cells from a 10 ml sample of cultured *M. smegmatis* mc²155 were pelleted by centrifugation and the supernatant was removed and transferred to a sterile tube. Sufficient volume of the conditioned medium supernatant was added back to the tube and the pellet was resuspended in a total volume of 1 ml. The conditioned medium supernatant was also used to dilute the cell culture by a factor of ten by mixing 900 μ l of supernatant with 100 μ l of culture. These samples, as well as the neat culture, were infected with 10 μ l of the 10⁻⁵ dilution of an Adephagia $\Delta 90$ lysate and then mixed with top agar and spread onto 7H10 agar plates to form phage-infected bacterial lawns with different cell densities (10X, 1X, and 0.1X, as indicated above the plates). The plates were incubated overnight at 42° C and 37° C or for five days at 25° C.

Table S1. Plasmids reported in this study

Plasmid ¹	Gene ²	Abx ^{R,3}	Replication ⁴	Promoter	Vector ⁵
pKF8	Vector	Hvaromvcin B	oriE/oriM	tet-ON (inducible)	pCCK11
pKF114	<i>mCherry</i> (expression control)	Hvaromvcin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF115	Fruitloop 52 (toxic control)	Hyaromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pML95	Adephagia 1	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pML96	Adephagia 2	Hyaromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pML97	Adenhagia_2	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pML98	Adenhagia_4	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pML99	Adenhagia_33	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF165	Adenhagia_34	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF166	Adephagia_35	Hyaromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF167	Adephagia_36	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF168	Adephagia_37	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF169	Adephagia 38	Hyaromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF170	Adephagia 39	Hvaromvcin B	oriE/oriM	tet-ON (inducible)	pKF8
pML100	Adephagia 40	Hvaromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF214	Adephagia_ 42	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF171	Adephagia_43	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF172	Adephagia_44	Hyaromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF173	Adephagia_45	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF174	Adephagia_46	Hyaromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pML101	Adephagia_47	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF175	Adephagia_48	Hyaromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF176	Adephagia_49	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF177	Adephagia 50	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF178	Adephagia 51	Hvaromvcin B	oriE/oriM	tet-ON (inducible)	pKF8
pDJ6	Adephagia 52	Hyaromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pDJ7	Adephagia 53	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF179	Adephagia 54	Hyaromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF180	Adephagia 55	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF181	Adephagia 56	Hvaromvcin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF182	Adephagia 57	Hvaromvcin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF183	Adephagia 58	Hvaromvcin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF268	Adephagia 59	Hvaromvcin B	oriE/oriM	tet-ON (inducible)	pKF8
pDJ8	Adephagia 60	Hvaromvcin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF184	Adephagia 61	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF185	Adephagia 62	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF186	Adephagia 63	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF187	Adephagia 64	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF188	Adephagia 65	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF189	Adephagia 66	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pDJ9	Adephagia 67	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF266	Adephagia 68	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF267	Adephagia_69	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF190	Adephagia_70	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF191	Adephagia_71	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF192	Adephagia_72	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF193	Adephagia_73	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF194	Adephagia_74	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF195	Adephagia_75	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pDJ10	Adephagia_76	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF196	Adephagia_77	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pDJ11	Adephagia_78	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF197	Adephagia_79	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF198	Adephagia_80	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF199	Adephagia_81	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF200	Adephagia_82	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF201	Adephagia_83	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pDJ12	Adephagia_84	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF203	Adephagia_85	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF204	Adephagia_86	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8

