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Peer Review File

Nanodynamo quantifies subcellular RNA dynamics revealing

extensive coupling between steps of the RNA life cycle



Reviewer #1 (Remarks to the Author):

Comments for Tarrero et al.,

Tarrero et al., established a new tool, named Nanodymo to estimate the rates of several 

important steps in gene expression and their biological links. In brief, they employed 4sU RNA 

labeling and direct RNA Nanopore sequencing (dRNA-seq) methods to monitor nascent 

transcripts in several cell fractions. They then performed computational analyses to quantify 

the kinetics rates of transcription, co- and post-transcriptional RNA splicing, RNA degradation, 

RNA export, RNA-polysome binding, and RNA degradation in the cytoplasm. They applied this 
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respectively. Using these datasets, they also presented some steps coupling that may be 

biologically important for gene expression.

Pelizzola group previously established a similar method called INSPEcT. I feel Nanodymo can be 

a good addition and alternative method to dissect the complexity of gene expression. However, I 

have some concerns about this manuscript. In general, lots of critical information is missing in 
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written below.

1) Some cartoons of comparison between INSPEcT and Nanodymo will help understand the 

impact of this study.

2) Figure 1D: What are the numbers (0.33, 0.33 1, and 0.33 2) next to the box? I believe those are 

20min, 60 min, and 120 min.
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4) Figure 1F: The authors should expand the text (lines 135-139) to explain the result of Figure 1F. 

They especially should discuss why the rates k7-9 have a lower correlation between Expected 

and Inferred.
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biologically important. Chp and Np are not well reproduced. The author should explain this.
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7) Figure 1E: The normalized score should be located on the top of the panel. The coloring of the 

clusters should be changed since it is not easy to distinguish each category.

8) Figure 1G: I recommend to move this panel to supplementary information.

OU '75A>3 J"R S -C< >3=971/@3? <4 +9/273;<9723 # @>3/@32 ?/:=93? 9<<8 ?< 27G3>3;@P ,3= I ?6<C?

premature termination rather than splicing inhibition? In fact, Pladienolide B causes premature 

termination in large fractions of pc genes in K562, HeLa, and HCT116 cells (Caizzi et al., 

Molecular Cell 2021 and Sousa-Luis et al., Molecular Cell 2021). The intensity of the y axis of rep 

2 is much higher than rep 1. The author may want to explain this. Please also add the 

information shown below as well.
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- They may want to show a representative view (GB or IGV) of dRNA-seq for all the fractions.

10) Figure 2F: In theory, chromatin fraction does not contain polyadenylated RNAs since such 

mature RNAs should be released before RNA polymerase II transcription is terminated. Is this 

caused by a technical issue, like an RNA contamination from nucleoplasmic fraction?

11) Figure 3E: The cluster is not labeled.

12) Figure 3F: Some clusters showed up-regulated rates of post-transcriptional splicing (i.e. k5). 



Post-transcriptional splicing event is not inhibited by Pladienolide B? The authors may want to 

discuss this. The example view (GB or IGV) of nanopore sequencing will be useful to show.

13) Figure 4B: This panel may not be mandatory since this is the same as Figure 1A except for k8 

and k9.
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mRNAs should be accumulated in the nucleus under Leptomycin B treatment, meaning the rate 
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15) Figure 4E: Co-transcriptional splicing was inhibited and post-transcriptional splicing was 

increased by Leptomycin B in category F. Other categories also showed a negative correlation. 

The authors may want to discuss it.

16) Line 309: ~ change in polyA tails length were positively correlated ~ -> negatively correlated?

17) Figure 6: The coupling of RNA cycle steps under Harringtonine treatment should be shown, 

even though the k8 and k9 were missing.

Reviewer #2 (Remarks to the Author):

In this work the authors propose Nanodynamo a modelling framework that involves 

mathematical modeling following the sequencing of native RNA from cellular fractions and 
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understanding of gene regulation and could likely prove very useful to the community. However, 

while the authors have performed extensive work on the mathematical modeling, the work lacks 

orthogonal validation of the estimates and thus excitement for the work is substantially 

reduced.
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the truth. The authors need to provide evidence, based on established time series labeling 

experiments, that show the concordance of their estimates to experimentally measured rates.
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conditions as polysome RNA-seq is an important part of the work.
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This is incorrect. Nano-ID has been trained to detect 5EU. The authors appear to have retrained 

the neural network to detect 4SU using their data. Therefore, since this is a critical part of their 
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evaluate the performance of the test dataset, but no information is provided regarding the 

creation of the test dataset. More importantly no evaluation has been performed on a 

completely independent dataset. Fully connected neural networks with millions of parameters 
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independent evaluation needs to be performed.
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unclear which data support this statement and validate the theoretical feasibility of the model.

Line 103: The purpose of the section “Evaluation of Nanodynamo through simulated data” is 

unclear. The authors appear to have simulated data according to their model. Then have added 
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doesn’t prove much besides that the source code works. The correctness of the estimated rates 

remains unclear. It is also unclear how these simulations can be used to evaluate the optimal 

number of replicates and labelling time given that the noise added to the simulations is 

arbitrarily selected.
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one”. Not requiring replicates is indeed remarkable, but also unlikely to be true in real 

experiments. This most probably indicates the low complexity of the simulated data.

Line 150-151: In this reviewer’s opinion correlation values of <0.5 between replicates is not 

acceptable to justify pooling replicates together. This indicates that either the experiments are 
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Line 154: The use of a single read as a threshold appears to be very loose. Especially when all 

replicates are pooled together and there is no estimate of the variance.

Line 155-156: The authors report a median Spearman correlation between modelled and 

experimental values of 1.00. Biological experiments done in replicates are extremely unlikely to 

achieve correlation of 1.00. Yet the model seems to do so. Does this mean that the model is 
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Line 166: The authors need to provide this calculation.
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changes? Also, some control genes without kinetic rate changes should also be tested.

Line 610: In replicate 1 of the untreated cells the authors get approximately more than 2x poly(A) 

RNA compared to all the other cellular fragments. In contrast, in replicate 2 they get 2x less 

poly(A) RNA. Similar variations among replicates can be seen for other conditions and 

fragments. This raises concerns regarding experimental reproducibility, and it is unclear how 
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with the proposed normalization scheme.

Line 641: At which step in the experiment are the ERCC spike-ins added? It is unclear what 

these spike-ins control for? Do they only control for library preparation and sequencing? It 

would be expected that most of the variation occurs during cell counting, RNA extraction, 

processing, polysome isolation, all steps before library preparation. The authors need to explain 

how they control and normalize these steps.



Line 561-565: Metabolic labelling with 5EU of K562 cells is described in the methods but it is 

unclear where K562 cells were used in the work.

Line 590 and elsewhere: There are some spelling mistakes throughout the text. e.g. 

Cycloexamide should be cycloheximide that need to be corrected.
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accompanied by a legend describing the point density scale. The authors should consider 

showing all points, perhaps with some transparency to avoid overplotting.

Reviewer #3 (Remarks to the Author):

The authors designed an interesting data-driven modeling system to explain RNA dynamics in a 

large-scale manner. Here are my points for the authors to consider.

1. When using the ODE model to explain RNA data, as the model is relatively simple, it did not 

include potential dynamic contributions from the feedback exerted by relevant transcription 

factors. This may be particularly important for the drug perturbation scenario as cells can 

activate compensatory signaling and autocrine to dynamically up/downregulate transcription 

factors to directly control RNA synthesis (and perhaps also RNA degradation and processing 

steps, if the cells happen to produce more or less of those accessory proteins). If the focus of 

the model is to explain short term RNA dynamics data, what about long term dynamics? This 

(long term dynamics) is much more meaningful in deciphering cell fate.

2. In fact in real biology, some of the major reactions described in the model, e.g. co-

transcriptional processing, post-transcriptional processing, degradation, require accessory 
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modeling standpoint), it actually also overlooks the potential second/higher order protein 

binding and catalytic interactions (from the mechanistic standpoint). Since the levels of these 
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to have reduced rates and meanwhile there were some literature evidence that can support a 

potential mechanistic link. Such information could be used as validation of the model insights.

3. What about the inter-cell type applicability of this model? An example would be to use 3-5 

cancer cell lines (sensitive, moderate, resistant), control vs receiving the same drug (and 
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dose1 vs A dose2, etc.) using this framework. This would hopefully provide more meaningful 

information for translational research.

4. Another concern is the novelty of this study. To me the hard part is perhaps measuring the 
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the ODE modeling part is rather linear, straightforward and based on recognized mechanisms. 
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studies or other groups?

5. Figure 1A. Unclear labeling. Which thing (drawing) corresponds to which variable in the 

equation? Reaction k3 goes to where?
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be very helpful for future research.



Point by point response to Reviewers 

Nanodynamo quantifies the dynamics of RNA metabolism and reveals 

extensive coupling between steps of the RNA life cycle 

Lucia Coscujuela Tarrero, Valeria Famà, Giacomo D’Andrea, Simone Maestri, Anna de Polo, Stefano 

Biffo, Mattia Furlan, Mattia Pelizzola 

We would like to really thank the three Reviewers for their constructive comments, which markedly  

contributed to improving and clarifying the manuscript and strengthening the main conclusions of our work. 

Please see below for a point-by-point response to all comments. Our responses were marked in blue. Edits 

done in the revised main text and supplementary material were also marked in blue.

Reviewer #1 

Comments for Tarrero et al., 

Tarrero et al., established a new tool, named Nanodymo to estimate the rates of several important steps in 

gene expression and their biological links. In brief, they employed 4sU RNA labeling and direct RNA 

Nanopore sequencing (dRNA-seq) methods to monitor nascent transcripts in several cell fractions. They 

then performed computational analyses to quantify the kinetics rates of transcription, co- and post-

transcriptional RNA splicing, RNA degradation, RNA export, RNA-polysome binding, and RNA 

degradation in the cytoplasm. They applied this approach with three different inhibitors which inhibit 

splicing, RNA export, and translation, respectively. Using these datasets, they also presented some steps 

coupling that may be biologically important for gene expression.  

