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SUPPLEMENTAL METHODS 

Feature Preprocessing Steps 

The QSAR models for predicting points of departure (PODs) consisted of a pipeline of 

feature preprocessing steps and a machine learning estimator (e.g., random forest) (Figure 1B). 

The following preprocessing steps were involved: 

1. Remove null variance features. 

2. Exclude any features with over 30% missing values. 

3. Apply a power transform to continuous features to make them more Gaussian-

like. The Yeo-Johnson transform was applied, supporting both positive and 

negative values.1  

4. Impute missing values with the median for a given feature. 

5. Center and scale continuous features using Equation S1. The median and median 

absolute deviation (𝑀𝐴𝐷) were used for robustness to potential outliers. Given a 

continuous feature 𝑥!%%%%⃗  with I samples 𝑥"!, 𝑥#!, …,  𝑥$!: 

 

𝑥$!
% =

𝑥$! −𝑀𝑒𝑑𝑖𝑎𝑛(𝑥!%%%%⃗ )
𝑀𝐴𝐷(𝑥!%%%%⃗ )

 
(S1) 

Where: 

• 𝑥$! is the original value of the ith sample for the nth feature. 

• 𝑥$!
% is the centered and scaled value. 

Note that centering and scaling do not affect decision-tree-based methods, such as 

Random Forest, but such regularization may improve performance for other 

regression-based methods. 
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Model Training Steps 
The general training steps for model training are listed below, followed by the specific 

parameters used. Figure S1 illustrates the training steps and includes pseudocode representing 

the algorithm: 

- For each repetition r in {1, 2 …, R} and each fold k in {1, 2 …, K} folds: 

• Split the full dataset into 1 test set, k, with the remaining data as the training set. 

• Train a baseline model m on the training set. 

• Evaluate m on the test set using the root-mean-squared-error (RMSE) as the reference 

score s.  

• For each feature n and permutation repetition p in {1, 2, …, P}: 

o Permute the feature values. 

o Evaluate the model with the permuted feature. 

o Compute the RMSE score for the permuted model 𝑠&,(,)! . 

o Compute the raw importance score 𝑖&,(,)!  for feature n using Equation S2: 

 

𝑖&,(,)! = 𝑠 −	𝑠&,(,)!  (S2) 

  

- Aggregate 𝑖&,(,)!  across all repetitions R, folds K, and permutations P to form a vector 𝚤!%%%⃗  

- Select the top 10 features with the largest median of their respective 𝚤!%%%⃗   

- Train the final model using all samples and the top 10 features. 

Parameters used: K = 5 (empirically shown to yield balanced bias-variance test error rate 

estimates),2 R = 50 and P = 5.  
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Figure S1. Overview of model training with feature selection. The top panel shows pseudocode representing the 
algorithm in Python. The corresponding components are illustrated in Panels 1-4. The general training steps are 
listed in the section above (Model Training Steps). 
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Model Performance Metrics 
Figure S2 illustrates the model evaluation scheme and includes pseudocode representing 

the algorithm. To quantify performance, we used the root-mean-squared error (RMSE), median 

absolute error (MedAE), and coefficient of determination (R2). RMSE is conceptually like a 

standard deviation with respect to the prediction errors:  

 

𝑅𝑀𝑆𝐸 = 	√𝑀𝑆𝐸 (S3) 

 

Where: 

𝑀𝑆𝐸 =
1
𝑛8

(𝑦$ − 𝑦*:)#
!

$+"

 
(S4) 

 

• 𝑦*:  is the predicted value of the ith sample.  

• 𝑦$ is the corresponding observed (or measured) value of the ith sample. 

 

MedAE is a metric that is robust to outliers: 

 

𝑀𝑒𝑑𝐴𝐸 = 	𝑀𝑒𝑑𝑖𝑎𝑛	(|𝑦" − 𝑦"<|,… , |𝑦! − 𝑦!<|) (S5) 

 

R2 represents the proportion of variance of Y that has been explained by the features for a given 

model:  
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𝑅# = 	1 −
∑ (𝑦$ − 𝑦*:)#!
$+"
∑ (𝑦$ − 𝑦@)#!
$+"

	 
(S6) 

Where: 

• 𝑦@ is the arithmetic mean of the observed (or measured) values.  

 

The best possible R2 score is 1, and a score of 0 would correspond to a constant model that 

always predicts the expected (average) value of Y. Note that in this formulation (unlike for linear 

regression), R2 can also be negative if a model were worse than the constant model. 
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Figure S2. Overview of model evaluation. The top panel shows pseudocode representing the algorithm in Python. 
The corresponding components are illustrated in Panels 1-3. The performance metrics are defined in the section 
above (Model Performance Metrics). Figure S1 shows an overview of model training with feature selection.  
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 Table S1. Descriptions of models included in the sensitivity analysis. 

Model Description 
Random Forest 
Regressor 

Same as the final model but without feature selection, to test the hypothesis 
that 10 features were sufficient. 