pKF205	Adephagia_87	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF206	Adephagia_88	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF207	Adephagia_89	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF208	Adephagia_90	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF209	Adephagia_91	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF210	Adephagia_92	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pDJ13	Adephagia_93	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF212	Adephagia_94	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF213	Adephagia_95	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pKF7	Vector	Streptomycin	oriE/attP-int	tet-ON (inducible)	pCCK41
pDJ14	Adephagia_91	Streptomycin	oriE/attP-int	tet-ON (inducible)	pKF7
pDJ15	Adephagia_91 G28C mutant	Streptomycin	oriE/attP-int	tet-ON (inducible)	pKF7
pDJ16	Adephagia_91 H31A mutant	Streptomycin	oriE/attP-int	tet-ON (inducible)	pKF7
pDJ17	Adephagia_90 T31V mutant	Hygromycin B	oriE/oriM	tet-ON (inducible)	pKF8
pDJ18	Adephagia_90	Kanamycin	oriE/attP-int	HSP-60 (constitutive)	pLO74
pKF116	Adephagia_34	Kanamycin	oriE	T7 (inducible)	pET28a
pKF117	Adephagia_35	Kanamycin	oriE	T7 (inducible)	pET28a
pKF118	Adephagia_36	Kanamycin	oriE	T7 (inducible)	pET28a
pKF119	Adephagia_37	Kanamycin	oriE	T7 (inducible)	pET28a
pKF120	Adephagia_38	Kanamycin	oriE	T7 (inducible)	pET28a
pKF121	Adephagia_39	Kanamycin	oriE	T7 (inducible)	pET28a
pKF122	Adephagia_43	Kanamycin	oriE	T7 (inducible)	pET28a
pKF123	Adephagia_44	Kanamycin	oriE	T7 (inducible)	pET28a
pKF124	Adephagia_45	Kanamycin	oriE	T7 (inducible)	pET28a
pKF125	Adephagia_46	Kanamycin	oriE	T7 (inducible)	pET28a
pKF126	Adephagia_48	Kanamycin	oriE	T7 (inducible)	pET28a
pKF127	Adephagia_49	Kanamycin	oriE	T7 (inducible)	pET28a
pKF128	Adephagia_50	Kanamycin	oriE	T7 (inducible)	pET28a
pKF129	Adephagia_51	Kanamycin	oriE	T7 (inducible)	pET28a
pKF130	Adephagia_54	Kanamycin	oriE	T7 (inducible)	pET28a
pKF131	Adephagia_55	Kanamycin	oriE	T7 (inducible)	pET28a
pKF132	Adephagia_56	Kanamycin	oriE	17 (inducible)	pE128a
pKF133	Adephagia_57	Kanamycin	oriE	17 (inducible)	pE128a
PKF134	Adephagia_58	Kanamycin	oriE	17 (Inducible)	pET28a
pKF135	Adephagia_61	Kanamycin	oriE	I / (INDUCIDIE)	pE128a
PKF 130	Adephagia_62	Kanamycin	oriE	T7 (Inducible)	pE128a
pKF137	Adephagia_63	Kanamycin	oriE	T7 (INducible)	pE128a
PKF 130	Adephagia_64	Kanamycin	oriE	T7 (Inducible)	p=120a
pKF139	Adephagia_65	Kanamycin	oriE	T7 (Inducible)	p=120a
pKF 140	Adephagia_00	Kanamyoin	oriE	T7 (inducible)	pE120a
pKF141	Adephagia_70	Kanamyoin	oriE	T7 (inducible)	pE120a
pKF 142	Adephagia_71	Kanamyoin	oriE	T7 (inducible)	pE120a
pKi 143	Adephagia_72	Kanamycin	oriE	T7 (inducible)	pET20a
pKi 144	Adenhagia 74	Kanamycin	oriE	T7 (inducible)	nET28a
pKF146	Adenhagia 75	Kanamycin	oriE	T7 (inducible)	nET28a
pK 140	Adenhagia_77	Kanamycin	oriE	T7 (inducible)	nET28a
pK 147	Adenhagia 79	Kanamycin	oriE	T7 (inducible)	nET28a
pKF149	Adenhagia_19	Kanamycin	oriE	T7 (inducible)	nET28a
pKF150	Adenhagia_00	Kanamycin	oriE	T7 (inducible)	pET28a
pKF151	Adephagia_82	Kanamycin	oriE	T7 (inducible)	pET28a
pKF152	Adephagia 83	Kanamycin	oriE	T7 (inducible)	pET28a
pKF153	Adephagia 84	Kanamycin	oriE	T7 (inducible)	pET28a
pKF154	Adephagia 85	Kanamvcin	oriE	T7 (inducible)	pET28a
pKF155	Adephagia 86	Kanamycin	oriE	T7 (inducible)	pET28a
pKF156	Adephagia 87	Kanamycin	oriE	T7 (inducible)	pET28a
pKF157	Adephagia 88	Kanamvcin	oriE	T7 (inducible)	pET28a
pKF158	Adephagia 89	Kanamycin	oriE	T7 (inducible)	pET28a
pKF159	Adephagia 90	Kanamycin	oriE	T7 (inducible)	pET28a
pKF160	Adephagia 91	Kanamycin	oriE	T7 (inducible)	pET28a
pKF161	Adephagia_92	Kanamycin	oriE	T7 (inducible)	pET28a
pKF162	Adephagia_93	Kanamycin	oriE	T7 (inducible)	pET28a