Pelizzola group previously established a similar method called INSPEcT. I feel Nanodymo can be a good 

addition and alternative method to dissect the complexity of gene expression. However, I have some 

concerns about this manuscript. In general, lots of critical information is missing in the texts and figures. 

At least to me, it will be challenging to follow their messages. The authors should make this manuscript 

more reader-friendly. My specific comments to improve are written below. 

1) Some cartoons of comparison between INSPEcT and Nanodymo will help understand the impact of this 

study. 

Following the Reviewer’s suggestion, we included a new supplementary figure (Supplementary Figure 1) 

depicting the models of the RNA life cycle implemented in INSPEcT (panel A) and Nanodynamo (panel 

B). 



2) Figure 1D: What are the numbers (0.33, 0.33 1, and 0.33 2) next to the box? I believe those are 20min, 

60 min, and 120 min. 

The Reviewer is correct, the legend in Figure 1D reports for each simulation the labeling times in hours. In 

the new version of the figure, we added the units of measurement. 

3) Figures 1C and 1D: In the text, Figure 1D comes first. The authors should correct this. 

We apologize for the mistake. We updated the figure switching the two panels, and we changed the text 

accordingly. 

4) Figure 1F: The authors should expand the text (lines 135-139) to explain the result of Figure 1F. They 

especially should discuss why the rates k7-9 have a lower correlation between Expected and Inferred. 

The reviewer is correct, the rates associated with the final steps of the RNA life cycle tend to be less 

correlated with their expected counterparts. The reason is that k7-9 are inferred according to the expression 

levels of cytoplasmic and polysomal RNA which, however, also depend on k1-6 complicating the 

determination of k7-9. This growth in complexity clearly emerges from the solution of the ODEs system. 

Each RNA species is indeed expressed as a combination of exponential terms whose number increases 

moving away from RNA synthesis. Moreover, k7 generates a branching in the model which, again, increases 

the complexity of the equations and results in a more difficult inference. Indeed, the simplification of the 

model through the removal of this branching point -  neglecting polysomal RNA and the corresponding k8-

9 rates - increases k7 correlation (Spearman correlation 0.96). Also k4, one of the less correlated rates, 

generates a branching in the model; see the new version of Figure 1E which was updated after the extensive 

review of our data simulation and inference routines (next points of the rebuttal). We included these 

observations in the discussion of Figure 1E. Finally, we wanted to highlight that rates k7 and k8 were 

switched in the first version of Figure 1E and were amended in the current version. 

5) Figures 2A and 2B: These panels may be suitable for supplementary figures since they are not 

biologically important. Chp and Np are not well reproduced. The author should explain this. 



We moved the former panels 2A and 2B to supplementary figures as suggested. The reason for the low 

correlations between replicates for premature species in chromatin (Chp) and nucleoplasm (Np) is very 

likely due to the low expression of these species, which are consequently those being more affected by 

experimental noise. We mentioned this point in the revised version of our manuscript discussing 

Supplementary Figure 7. 

6) Figure 1D: What is the x-axis for? The authors should label the information on the figure. 

We believe that the Reviewer was referring to Figure 2D, reporting the distribution of the various kinetic 

rates inferred by Nanodynamo. The rate name and the corresponding unit were displayed in the title of each 

histogram. However, the information about the unit of measurement was moved within the x-axis in the 

new Figure 2C. 

7) Figure 1E: The normalized score should be located on the top of the panel. The coloring of the clusters 

should be changed since it is not easy to distinguish each category.  

We believe that the Reviewer was referring to Figure 2E. We updated the figure (Figure 2D in the revised 

manuscript) according to the Reviewer’s suggestions. Regarding the clusters colors, we opted to denote 

them with letters instead of colors to facilitate their identification.  

8) Figure 1G: I recommend to move this panel to supplementary information. 

We believe that the Reviewer was referring to Figure 2G (renamed 2F in the revised version). The ability 

of Nanodynamo in processing datasets of variable complexity is important to accommodate experimental 

choices (e.g. avoid polysomal profiling) as well as to allow the study of the RNA life cycle of transcripts 

which do not fit the complete model. Some of these gene types are highly relevant species, such as intronless 

or noncoding RNAs, and being able to cope with their peculiar life cycle is in our opinion a quite important 

feature of our method. Since we believe that this Figure is essential to convey this message to the reader, 

we would prefer keeping this panel in the main text. 

9) Figure 2A: - Two replicates of Pladienolide B treated samples look so different. Rep 1 shows premature 

termination rather than splicing inhibition? In fact, Pladienolide B causes premature termination in large 

fractions of pc genes in K562, HeLa, and HCT116 cells (Caizzi et al., Molecular Cell 2021 and Sousa-Luis 

et al., Molecular Cell 2021). The intensity of the y axis of rep 2 is much higher than rep 1. The author may 

want to explain this. Please also add the information shown below as well. 

- They need to mention what cell fraction shows these RNA profiles in Fig 2A. 

- They may want to show a representative view (GB or IGV) of dRNA-seq for all the fractions. 

The Reviewer is right regarding the intensity of y axis of the second replicate of Pladienolide B treatment 

in Figure 3A: there is a marked difference in coverage between the first and the second replicate due to the 

fact that the first run of sequencing produced fewer reads and, additionally, the second replicate is the 

pooling of two sequencing runs. 

Regarding the abrupt end of sequencing signal within the 3’UTR, it is due to our unfortunate choice of 

which MYC isoforms to report in the figure. Indeed, various MYC isoforms exist whose 3’ end is perfectly 



aligned with the abrupt end of the sequencing coverage. In particular, the Nanopore signal seems to have 

specifically captured one of these isoforms having a shorter 5’UTR, highlighted by a red box in the figure 

below. 

Regarding the previously described effect of Pladienolide B treatment leading to premature termination, 

which we did not intend to deny, in our set up of dose and treatment length we could not see evidence of it 

- this might also be due to the small half life of prematurely terminated products. In fact, in addition to 

MYC, discussed above, we report here an additional example (IRX2) being well expressed in all fractions. 

IRX2 showed the expected accumulation of intronic signal, and the signal drops corresponded with the 3’ 

end of specific reported isoforms in all fractions. 





To further characterize this aspect, we focused on chromatin associated RNA samples for untreated and 

Pladienolide B treated cells and we computed, for each mapped read from these libraries, the distance 

between their 3’ ends and the closest annotated transcription end site (TES). For both conditions, most of 

the distances ranged between 30 and 50 bases. In addition, we obtained distributions centered on zero, 

meaning that that reads were equally likely to finish up- or down-stream the annotated TES (see the figure 

below). The Pladienolide B distributions were only slightly broader than the untreated counterparts 

(especially for the replicate 1). However, the absence of a trend for reads ending upstream the expected 

TES, and the limited magnitude of these differences, did not support a systematic and severe premature 

termination in response to the drug.

10) Figure 2F: In theory, chromatin fraction does not contain polyadenylated RNAs since such mature 

RNAs should be released before RNA polymerase II transcription is terminated. Is this caused by a technical 

issue, like an RNA contamination from nucleoplasmic fraction? 

Several studies support the notion that chromatin associated RNA is enriched with polyadenylated 

transcripts. For example, Brody et al (PLoS Biology, 2011) used live cell microscopy to study, in untreated 

and splicing inhibited cells, the coupling between RNA Pol2 elongation and splicing. Among other things, 

they found the pervasive retention of polyadenylated transcripts within chromatin. Drexler et al (Molecular 

Cell, 2020) profiled nascent chromatin-associated RNA through Nanopore direct RNA sequencing. In their 

setup, the enrichment for nascent transcripts (8 minutes of 4sU labeling) strongly reduces the chance of 

contamination with nucleoplasmic RNA. Yet, they observed the widespread presence of endogenous polyA 

tails for transcripts whose 3’ends are in proximity of polyadenylation sites. In a more recent report, Cotè et 

al (eLife 2023) improved the analysis of single RNA molecules through FISH to study at high resolution 

where splicing was occurring. They found that often unspliced transcripts, still containing introns, resided 

closely to the transcriptional unit encoding them, yet their transcription was already completed and they 

were already detached from the RNA Pol2 complex. Finally, the good correlations between replicates we 

observed for chromatin and nucleoplasmic RNA species (Supplementary Figure 7), together with the 



validation of our protocol by western blots (Supplementary Figure 6E), reassured us about the limited extent 

of contamination between the fractions. 

11) Figure 3E: The cluster is not labeled.

The clusters labels were on the left of the panel, yet not in an ideal position. We now decided to remove, 

here and elsewhere, the association of clusters with colors. Instead, we marked the clusters directly with 

the corresponding letters beside the heatmap(s) (see Figure 3G in the revised manuscript). 

12) Figure 3F: Some clusters showed up-regulated rates of post-transcriptional splicing (i.e. k5). Post-

transcriptional splicing event is not inhibited by Pladienolide B? The authors may want to discuss this. The 

example view (GB or IGV) of nanopore sequencing will be useful to show. 

Both co- (k2-3) and post-transcriptional (k4-5) processing rates were impacted by Pladienolide B treatment 

(see clusters A and C in Figure 3G). In the revised manuscript we better discussed the potential regulatory 

responses behind the repression of both mRNA processing branches. 

The application of Nanodynamo to untreated cells revealed that co- and post-transcriptional processing are 

largely mutually exclusive, meaning that either a gene is very efficient in one of these or in the other one 

(Figure 2D, clusters A,B,E,F vs C,D). This suggests that the spliceosomal machinery is active within 

chromatin and within the nucleoplasm for different sets of genes. It is important to this regard to stress that 

major biases due to contamination between the fractions are unlikely (as discussed in the main text), due 

to: (i) the validation of fractionation with markers expected for each fraction (Supplementary Figure 6E), 

(ii) the reproducibility between replicates of the RNA species abundance in the various fractions 

(Supplementary Figure 7), and (iii) the lack of specific structural features (transcripts length, introns length 

and number, sequence features) between genes associated to co- vs post-transcriptional processing 

(Supplementary Figure 14). 

Following the treatment with Pladienolide B, specific sets of genes are repressed in processing, markedly 

those within clusters A and C in Figure 3G. Specifically, genes in cluster C are repressed in co-

transcriptional processing, while those in cluster A are repressed in post-transcriptional processing. 

Strikingly, genes in cluster C are, in untreated cells, the least expressed (low k1, Figure 3I) among the most 

efficiently co-transcriptionally spliced (high k2, Figure 3I). Similarly, genes in cluster A are, in untreated 

cells, the most efficiently post-transcriptionally spliced (high k5, Figure 3I) and are also particularly low 

expressed (low k1, Figure 3I). Thus Pladienolide B seems to affect specifically low expressed, efficiently 

spliced genes. We explained this observation by reasoning that, assuming a uniform concentration of the 

drug within a given cell, poorly expressed genes are those reached by the highest proportion of drug 

molecules per transcript. 

At this point, the switch of genes repressed in co-transcriptional processing to increasing post-

transcriptional processing, and vice-versa, occurs. This could be due to coupling mechanisms which could 

be actively controlled, perhaps mediated by specific RNA binding proteins coordinating changes among 

the two processing branches, or coordinating changes in the rates of diffusion of RNAs between chromatin 

and nucleoplasm (k3-4). This might represent an active attempt of the cells to compensate for the drug 

impact. Alternatively, the coupling could originate from the release of spliceosomal resources passively 

promoting a re-equilibrium between the two mutually exclusive processing pathways. Importantly, the 

increase in co-transcriptional processing as a consequence of switching is facilitated by the low magnitude 



of the co-transcriptional rate for genes in cluster A - the same applying to genes in cluster C for the switch 

to post-transcriptional processing. All these considerations were added in the corresponding Results and 

Discussion sections of the revised manuscript. 

13) Figure 4B: This panel may not be mandatory since this is the same as Figure 1A except for k8 and k9.  

We believe that the Reviewer was referring to the schema of the simplified model in Figure 5B. This was 

moved to the supplementary figures as the Reviewer was suggesting.  

14) Leptomycin B is an RNA export inhibitor, but it seems not to inhibit (affect) k6. This result suggests that 

Leptomycin B did not affect the RNA export rate. This is weird to me because mRNAs should be accumulated 

in the nucleus under Leptomycin B treatment, meaning the rate could not be quantified. The authors may 

want to discuss it. 

Leptomycin B is commonly used to block the export of proteins and transcripts to the cytoplasm. This drug 

acts on CMR1, which is a selective and mainly protein export factor (Kudo N et al, Exper Cell Res 1998, 

Kudo N et al, PNAS 1999). A subset of RNAs were also retained in the nucleus following the treatment 

with this drug (Jang BC, J Biol Chem 2003). This was confirmed by a more recent study (Engel et al, 

Nucleic Acid Res 2022) where they reported 105 transcripts being reduced and 74 being increased in their 

nuclear localization following 15h Leptomycin B treatment in HeLa cells. The overlap between these genes 

and the ones reported by us on SUM159 cells is small (8 genes), potentially due to the different cell types. 

Yet, the number of genes affected in RNA export is similar. We validated 6 of these genes by PCR following 

the repeated cell fractionation (now in Figure 4D). We additionally successfully included in the validation 

2 genes that were not previously reported as affected in RNA export. Finally, we successfully included 2 

genes that we deemed not affected in RNA export, as requested by the Reviewer (Supplementary Figure 

25). 

As discussed in the main text, several of the genes that we found significantly perturbed in export are 

involved in the regulation of key steps of the RNA life cycle including: chromatin dynamics/transcription 

(MED6 [Mediator Complex Component], CREM [Foulkes et al Cell 1991], XRN2 [Skourti-Stathaki et al 

Mol Cell 2011], CCNDBP1 [https://www.ncbi.nlm.nih.gov/gene/23582 15/04/2024], PPHLN1 [HUSH 

Complex Component - Kurita et al Biochem Biophys Res Commun 2007], HMGN3 

[https://www.ncbi.nlm.nih.gov/gene/9324 15/04/2024], CHD1L [Wang et al Nat Com 2021], TARDBP 

[Bhardwaj et al NAR 2013], DOT1L [Min et al Cell 2003], UFL1 [Qin et al Nat Com 2019]),  splicing 

(TARDBP [Bhardwaj et al NAR 2013]), export (LRPPRC [Volpon et al RNA 2017]), RNA stability 

(CSDE1 [Chang Genes Dev 2004]), translation (LARS1 [Liu et al NAR 2020], RPL23A [Large Ribosomal 

Subunit Component], CSDE1 [Chang Genes Dev 2004]]), and protein folding/stability (SERPINB1 [Choi 

et al Nat Immunol 2019], HSPB1 [Almeida-Souza et al J Biol Chem 2010], SPCS3 [Signal Peptidase 

Complex component - Liaci et al Mol Cell 2021], HERPUD1 [Schulz et al J Cell Sci 2017). Consequently, 

as discussed in the main text, the broad impact of this prolonged treatment on RNA metabolism is likely an 

indirect effect of the perturbation of factors that impinge on other key steps of the RNA life cycle. We 

believe that this is important for the field, since this drug is typically used in prolonged treatments. 



15) Figure 4E: Co-transcriptional splicing was inhibited and post-transcriptional splicing was increased 

by Leptomycin B in category F. Other categories also showed a negative correlation. The authors may 

want to discuss it. 

The modulations mentioned by the Reviewer likely resulted from coupling mechanisms. Specifically, the 

Leptomycin B treatment impacted several steps of the RNA life cycle (see Figure 4F, clusters A and C in 

the revised manuscript), which we proposed to be likely due to the impairment in export of selected 

transcripts coding for proteins involved in these biological processes. These modulations directly or 

indirectly involved the rates of co- and post-transcriptional splicing, which emerged as strongly coupled 

from all our analyses (i.e. upon the various drug treatments). These considerations were extensively 

discussed in the main section dedicated to the coupling of rates. 

16) Line 309: ~ change in polyA tails length were positively correlated ~ -> negatively correlated? 

We verified that, as previously reported in the text, changes in polyA tails lengths for both Pladienolide B 

and Leptomycin B treated cells compared to untreated cells were positively correlated to changes in the rate 

of export. Please see the following scatter plots. 

17) Figure 6: The coupling of RNA cycle steps under Harringtonine treatment should be shown, even 

though the k8 and k9 were missing. 

We followed the Reviewer’s suggestion and included the coupling network for the Harringtonine treatment 

in Figure 6A.

Reviewer #2 

In this work the authors propose Nanodynamo a modelling framework that involves mathematical modeling 

following the sequencing of native RNA from cellular fractions and polysomes. They use SUM159 triple-

negative breast cancer cells as a test case to profile the kinetic rates of co-transcriptional and post-



transcriptional mechanisms that define the RNA life cycle. Generally, the quantification of the kinetic rates 

of RNA life cycle is important for the understanding of gene regulation and could likely prove very useful 

to the community. However, while the authors have performed extensive work on the mathematical 

modeling, the work lacks orthogonal validation of the estimates and thus excitement for the work is 

substantially reduced. 

Given enough parameters, it is not surprising that the model can fit the data. Actually, the models presented 

in the work appear to fit unexpectedly well, achieving correlation values of 1.0, raising concerns for model 

overfit. Also, it remains unclear if the fitted values correspond to the truth. The authors need to provide 

evidence, based on established time series labeling experiments, that show the concordance of their 

estimates to experimentally measured rates. 

Below are some specific major points: 

Line 79-80: The authors need to show their polysome profile traces for all the samples and conditions as 

polysome RNA-seq is an important part of the work. 

We thank the Reviewer for the suggestion. We now included polysome profile traces in the main figures 

for each condition (untreated and drug-treated cells). Additional replicates for those are reported in 

Supplementary Figure 6. 

Line 94: “This modified nucleotide can be detected on dRNA-seq data using the nano-ID tool”. This is 

incorrect. Nano-ID has been trained to detect 5EU. The authors appear to have retrained the neural 

network to detect 4SU using their data. Therefore, since this is a critical part of their work, they need to 

show that modified nucleotides can indeed be detected. Currently they only evaluate the performance of the 

test dataset, but no information is provided regarding the creation of the test dataset. More importantly no 

evaluation has been performed on a completely independent dataset. Fully connected neural networks with 

millions of parameters like nano-ID are prone to overfit. Given that the entire work depends on this step, a 

truly independent evaluation needs to be performed. 

The Reviewer is correct, nano-ID has been developed to classify nanopore dRNA-seq reads according to 

the presence/absence of 5eU, and we retrained the algorithm on our data to detect 4sU. Specifically, we 

sequenced unlabeled and fully-labeled RNA from SUM159 cells, the latter obtained after 8 hours of 4sU 

metabolic labeling (500 nM) followed by the pull-down of labeled RNA. Then, we extracted all the features 

required by nano-ID with a custom nextflow pipeline which performs reads alignment  (minimap2 -ax 

splice -k14), BAM sorting and filtering (samtools view -F 2308 -q 20), and executes all the R scripts 

provided by Maier and colleagues in the original nano-ID publication. The latter required a substantial 

effort, since the code released in that study was not sufficiently tidy to be directly executed. The dataset 

was then sub-sampled to balance the amount of labeled and unlabeled reads per gene, and splitted in training 

and test sets (70% and 30% of the reads, respectively) which were finally used for nano-ID training and 

evaluation. 

We validated our pipeline using it on the original nano-ID dataset, re-basecalled with Guppy6, obtaining a 

classification performance in agreement with the one presented in the nano-ID publication (Accuracy 0.86, 

AUROC 0.95). 