pKF163	Adephagia_94	Kanamycin	oriE	T7 (inducible)	pET28a
pKF164	Adephagia_95	Kanamycin	oriE	T7 (inducible)	pET28a

¹Plasmid name

²Gene inserted into vector

³Antibiotic resistance cassette in vector

⁴Replication system, oriE, oriM or attP-Int derived from phage L5 ⁵Plasmid vector

*Sequences for the *Adephagia_90* protospacer were produced by the Mycobacterial CRISPRi Primer Design program, and the two annealed oligo sequences used to assemble pDJ5 are as follows: 5'-GGGAGCAGTGGACGCAAGCCCGTAG-3' and 5'-AAACCTACGGGCTTGCGTCCACTGC-3'.

Figure S1

Figure S2

	0	mc ² 155	mc ² 155	mc ² 155
	mc ² 155	(wt Adephagia)	(Adeph∆91)	(Adeph ∆90∆91)
ABU (B1)	0000000			000000000
Acadian (B5)		••••	• • • • •	
Auephagia (KT)				
Akuma (D3)	0 8 0 0			
			00	000
Aima (A9)	duodera.			
Archie (LZ)		47. ·	0	
Bignuz (P4)				
Bipper (Y)			80000	100
Birdsnest (B13)		0000		00000
Bongo (M1)				
BPs (G1)		0000000	000003	0000 B # :>
BXDI (AI)	0000 3.			00004 .
Charlie (N)				· · · · · · · · · · · · · · · · · · ·
Couper (64)				
		0000 45		
Damien (H1)			00000	00000
Dandelion (C1)	0000		8000 mg	
DaVinci (A6)	600004	00000		. 900000
Dori (AD)				
DyoEdafos (L4)	00000:		00000	880941
Et2Brutus (A11)	* *****	000004	999999	
Fernando (A3)	00989	OCOUR P		BARRAS'
Giles (Q)	000000	000000		000003
Hawkeye (D2)	0000004		0000000	
Hedgerow (B2)	00000			000
Imvubu (B10)		000045	Gallabe	0000021
Jabiru (A5)			000000	000008
Kimona (A19)			20000 4c.	ODBBBBAC.
LeBron (L1)	000000		0000084	0000001
Marvin (S)	50000			
MooMoo (Sin)			000000	(CORROW)
Muddy (AB)	00000082			
Nanosmite (M3)				COULD BE STORE
Nebkiss (X)				000000
Papyrus (R)	** ******	. 200000	4000000	
Peaches (A4)	0000	0000	0000	and the second second
Phayonce (P5)	DIE D	0000 0	10000	1000 C
Rando14 (K5)	COO 3.	0000 0.	0000 %.	
Rem711 (Z)		000000		
Saguaro (B7)	000000	000000		00000
Saintus (A8)			SARAGAL.	8888993
Sbash (I2)			4	8
Souirty (F3)	000 00 4			
Taquito (K4)				
Tchen (F4)	0000065			
Tortellini (P2)				
Tweety (F1)	80000ta **			9999990.
Twister (A10)	0004			0995 · ·
Ximenita (K6)				
∠apner (F2)	UT0900%.		0000000	
∠entime222 (1)			0000037	Da Gadina
Courthouse (J)				1000000 ···
Jeeves (A14)				