The choice of applying the nano-ID framework to a different modified nucleoside was motivated by our 

observation that a prolonged exposure of SUM159 cells to 5eU (500 nM - 24h labeling) led to cells suffering 

with potential impact on RNA metabolism and/or 5eU incorporation (observations based on Trypan Blue 

Cell counting). Rather, we could not detect any suffering in cells exposed to 4sU, prompting us to switch 

to that modified nucleoside. To further minimize the impact of metabolic labeling - when cells were exposed 

for prolonged time as in the case of the fully labeled condition - we also reduced the labeling time to 8h, 

followed by pull-down of the labeled RNA to minimize the potential presence of unlabeled transcripts. This 

strategy led to a slight improvement in the nano-ID classification (Accuracy 0.75, AUROC 0.83) compared 

to 24h labeling with 5eU (Accuracy 0.72, AUROC 0.80) and compared to 24h labeling with 4sU (Accuracy 

0.73, AUROC 0.82). 

As suggested by the Reviewer we quantified the performance of nano-ID on a completely independent 

sample, which was not involved in the training step. To this end, we exploited the 4sU 24h labeled sample 

introduced above. The per-gene accuracy was only mildly impacted (see attached figure). Furthermore, the 

per-gene accuracy was in line with the that obtained with 5eU 24h labeling, and also with the performance 

of an independent tool - RNAkinet (Martinek V et al, bioRxiv 2023) - recently developed to detect 5eU 

labeled reads (Accuracy 0.70, AUROC 0.78). Importantly, RNAkinet was not retrained on our data, nor the 

code for its training has been released yet. RNAkinet was specifically developed for reducing overfit 

compared to fully connected neural networks. Altogether, these analyses reassured us about the possibility 

to apply nano-ID to efficiently identify 4sU-labeled reads. We anticipate that, once RNAkinet will be fully 

released, the Nanodynamo framework could be easily adapted to use it and shall benefit from the improved 

classification of labeled reads. 

The methods section was edited to better describe how we used nano-ID to classify newly synthetized 

transcripts through 4sU metabolic labeling. 

Nascent RNA profiling Accuracy in 

SUM159. Accuracy distributions, at 

single gene resolution, for unlabeled 

and fully labeled reads. (Left) 

Performance of a nano-ID instance for 

4sU containing reads detection. The 

unlabeled and 4sU Pull Down samples 

were used for training while the 4sU 

24h sample was not. (Center) 

Performance of a nano-ID instance for 

5eU containing reads detection on its 

training samples. (Right) Performance 

of RNAkinet, a piece of software 

developed to detect 5eU containing 

reads, on samples not involved in its 

training. 

Line 99: “Following the verification of the theoretical feasibility of kinetic rates inference”. It is unclear 

which data support this statement and validate the theoretical feasibility of the model. 



The theoretical feasibility of kinetic rates inference has been verified testing the global structural 

identifiability of all the parameters of the model, i.e. evaluating whether the value of each parameter can be 

recovered uniquely given continuous and noise-free data. We performed this analysis with a Julia 

implementation of the SIAN software (Structural Identifiability ANalyser) which, to the best of our 

knowledge, can be considered the state of the art for Ordinary Differential Equations models. This algorithm 

leverages differential algebra and Taylor series expansion to provide, for any suitable input, a classification 

of each parameter of the model as: not identifiable, locally identifiable, or globally identifiable. Noticeably, 

this classification is by design correct with a probability of 0.99. 

To present the concept of global structural identifiability more clearly in the revised version of our 

manuscript, we now mention the corresponding methods session in the main text. 

Line 103: The purpose of the section “Evaluation of Nanodynamo through simulated data” is unclear. The 

authors appear to have simulated data according to their model. Then have added noise based on normal 

distribution and then fitted the model. This seems like a trivial task that doesn’t prove much besides that 

the source code works. The correctness of the estimated rates remains unclear. It is also unclear how these 

simulations can be used to evaluate the optimal number of replicates and labelling time given that the noise 

added to the simulations is arbitrarily selected. 

The validation of parameters global structural identifiability guarantees the theoretical feasibility of kinetic 

rates inference, nevertheless, this analysis involves noise-free data and disregards potential numerical 

issues. 

For this reason, it is essential to test the goodness of our inference framework on simulated data generated 

according to a known set of rates and incorporating a reasonable amount of noise. In the first version of our 

manuscript, we used a variation coefficient (CV) of 0.35 for all the RNA species involved in the model. 

Importantly, this value was not arbitrarily selected. It was determined from a large RNA-seq dataset that 

we collected in a previous study where we profiled premature and mature RNA within both total and nascent 

RNA pools (using 10 minutes of 4sU metabolic labeling), over time (11 time points) following Myc 

induction in 3T9 mouse fibroblasts (de Pretis S et al, Genome Res 2017). We determined the gene-level 

CV for each RNA species based on the entire time series, i.e. also accounting for the biological variability, 

and we used the CVs distributions to select 0.35 as a conservative variation coefficient - this value was 

larger than 90% of the estimated CVs. 

We now improved the noise estimation by avoiding using a unique CV for all RNA species. To this end, 

the CV was determined independently for each RNA species based on the raw counts of untreated cells - 

taking the average of all gene-level CVs for that species - and relied on these to generate the simulated data. 

The obtained results were in agreement with those presented in the first version of the manuscript both in 

terms of goodness of fit and impact of replicates (Figure 1D-E and Supplementary Figures 4-5). 

We would like to stress that the inference of simulated rates is far from being trivial given a reasonable 

amount of noise which significantly impacts the simulated gene expression values. Indeed, we used this 

information to evaluate whether or not considering two potential extensions of our model, which involved 

the degradation of either premature or mature nuclear RNA. Eventually, we decided to ignore these steps 

of the RNA life cycle because the corresponding rates could not be inferred (Spearman correlation 

coefficients based on simulated data 0.05 and 0.08, respectively) despite their global structural 

identifiability. 



Line 134: “a single sample is sufficient to have a performance remarkably close to the optimal one”. Not 

requiring replicates is indeed remarkable, but also unlikely to be true in real experiments. This most 

probably indicates the low complexity of the simulated data. 

Regarding the quality and usefulness of the simulated data we refer to the response to the previous comment 

above. 

The Reviewer is right, replicates are crucial for any measurement to estimate the associated variability, and 

this applies also to RNA sequencing. Nevertheless, the Nanodynamo framework is based on the joint 

analysis of several RNA pools which are profiled through independent experiments, in the real case 

scenario, or derive from the independent sampling of multiple distributions for the simulated data analysis. 

Therefore, multiple measurements simultaneously contribute to the definition of the optimum set of rate, 

even if a single value is provided for each RNA species, and this allows to mitigate the detrimental effect 

of having few or even only one replicate. 

Eventually, the inference routine was updated in the new version of the manuscript (see next point), so that 

it takes full advantage of replicated measurements for the abundance of the various required RNA species. 

Indeed, the single replicate configuration is not recommended anymore, and the individual replicates are 

not pooled anymore. 

Line 150-151: In this reviewer’s opinion correlation values of <0.5 between replicates is not acceptable to 

justify pooling replicates together. This indicates that either the experiments are very noisy or more likely 

that the model overfits. 

As discussed in the response to the previous comment, following the Reviewer’s suggestion, we extensively 

revised our inference approach to avoid replicates pooling. Specifically, for a given gene, we now estimate 

the optimal rates on the RNA species expression levels from both replicates simultaneously. This approach 

allows to process datasets with an arbitrary number of replicates fully exploiting the available information. 

Line 154: The use of a single read as a threshold appears to be very loose. Especially when all replicates 

are pooled together and there is no estimate of the variance. 

As discussed in the response to the previous comment, following the Reviewer’s suggestion, we extensively 

revised our inference approach to avoid the replicates pooling. 

Regarding how we introduced the estimation of gene-level variance and used it to detect differential 

expression across treatments, please refer to the response to the “Line 285” Reviewer’s comment below. 

To evaluate the goodness and usefulness of single-count reads, we took advantage of the spike-ins added 

for each sample. We performed, for each fraction of the untreated cells, a linear regression between the 

expected spike-ins concentration and the spike-in counts. Slopes ranged between 1.02 and 1.08, and R^2 

between 0.88 and 0.92. This indicated that our Nanopore profiling was highly quantitative on the full 

spectrum of spike-ins concentration, which covers a broad range of values. Notably, this included the spike-

ins with the lowest concentrations, often quantified by individual reads. Even though the noise was 

moderately increasing at low concentrations, the goodness of the linear fit and the displayed 95th 

confidence intervals reassured about the use of one count as a minimal threshold for gene expression level. 

Furthermore, a one-tailed Wilcoxon-test was performed to assess the statistical significance of the 

difference between the mean concentration of the group of spike-ins with 1 count versus the mean of the 



group of spike-ins with 2 counts. The resulting -log10(pvalue) are: 1.5 for the chromatin fraction, 1.47 for 

the nucleoplasmic one, 0.41 for the cytoplasmic one, and 1.3 for the polysomal one. Thus, the difference 

between the two groups is significant in every fraction except for the cytoplasmic one, which can be justified 

by the scarcity of data points in the second group (2 counts) for this fraction, together with the fact that the 

first group spans a wider range. 

Line 155-156: The authors report a median Spearman correlation between modelled and experimental 

values of 1.00. Biological experiments done in replicates are extremely unlikely to achieve correlation of 

1.00. Yet the model seems to do so. Does this mean that the model is perfect? In this reviewer’s opinion this 

likely indicates that the model overfits the data. 



The median Spearman correlation between modeled and experimental values was 0.96 while 1.00 was the 

maximum; we apologize for the misleading message. 

Nevertheless, the observation of the Reviewer is important because our first analyses reported a high 

number of species very well correlated. To test the overfit hypothesis, we determined the correlations 

between replicates by comparing different RNA expression levels: (i) experimental vs inferred data 

following replicates pooling (ModPool_vs_ExpPool in the figure below), (ii) experimental data replicate 1 

vs 2 (Exp1_vs_Exp2 in figure), (iii) inferred data for replicate 1 vs experimental data for replicate 2 

(Mod1_vs_Exp2 in figure), and (iv) inferred data for replicate 2 vs experimental data for replicate 1 



(Mod2_vs_Exp1 in figure). As displayed in the figure below (“Old models”), we noticed that chromatin 

premature pre-existing (Chp_PreEx in figure) and nucleoplasmic premature (Np_Nas, Np_PreEx, and 

Np_Tot) RNA species showed high correlations between pooled experimental and inferred data (i), 

compared to the correlation between replicates (ii) or against independent data (iii and iv), suggesting a 

certain amount of overfit. 

We reasoned that the primary origin of overfit was probably the complexity of our model compared to the 

dimensionality of the dataset. Therefore, we decided to estimate the optimal rates on the RNA species 

expression levels from both replicates simultaneously (“New models” in the figure). This new modeling 

framework improved the performance limiting the overfit to the nascent nucleoplasmic premature RNA. 

Noticeably, this is less evident for genes with a high level of this RNA species (top 10%, see “New models, 

High Np Nascent” in the figure), suggesting that increasing sequencing depth could remove the mild 

residual overfit. We discussed this point in the Discussion session of our reviewed manuscript, the 

corresponding data were reported in Supplementary Figure 40. 

Line 166: The authors need to provide this calculation. 

According to the work of Biasini and colleagues, after 15 minutes of labeling 1.5% of the RNA is expected 

to be nascent. According to our quantifications of RNA yield in untreated SUM159 cells (see the methods 

session Fractionation and mRNA extraction), this correspond to ~11 ng / (Million of cells * h) considering 

180 ng of RNA from the fractions and 6% of nascent RNA. This value is well recapitulated by 

Nanodynamo, which returned a median rate of RNA synthesis per gene of 15 pg / (Million of cells * h). 

Assuming 103-104 expressed genes per cell, this sums up to 15-150*103 pg / (Million of cells * h), which 

corresponds to 15-150 ng/(Million of cells * h). Notably, this analysis was conducted using a limited set 

of highly expressed genes, which may account for the slight overestimation observed. 

Line 285: Is there any statistical significance estimation for these quantifications? 

Following the Reviewer’s comment, we extensively revised our framework to estimate the variability of 

the normalized expression level of each profiled RNA species at the single gene resolution. 

Briefly, for each sequenced sample, we determined the share of reads counts per RNA species, by 

comparing the total number of reads counts of a given RNA species against the total number of counts. This 

information is then used to split the yield of the corresponding fraction. For example, given 100 fg/Milion 

of cells of chromatin RNA, if 7% of the reads are annotated as nascent premature RNA, the corresponding 

yield would be 7 fg/Milion of cells. Then, we applied DESeq2 independently to each RNA species to 

estimate the parameters of gene-specific negative binomial distributions: dispersion values, and replicate-

specific mean values. After that, we randomly sampled each distribution and we used the resulting counts 

to split the yield of each RNA species across genes (same principle applied above for fractions). Iterating 

this sampling scheme 1000 times, we obtained a normalized expression level distribution for each RNA 

species at the single-gene and single-replicate resolution. 

The comparison of normalized expression levels distributions between conditions (untreated cells and drug 

treatments) allowed us to identify RNA species modulations. For a gene to be classified as upregulated, the 

mean of the treated distribution was required to be larger than the 97.5th percentile of the untreated one, 

while the mean of the untreated distribution was required to be lower than the 2.5th percentile of the treated 



one. Vice-versa, for a gene to be classified as downregulated the mean of the untreated distribution was 

required to be larger than the 97.5th percentile of the treated one, while the mean of the treated distribution 

was required to be lower than the 2.5th percentile of the untreated one. 

Importantly, the fraction of genes classified as up- or down-regulated comparing replicates from the same 

treatment was remarkably low, reassuring about the precision of our procedure (see figure below included 

in the revised version as Supplementary Figure 41). Since this analysis can be repeated for each couple of 

untreated and treated samples replicates, we decided to classify a gene as up- or down- regulated if it were 

coherently modulated in at least 2 of the 4 possible combinations (configurations characterized by the same 

number of opposite regulations were discarded). 



We adopted this framework to assess the significance of the changes in RNA export (k6) resulting from 

Leptomycin B treatment, as required by the Reviewer. We reasoned that nuclear mature RNA steady state 

level (Nm) is equal to k1/k6, therefore, a modulation of the latter could result in the differential expression 

of this RNA species. Indeed, genes up-regulated in k6 were enriched in transcriptional units down-regulated 

in Nm (Fisher test p-value < 4e-4), while genes down-regulated in k6 were enriched in transcriptional units 

up-regulated in Nm (Fisher test p-value < 1.5e-3), see the figure below. Interestingly, 88% of the genes up-

regulated in k6 were differentially expressed in Nm while the percentage was remarkably lower for the 

down-regulated counterparts (19%). The reason is that the rate of synthesis contributes to the definition of 

Nm expression level, consequently, a modulation in k1 can either expose or conceal the footprint left by k6

on Nm. Since k1 is globally down-regulated in response to the treatment (see Figure 4F), this made the 

identification of k6 down-regulations harder to be detected. Nevertheless, this issue affected all the 

transcriptional units involved in the analysis, therefore, the enrichment significance clearly emerged despite 

the modest number of differential genes detected. All the technical aspects presented above are detailed in 

the Quantification of gene expression levels section of the reviewed manuscript, while the results obtained 

for k6 modulated genes are mentioned in the main text. 

Line 289: RT-PCR differences appear modest. Do they correlate with the expected kinetic rate changes? 

Also, some control genes without kinetic rate changes should also be tested. 

Due to a bug in the code, we were not selecting genes properly. Indeed, we selected genes that were lacking 

either the mature RNA species in the nucleoplasm or the cytoplasmatic RNA species and not, as required 

from the complete model, genes for which signal was available for all the species. Despite this, the 

corresponding RT-PCRs nicely recapitulated the expected trends in the species abundance, and 

consequently the changes in RNA export (k6). 

The new RT-PCRs have been performed for genes for which modulation upon Leptomycin B treatment 

was previously reported (Engel KR et al, NAR 2022) or that we detected as modulated in k6 (DOTIL and 

LGALS were not part of the set of genes by Engel and colleagues). The RT-PCRs for up-regulated 

(LGALS,ADARB1,PRKAG2,POLE4) and down-regulated genes (DOTIL,CYREN) nicely recapitulated 

the expected trends and magnitude of the changes (Figure 4D). Finally, we tested two genes 



(SNRPB2,HTRAI) whose export rate was not reported to change. Both confirmed the lack of modulation, 

the second resulting in a very mild difference (15% reduction; Supplementary Figure 25). 

Line 610: In replicate 1 of the untreated cells the authors get approximately more than 2x poly(A) RNA 

compared to all the other cellular fragments. In contrast, in replicate 2 they get 2x less poly(A) RNA. Similar 

variations among replicates can be seen for other conditions and fragments. This raises concerns regarding 

experimental reproducibility, and it is unclear how this massive difference, which should be affecting 

calculations of the rates, can be normalized with the proposed normalization scheme. 

The Reviewer is right about the substantial variability in RNA yields across replicates. To improve on this 

central aspect of our study, we changed the RNA extraction method from an approach based on TRIzol to 

the Maxwell instrument for three of the cellular fractions of interest (chromatin, nucleoplasm and cytosol). 

The shift to Maxwell RNA extraction markedly improved the reproducibility in the calculation of RNA 

yield per fraction and per replicate (see figure below and see the methods session Fractionation and mRNA 

extraction). The median CV for RNA yields decreased from 0.35 to 0.08. 

The Maxwell RNA extraction approach was not applicable to the polysomal fraction because the sucrose 

gradient is more than 8ml per sample, which is not compatible / practical for handling with the Maxwell 

RNA extraction platform. For the polysomal fraction, we instead decided to collect two additional yield 

estimates based on TRIzol RNA extraction for the LeptomycinB treatment, which was particularly noisy in 

our initial quantifications. 



We also decided to change the original workflow by decoupling the quantification of RNA yields from the 

actual library preparation and subsequent Nanopore dRNA-seq. This choice provided much higher 

flexibility in the design of the experiment. Moreover, it allows easily acquiring various replicated 

measurements of RNA yields without incurring additional sequencing costs and waiting time. To exclude 

that having changed the RNA extraction method introduced biases against the previously acquired 

sequencing data (which relied on TRIzol extraction), we sequenced chromatin RNA extracted with the 

Maxwell from untreated and PladienolideB treated cells (two flow-cells per condition), and we compared 

the resulting gene expression levels to the TRIzol based counterparts. Hierarchical clustering reported in 

the figure below for gene-level RNA counts using 1 - Spearman Rho as distance, nicely grouped the samples 

within each biological condition, confirming the absence of a systematic bias due to the RNA extraction 

protocol. 

Line 641: At which step in the experiment are the ERCC spike-ins added? It is unclear what these spike-

ins control for? Do they only control for library preparation and sequencing? It would be expected that 

most of the variation occurs during cell counting, RNA extraction, processing, polysome isolation, all steps 

before library preparation. The authors need to explain how they control and normalize these steps. 

The reviewer is right, most of the variation occurs during RNA extraction and quantification. In this regard, 

we modified our experimental workflow to improve the reproducibility of our data. Please see above for 

details on how we improved our ability in quantifying RNA yield per fraction and their reproducibility 

(please see the response to the comment “Line 610” for details). 

Regarding the ERCC spike ins, they are added directly to the mRNA solution just before library preparation. 

They are used as quality control, and for assessing the linearity of our quantifications compared to the 

expected amount of these species (please see the response to the comment “Line 154” for details). 

The normalization step has changed, and we are no longer considering ERCCs for it. For each species, we 

compute a normalization factor that is equal to the ratio between the extracted mRNA and the number of 

cells from which RNA has been extracted. Next, we ran DESeq2 independently on each fraction to estimate 

gene counts distributions, RNA species’ normalized counts and dispersions and use the normalization factor 



to split the yield across genes. This has been detailed in the Counts normalization session of the main text 

methods which is also reported below. 

Importantly, reassuring on the reliability of our normalization, the absolute quantification of nascent RNA 

was in line with what previously reported in the literature (please see the response to the comment “Line 

166” for details). 

Counts normalization – For each sample, the following factor was computed to account for the amount of 

PolyA RNA extracted from each fraction; a crucial step to move from relative to absolute gene expression 

levels. 

!"#$%&'(%)'"*+,%-)"# . +
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Then, for each RNA species and sequenced sample, we estimate genes counts and we use them to split the 

yield of the corresponding fraction (e.g. given 100 fg/Milion of cells of chromatin RNA, if 7% of the reads 

were annotated as nascent premature the yield of Chpn would be 7 fg/Milion of cells - see the methods 

session Fractionation and mRNA extraction). Then, we applied DESeq2 independently to each RNA species 

to estimate the parameters of gene-specific negative binomial distributions: dispersion values, and 

replicate-specific mean values. After that, we randomly sampled each distribution and we used the resulting 

counts to split the yield of each RNA species across genes (same principle applied above for fractions). 

Iterating this sampling scheme 1000 times, we got a normalized expression level distribution for each RNA 

species at the single gene and single replicate resolution. The mean of these distributions were used as 

input data for rates inference. Gene expression quantification was performed in R 4.2 using the 

Bioconductor package DESeq2 [Love et al Genome Biology 2014] (v1.38.3).

Line 561-565: Metabolic labelling with 5EU of K562 cells is described in the methods but it is unclear 

where K562 cells were used in the work. 

The K562 dataset was used to characterize the impact of ribo depletion and in-vitro polyadenylation in 

terms of premature RNA profiling; Discussion session of the main text. We explicitly mentioned the cell 

line in the revised manuscript. 

Line 590 and elsewhere: There are some spelling mistakes throughout the text. e.g. Cycloexamide should 

be cycloheximide that need to be corrected. 

Apologies for the mistakes, we carefully reviewed the text of the manuscript to address the spelling errors. 

Line 746: Smooth density scatterplots used throughout the figures can be obscure, unless accompanied by 

a legend describing the point density scale. The authors should consider showing all points, perhaps with 

some transparency to avoid overplotting. 

We followed the Reviewer’s suggestion adding a color-scale to the smooth density scatterplots. 

Reviewer #3 



The authors designed an interesting data-driven modeling system to explain RNA dynamics in a large-scale 

manner. Here are my points for the authors to consider. 

1. When using the ODE model to explain RNA data, as the model is relatively simple, it did not include 

potential dynamic contributions from the feedback exerted by relevant transcription factors. This may be 

particularly important for the drug perturbation scenario as cells can activate compensatory signaling and 

autocrine to dynamically up/downregulate transcription factors to directly control RNA synthesis (and 

perhaps also RNA degradation and processing steps, if the cells happen to produce more or less of those 

accessory proteins). If the focus of the model is to explain short term RNA dynamics data, what about long 

term dynamics? This (long term dynamics) is much more meaningful in deciphering cell fate. 

The response to this Reviewer point was combined with the response to the following comment, please see 

below. 

2. In fact in real biology, some of the major reactions described in the model, e.g. co-transcriptional 

processing, post-transcriptional processing, degradation, require accessory proteins, which means that 

while a single first-order rate description may be ok (from the modeling standpoint), it actually also 

overlooks the potential second/higher order protein binding and catalytic interactions (from the 

mechanistic standpoint). Since the levels of these accessory proteins may also vary upon drug perturbation 

(e.g. feedback or nonspecific drug effect), the story could become a lot more complex. In short, simply 

saying that some rate decreases upon drug intervention does not really offer mechanistic insight. The 

authors should discuss this potential limitation. Or the authors could perhaps find 1-2 genes that were 

shown to have reduced rates and meanwhile there were some literature evidence that can support a 

potential mechanistic link. Such information could be used as validation of the model insights. 

The Reviewer is right, gene expression is extremely complex and involves hundreds of actors which 

contribute to the fine tuning of the expression level of each gene. In particular, the Reviewer stresses the 

key role of regulatory factors, such as transcription factors (TFs) and RNA binding proteins (RBPs), which 

are key determinants of the RNA life cycle steps that are included in our model. However, hundreds of such 

factors exist and their target preferences are largely unexplored. For this reason, including their role in such 

mechanistic modeling efforts would be a daunting effort given the current available data in the field. Indeed, 

our first-order model is far from providing an accurate description of all these regulatory cues. Rather, 

Nanodynamo aims at providing a comprehensive and accurate picture of the outcome of all these regulatory 

interactions, quantifying how RNAs flow across the different steps of their life cycle. This is a crucial first 

step of any mechanistic study. In fact, in the Discussion section we propose that Nanodynamo could be a 

powerful tool for exploring the functional role of TFs and RBPs. For example, determining the 

consequences of knocking down or out such factors on the dynamics of RNA metabolism. This would shed 

light on which steps of the RNA life cycle are mostly affected and thus are likely regulated by the perturbed 

factors.  

Finally, the Reviewer points to the coordinated action of the various machineries that regulate the RNA life 

cycle. We hope that our study has provided some advance in this direction, based on our comprehensive 

analysis of coupling between the steps of RNA metabolism across various drugs perturbations. To this 

regard, we extended our analyses by trying to identify the factors - TFs and RBPs - that could be involved 

in the implementation of these couplings. We performed a GSEA-based analysis to identify enrichments in 



TFs and RBPs targets among genes supporting each given coupling. Proteins binding sites were retrieved 

from the ENCODE web portal [10.1038/nature11247, 10.1093/nar/gkz1062] downloading ChIP-seq and 

eCLIP BED files respectively (GRCh38 - K562 and HepG2 not perturbed cell lines). RBPs binding sites 

were annotated according to the overlap with genes exonic regions (see the methods session Premature 

reads profiling); and only genes with at least 25 binding sites for a given RPB were considered targets. TFs 

binding sites were annotated according to the overlap with promotes which were defined as regions 2000 

bases upstream and 1000 bases downstream genes transcription start sites (TSSs) in a strand-aware manner. 

TSSs were retrieved from genes exonic regions (see the methods session Premature reads profiling) taking 

the lower coordinate for genes on the positive strand and the larger coordinate otherwise. The rankings for 

the GSEA analyses were defined according to the product of rates log2 fold changes compared to the 

untreated condition times the sign of their Spearman correlation. In this way, the top genes for positive or 

negative couplings were characterized by strong coherent or opposite modulations respectively. 

Overall, we identified 93 and 149 enriched proteins for Pladienolide B and Leptomycin B respectively 

(GSEA adjusted p-value < 0.05), the vast majority deriving from the k19 edge, among which 88 were 

common. The 5 most significant proteins for each coupling were reported in Figure 6D for the Pladienolide 

B treatment, and in Supplementary Figure 36 for the Leptomycin B one. Noticeably, four proteins involved 

in gene expression regulation emerged as top enrichments for couplings involving RNA synthesis and 

processing rates (k3-5) in both the treatments: NIPBL, APEX1, EIF4G2, and PABPN1. The latter takes 

part in RNA polyadenylation which might suggest the involvement of this regulatory layer in mediating 

transcriptional couplings [https://doi.org/10.1038/cr.2012.86, https://doi.org/10.15252/embr.202357128]. 

This analysis was presented in the session of the manuscript: A comprehensive analysis of coupling among 

RNA life cycle steps. 

Barplot showing the 5 most significant coupling factors candidates (RBPs and TFs) for the couplings 

identified with the Pladienolide B treatment; on the top of each bar we reported GSEA p-value.

3. What about the inter-cell type applicability of this model? An example would be to use 3-5 cancer cell 

lines (sensitive, moderate, resistant), control vs receiving the same drug (and different doses) and analyze 

the potentially different RNA dynamics (cell line A vs B vs C, A dose1 vs A dose2, etc.) using this framework. 

This would hopefully provide more meaningful information for translational research. 



The Reviewer is suggesting an extremely interesting research project which represents a natural application 

of the Nanodynamo framework. Indeed, we are currently working on the application of  our method to the 

fine characterization of transcriptional programs in a large panel of breast cancer cell lines. However, this 

represents an independent study which will take a remarkable amount of time, workload and resources. For 

these reasons, we really appreciate the suggestion, but we consider it out of the scope of the current 

manuscript. Instead, we believe that the application of Nanodynamo for studying the impact of various 

drugs against key steps of RNA metabolism represent an immediate, and hopefully timely and relevant, 

application for our method.  

4. Another concern is the novelty of this study. To me the hard part is perhaps measuring the absolute RNA 

counts for a large number of genes in the four different cellular compartments, as the ODE modeling part 

is rather linear, straightforward and based on recognized mechanisms. So, have such location-specific RNA 

measurement experiments been done before by other studies or other groups?

A large part of the literature in the field of RNA dynamics, either for bulk populations or for single cells, 

focused on the development of approaches to quantify transcripts half-lives, thus focusing on RNA decay 

only. A subset of those studies, attempted to expand these analyses to the study of RNA synthesis and, an 

even more limited number of studies also integrated splicing efficiency. In the last decade we have been 

part of this effort, with a number of tools that we released in the INSPEcT R/Bioconductor package and a 

relatively updated review on the advances in the field that we published in 2021 (Furlan M et at, Briefings 

In Bioinformatics 2021). 

To the best of our knowledge, a more limited literature tried to cover these aspects at the subcellular level. 

In particular, previous works leveraged on location-specific RNA sequencing to estimate the rate of 

transcripts export (Chen, Plos Gen. 2017), or the rate of association with polysomes (Li, Current Opinion 

in Microbiology 2015, Fang, Cell Systems 2018). Therefore, we believe that the model implemented and 

inferred by Nanodynamo represents a major improvement of the state of the art per se. 

Nevertheless, defining an experimental and computational workflow for a routinely feasible while reliable 

acquisition of the key input data - mostly RNA yields across cellular fractions and the quantification of 

RNA species from Nanopore dRNA-seq data -  was a major challenge of our research project, that required 

further experimental and computational work during the revision process (see the rebuttal to Reviewer 2, 

points about Line 610), resulting in an additional source of novelty. 

5. Figure 1A. Unclear labeling. Which thing (drawing) corresponds to which variable in the equation? 

Reaction k3 goes to where? 

In order to clarify the cartoon, we added labels corresponding to terms in the ODE system to the cartoon. 

6. Were the Excel files containing RNA absolute counts (of different genes) in different compartments (in 

the several cell lines mentioned) provided in the supplemental files? This will be very helpful for future 

research. 

All the raw and normalized data will be available as R objects on GitHub upon publication, including the 

RNA absolute counts and code for reproducing all main and supplementary analyses and plots. 



Additionally, normalized abundance of all RNA species and the corresponding RNA kinetic rates are 

available in a supplementary Excel file.



Reviewer #1 (Remarks to the Author):

The authors greatly improved the manuscript. They appropriately answered all my comments. I 

strongly recommend publishing the revised manuscript as is. I am sure Nanodynamo 

technology will be a very useful tool for dissecting the RNA life cycle. Congratulations to the 

team.

Reviewer #1 (Remarks on code availability):

I cannot assess the code since I am not a specialist in bioinformatics.

Reviewer #2 (Remarks to the Author):

In the revised version the authors have addressed many of the comments and the manuscript 

has substantially improved. However, some major concerns remain.

1. The authors mention that they validated their 4sU model on an independent 4sU 24h labeled 

sample. It is unclear if they tested this sample against an independent control sample that was 

also not used for training. That would be important for an independent evaluation. Could they 

clarify?

2. In the revised version of the manuscript (ln 136) the authors mention that just 2 replicates are 

su icient to have a performance remarkably close to the optimal one. In their response they

mention that the use of an additional replicate (for a total of 2 replicates) reduced the 

correlation to the inferred measurement. In fact, for some of the rates the reduction was 
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seemingly contradict each other. Do the authors have a suggestion to the users regarding the 

number of replicates? Also, what is the rate concordance when using 1 or 2 replicates (please 

show the actual values instead of correlation)? Do the authors have any indication as to how a 

third replicate would a ect the rates?

3. The authors mention that they now use the Maxwell RNA extraction approach to measure 

RNA yield. Were these measurements performed on the same samples used for library 

preparation and sequencing? Could the authors clarify? If they were not, it is unclear how these 

values can be used for normalization of the sequencing libraries when they are derived from 

di erent samples. Can the authors explain?

4. On the same topic of normalization. The authors mention they use the RNA yield/#cells as a 

crucial step to move from relative to absolute gene expression levels (ln 673) for each fraction. It 

is unclear to me how this methodology results in absolute gene expression levels and how it 

controls for the e iciency of the fraction separation. For example, assuming that the authors get

3 times more yield for the cytoplasmic fraction compared to the nuclear, does that mean that 

the actual RNA in the cytoplasm is 3 times more? Could the authors clarify? This could 

introduce substantial bias in the rate estimations downstream. Similarly, the same question 

applies for splitting the fraction yield to the di erent species. How do the authors control for the

e iciency of the individual protocols e.g. polysome fractionation?



Reviewer #3 (Remarks to the Author):

The authors' response is very detailed and comprehensive. For my comments, the answers are 

mostly satisfactory. I still recommend that the authors discuss the potential limitations of this 

study in Discussion somewhere on points such as model's long-term validity, new mechanistic 

elements (?) that can be added to the modeling part.

Reviewer #3 (Remarks on code availability):

The code packages is quite comprehensive and should be enough for purposes such as 

reproducing the study.



Point by point response to Reviewers

Nanodynamo quantifies the dynamics of RNA metabolism and reveals

extensive coupling between steps of the RNA life cycle
Lucia Coscujuela Tarrero, Valeria Famà, Giacomo D’Andrea, Simone Maestri, Anna de Polo, Stefano

Biffo, Mattia Furlan, Mattia Pelizzola

Reviewer #1 (Remarks to the Author):

The authors greatly improved the manuscript. They appropriately answered all my

comments. I strongly recommend publishing the revised manuscript as is. I am sure

Nanodynamo technology will be a very useful tool for dissecting the RNA life cycle.

Congratulations to the team.

We would like to thank the Reviewer for the positive assessment of our revised manuscript

and for the constructive comments that markedly contributed to improving our study.

Reviewer #1 (Remarks on code availability):

I cannot assess the code since I am not a specialist in bioinformatics.

—-------------------------

Reviewer #2 (Remarks to the Author):

In the revised version the authors have addressed many of the comments and the

manuscript has substantially improved. However, some major concerns remain.

We would like to thank the Reviewer for recognizing the improvements in the revised version

of our manuscript and for the constructive feedback; a point-by-point response follows.

1. The authors mention that they validated their 4sU model on an independent 4sU 24h

labeled sample. It is unclear if they tested this sample against an independent control

sample that was also not used for training. That would be important for an independent

evaluation. Could they clarify?

During the first stage of the manuscript revision, we tested the accuracy of our nano-ID

instance on an independent 4sU fully-labelled sample, which was not used for training. This

condition was chosen to directly address the Reviewer's concern regarding the applicability

of the nano-ID framework in detecting 4sU instead of 5eU (the modified-base originally used

by the developers of the method). However, we agree that the characterization of this neural

network's performance would benefit from the analysis of an additional unlabeled dataset not

involved in its training.

To address this, we generated a new sequencing run of untreated SUM159 total unlabelled

RNA and processed the data using nano-ID, achieving remarkable performance (see

“Unlabeled Control Sample” in the figure below). This observation, along with other pieces of



evidence presented in our first rebuttal letter and in the manuscript, further reassured us

about the quality of our nascent RNA profiling.

We also agree that the quantification of nascent RNA is important for our analyses and

acknowledge that there is room for improvement. As mentioned in our first rebuttal letter, we

are exploring better alternatives to nano-ID to integrate into the Nanodynamo framework

(e.g., RNAkinet).

Nascent RNA profiling accuracy in SUM159 cells. Accuracy distributions, at single gene level, for

unlabelled and fully labelled reads. Performance of a nano-ID instance for 4sU-containing reads

detection; the “Train” samples were used for training while the others were not.

2. In the revised version of the manuscript (ln 136) the authors mention that just 2 replicates

are sufficient to have a performance remarkably close to the optimal one. In their response

they mention that the use of an additional replicate (for a total of 2 replicates) reduced the

correlation to the inferred measurement. In fact, for some of the rates the reduction was

substantial which I agree indicates improvement of overfitting. However, these two

observations seemingly contradict each other. Do the authors have a suggestion to the users

regarding the number of replicates? Also, what is the rate concordance when using 1 or 2

replicates (please show the actual values instead of correlation)? Do the authors have any

indication as to how a third replicate would affect the rates?

In the revised version of Nanodynamo, we followed the Reviewer’s recommendations by

shifting from an inference framework based on merging replicates to one that simultaneously

exploits the information from both replicates to find the optimal set of rates. As the Reviewer

mentioned, this approach significantly improved the overfitting, which was almost completely

removed according to the analysis of our real dataset. This suggests that the joint analysis of

only two replicates is sufficient to avoid the deleterious impact of overfitting.



This observation does not contradict the results of our simulated data analysis which

suggests a significant improvement in inference when moving from one to two replicates,

and a mild improvement further increasing the number of replicates (Supplementary Figure

4B - rates k1, k3, k5, k6, and k9).

Notably, one of the rates that benefits most from a third replicate is k4, which is involved in

defining nucleoplasmic premature RNA expression levels, the only RNA species still affected

by overfitting. This suggests that a third replicate would specifically improve the

determination of this kinetic rate, potentially reducing the residual overfitting of this RNA

species.Furthermore, adding a third replicate would also slightly improve the overall

inference performance, as indicated by the weak yet clear general trend observed in our

simulated data.

However, given the cost and effort required to collect a third replicate for the entire dataset

(which would require four additional dRNA-seq runs), our recommendation to users is that

two replicates are a reasonable compromise.

This concept was stated in line 135, and is now further stressed in the The Nanodynamo

model, limitations and potential extensions session of the manuscript (text highlighted in

green here and in the revised manuscript accompanying this rebuttal).

“Similarly, the inference performance would benefit from the profiling of a higher number of

replicates particularly for the rates k4, k7, and k8, as suggested by the modest yet clear

trend observed in simulated datasets (Supplementary Figure 4). Clearly, the drawback of all

these improvements is the significant increase in experimental costs; for this reason, we

suggest the experimental design used in this study as a reasonable compromise.”

Finally, in our revised manuscript, we investigated Nanodynamo reproducibility by comparing

the kinetic rates obtained from the independent analysis of each replicate, and we reported

both their actual values and correlations in Supplementary Figure 8. Following the

Reviewer’s suggestion, we extended this analysis by directly comparing these values

against the rates obtained by the joint analysis of both replicates (see the figure below); the

results are in line with the correlations reported in Supplementary Figure 8.



Untreated SUM159 reproducibility – Kinetic rates. Smooth density scatterplots between the inferred

kinetic rates profiled simultaneously on 2 biological replicates (Y-axes) and the counterparts profiled

with either replicate 1 (left - X-axes) or replicate 2 (right - X-axes). For each scatterplot, we report

the bisector line (red), the loess line (green), and the Spearman correlation coefficient. Red dots

represent saturated points.

3. The authors mention that they now use the Maxwell RNA extraction approach to measure

RNA yield. Were these measurements performed on the same samples used for library

preparation and sequencing? Could the authors clarify? If they were not, it is unclear how

these values can be used for normalization of the sequencing libraries when they are

derived from different samples. Can the authors explain?

In the revised version of the Nanodynamo framework, the quantification of RNA yield from a

sample of interest is independent of the profiling of its transcriptome through dRNA-seq.

However, this does not pose a problem for defining gene expression levels through

sequencing data normalisation, as these two experiments characterise different yet essential

aspects of the sample’s transcriptional program: the absolute amount of RNA present in the

cells (RNA yield), and the relative abundance of different RNA species (dRNA-seq data),

respectively. The first quantity, together with the number of cells, defines the normalisation

factor that allows moving from relative to absolute expression levels in the -omics data.

Importantly, the independent quantification of RNA yields from the dRNA-seq step provides

greater flexibility in the experimental design, allowing for the easy acquisition of various

replicated measurements of RNA yields without incurring additional sequencing costs and

waiting time.

The only precaution necessary to jointly analyse these two pieces of data is ensuring that

they are indeed representative of the same RNA pool. For this reason, in the previous

revision round, we compared the quantification of chromatin-associated RNA (dRNA-seq;



formerly extracted with TRIzol) with the quantification of chromatin-associated RNA

extracted via Maxwell (RNA used for the quantification of RNA yield), and demonstrated the

absence of any systematic bias between the two data.

Notably, once this potential issue is disproved, any method for RNA yield quantification can

be used to complement the collected sequencing data and improve the quantification of

gene expression levels. This adaptability makes the Nanodynamo framework easily

adjustable to technological advancements.

We stressed the independence of RNA yield profiling from direct RNA sequencing in the

Discussion and Counts normalization sessions of the manuscript (text highlighted in green).

“All these potential extensions are feasible until the ODEs system parameters are globally

identifiable, and the required RNA pools can be isolated for: dRNA-seq library preparation

and RNA yield measurement. Noticeably, these two steps of the Nanodynamo framework

are decoupled and they can be performed on independent samples providing more flexibility

in the experimental design and allowing for the collection of various replicates of RNA yields

without incurring additional sequencing costs and waiting time.”

4. On the same topic of normalization. The authors mention they use the RNA yield/#cells as

a crucial step to move from relative to absolute gene expression levels (ln 673) for each

fraction. It is unclear to me how this methodology results in absolute gene expression levels

and how it controls for the efficiency of the fraction separation. For example, assuming that

the authors get 3 times more yield for the cytoplasmic fraction compared to the nuclear, does

that mean that the actual RNA in the cytoplasm is 3 times more? Could the authors clarify?

This could introduce substantial bias in the rate estimations downstream. Similarly, the same

question applies for splitting the fraction yield to the different species. How do the authors

control for the efficiency of the individual protocols e.g. polysome fractionation?

The Reviewer is correct in interpreting our normalisation approach, and in the reported

example with a ratio of 3 between two nuclear fractions. We agree on the relevance of this

aspect for the Nanodynamo inference framework, as well as the potential impact of RNA

yield profiling across cellular fractions. Indeed, we extensively worked on RNA extraction

(e.g., benchmarking different RNA extraction protocols) and gene expression profiling (e.g.,

decoupling RNA yield profiling from dRNA-seq, while checking their consistency through

sequencing) to improve this aspect of our framework.

We also validated the efficacy of our fractionation protocol by monitoring the abundances of

well-localised proteins across fractions (Supplementary Figure 6E) and the reproducibility of

gene expression levels for all the RNA species profiled with Nanodynamo (Supplementary

Figure 7). These tests reassured us about the quality of our experimental and computational

approaches.

To the best of our knowledge, the method we followed for RNA yield profiling can be

considered good practice in the field. Nevertheless, we acknowledge that a systematic bias

associated with specific fractionation protocols - although not suggested by any evidence in

our hands - cannot be completely excluded. This further supports the importance of

Nanodynamo's flexibility in incorporating RNA yield qualifications provided by other

techniques that might be developed in the future.



Importantly, such a bias would similarly affect all the investigated conditions, likely resulting

in a minimal impact on our conclusions which are largely based on comparative analyses

between conditions.

We mentioned this relevant point in the Discussion session of the manuscript (text

highlighted in green):

“All these potential extensions are feasible until the ODEs system parameters are globally

identifiable, and the required RNA pools can be isolated for: dRNA-seq library preparation

and RNA yield measurement. Noticeably, these two steps of the Nanodynamo framework

are decoupled and they can be performed on independent samples providing more flexibility

in the experimental design and allowing for the collection of various replicates of RNA yields

without incurring additional sequencing costs and waiting time. This is particularly important

because RNA yield quantification is crucial for inference purposes, and it can potentially

introduce systematic biases affecting the absolute kinetic rates quantifications.”

Regarding the polysomal fractionation, polysomal profiles is a standard technology widely

employed in our laboratories [Brina D et al, Nat Commun 2015; Oliveto S et al, Cancer Res

2018; Ricciardi S et al, Cell Metab 2018]. The preparation of libraries from polysomes is

done according to quality standards that start from the analysis of the peaks [Brina D et al,

Nat Commun 2015; Calamita P et al, PLoS Genet 2017], and include real time-analysis of

individual mRNA targets from all fractions [Brina D et al, Nat Commun 2015; Ricciardi S et

al, Cell Metab 2018; Gorrini C et al, Proc Natl Acad Sci 2005; Oberkersch RE et al, Dev Cell

2022]. Specifically, the ratio of polysomes to 80S is an indication of the degree of initiation of

translation of cells. Samples in which this ratio is not consistent are always discarded.

Individual fractions are then analysed for the presence of mRNAs that are not expected to

change, such as actin [Gorrini C et al, Proc Natl Acad Sci 2005], although this requires prior

validation that the target is not affected. All the references mentioned here are from previous

studies of our collaborator Stefano Biffo, co-author in this study and expert on polysomal

fractionation and RNA translation.

—-------------------------

Reviewer #3 (Remarks to the Author):

The authors' response is very detailed and comprehensive. For my comments, the answers

are mostly satisfactory. I still recommend that the authors discuss the potential limitations of

this study in Discussion somewhere on points such as model's long-term validity, new

mechanistic elements (?) that can be added to the modeling part.

We appreciate the Reviewer’s positive evaluation of our revised manuscript and the

constructive feedback that has significantly enhanced our study.

Following the Reviewer’s suggestion, we expanded our Discussion session with

considerations about the extension of our model potentially including: a more detailed

description of transcripts synthesis, additional cellular compartments, determinants of



transcriptional programs and their coordination (e.g. RNA modifications, RBPs, and TFs).

We also discussed the relevance of RNA yield quantification, its potential impact on

inference results, and the importance from this point of view of decoupling this step from

dRNA-seq. Finally, we discussed the relevance of replicates and throughput in determining

Nanodynamo inference performance with a focus on the experimental cost, an important

limitation of our method, and the introduction of potential workarounds based on both

Nanopore and Illumina RNA-seq technologies (text highlighted in green).

“The same perspective could be applied also to improve our characterization of RNA

synthesis by explicitly modelling key steps of RNA polymerase activity27 (e.g., initiation,

pause-release, elongation, and termination). More generally, the Nanodynamo framework

could be extended to include rates describing the transition of RNA molecules across a large

set of states defined according to a specific feature of the transcripts (e.g., retention of

intronic signal) and/or their localization. In this regard, we foresee an interesting extension of

our model based on the isolation of biomolecular condensates (e.g., stress granules and

P-bodies).

Moreover, we anticipate the possibility of extending the Nanodynamo framework to

incorporate information about key determinants of gene expression programs and kinetic

rates couplings, such as the level of RNA modifications, RBPs, and TFs. For the latter two

classes of regulatory factors, gene expression levels and/or the rate of association with

polysomes are potential proxies for those factors protein abundance. For example, the

models of genes targeted by specific factors could be coupled with the equations describing

those factors’ life cycle.

All these potential extensions are feasible until the ODEs system parameters are globally

identifiable, and the required RNA pools can be isolated for: dRNA-seq library preparation

and RNA yield measurement. Noticeably, these two steps of the Nanodynamo framework

are decoupled and they can be performed on independent samples providing more flexibility

in the experimental design and allowing for the collection of various replicates of RNA yields

without incurring additional sequencing costs and waiting time. This is particularly important

because RNA yield quantification is crucial for inference purposes, and it can potentially

introduce systematic biases affecting the absolute kinetic rates quantifications.

[...]

Similarly, the inference performance would benefit from the profiling of a higher number of

replicates, as suggested by the modest yet clear trend observed in simulated datasets

(Supplementary Figure 4). Clearly, the drawback of all these improvements is the significant

increase in experimental costs; for this reason, we suggest the experimental design used in

this study as a reasonable compromise.

We anticipate that an alternative and effective workaround to reduce the experimental cost

of Nanodynamo would be shifting from the Nanopore to the Illumina RNA sequencing

platform, leveraging protocols for the chemical conversion of incorporated nucleotides for

nascent RNA profiling17,21. This would provide better control over sequencing depth (i.e.,

cost) and a higher ratio of detected genes per million sequenced bases. On the other hand,



this approach would not benefit from key features of long-read direct RNA-seq, such as the

ability to better discriminate expressed isoforms and intronic signal, as well as the intrinsic

profiling of important determinants of gene expression programs like RNA modifications and

polyA tails.”

Reviewer #3 (Remarks on code availability):

The code packages is quite comprehensive and should be enough for purposes such as

reproducing the study.



Reviewer #2 (Remarks to the Author):

The authors have improved the manuscript and have addressed my concerns.

Reviewer #3 (Remarks to the Author):

The authors have added discussion and further improved the manuscript. I recommend 

acceptance of this manuscript.