Alternative Machine 
Learning Estimators 

Used to compare performance with Random Forest Regressor: 
a) LinearRegression: Ordinary least squared linear regression. 
b) Ridge: Linear least squares with L2 regularization.  
c) Support Vector Regression: Epsilon-Support Vector 

Regression. 
d) Gradient Boosting Regressor: Additive model with regression 

trees fit on the negative gradient of the loss function.  
e) XGBRegressor: Gradient boosting variant from the XGBoost 

library (1.7.4).7 
f) MLPRegressor: Multi-layer Perceptron regressor, a neural 

network variant, optimized using the “adam” optimizer. 
OPERA w/ Exp. LD50s Used all OPERA 2.9 features, except replacing the QSAR-predicted Lethal 

Dose 50 values (LD50s) with experimental LD50s from acute studies in 
ToxValDB.6 Specifically, we used the median value for each chemical after 
conversion to human-equivalent LD50s. This sensitivity analysis evaluated 
the robustness of using predicted LD50s, which are available for many more 
chemicals than experimental LD50s. 

CompTox Features Combined features from OPERA and TEST (Toxicity Estimation Software 
Tool) from the CompTox Chemistry Dashboard (2.1.1) by U.S. EPA.3 These 
features are described in a supplemental Excel file (Table S4). This 
sensitivity analysis evaluated the impact of using readily available pre-
selected/pre-calculated features instead of generating features directly from 
the OPERA 2.9 software. For consistency, we preprocessed these features by 
excluding any chemicals that had been filtered out in the QSAR-
standardization workflow by Mansouri et al.4,5  

RDKit Features Used all two-dimensional descriptors from the RDKit Python library 
(2022.09.05). First, for each chemical, a molecule object was instantiated 
from the “QSAR-ready” SMILES string. Next, the function, 
“CalcDescriptors,” was applied to each molecule, resulting in 208 features. 
Some features had null median absolute deviations and were therefore not 
scaled in the preprocessing pipeline described in section, “Feature 
Preprocessing Steps.” 

No Imputation Used only samples for which all OPERA 2.9 features had no missing values, 
so that no imputation was performed.  

The sensitivity analysis was used to assess generalization error sensitivity to different datasets, feature 
preprocessing, and machine learning estimators. Our baseline Final Model was described in the main text, involving 
feature selection among all 39 OPERA 2.9 features, imputation of missing values, and the Random Forest 
Regressor. All models were applied to the same chemicals, except the model involving no imputation was restricted 
to those chemicals with no missing feature values (n =184 – 227).  
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Margin of Exposure Uncertainty Analysis 
We assessed the contribution of PODQSAR (hazard) uncertainty to the overall uncertainty 

in the margin of exposure, in addition to exposure uncertainty from SEEM3 (Systematic 

Empirical Evaluation of Models) by U.S. EPA.8 Specifically, we derived 90% prediction 

intervals of PODQSAR uncertainty for each percentile of exposure uncertainty for the median 

individual. 

For the ith chemical: 

 

𝐿$ ≤ 𝑙𝑜𝑔",𝑀𝑂𝐸$ ≤ 𝑈$ (S7) 

Where: 

𝐿$ = 𝑙𝑜𝑔",𝑀𝑂𝐸$ − 𝑧	 × 𝜖 

𝑈$ = 𝑙𝑜𝑔",𝑀𝑂𝐸$ + 𝑧	 × 𝜖 

(S8) 

Where: 

• 𝐿$ is the lower bound of the prediction interval.  

• 𝑈$ is the upper bound of the prediction interval.  

• 𝑙𝑜𝑔",𝑀𝑂𝐸$ is the predicted margin of exposure (Equation 1 in main text) 

in log10-units. 

• 𝜖 is the measure of PODQSAR uncertainty in log10-units. In this analysis, 

we used the median RMSE from the cross-validation scheme described 

above (Figure S3). 

• 𝑧 is a z-score of 1.645 corresponding to a 90% confidence level of log10 

values. 
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SUPPLEMENTAL RESULTS 

 
Figure S3. Distributions of raw OPERA 2.9 features.9,10 Continuous features are represented with histograms, 
whereas discrete features are represented with bar plots indicating the count of samples for each unique value. The 
data are shown for all chemicals in this study. Feature descriptions are included in a supplemental Excel file (Table 
S3). 
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Figure S4. Proportions of data completeness for OPERA 2.9 features.9,10 The figure is subdivided by the target effect category for training data chemicals (left and middle 
panels) and for the application chemicals (right panel) that were on the Merged NORMAN Suspect List (SusDat)11,12 and within the applicability domain of SEEM3,8 
excluding any training chemicals. A vertical dashed line denotes the threshold above which features were excluded (see section, Model Training and Evaluation): 
Biodegradation half-life for compounds containing only carbon and hydrogen (BioDeg_HalfLife_pred): 74-75% missing; Caco-2 permeability (CACO2_pred): 49% 
missing; Rate constant for the atmospheric, gas-phase reaction with photochemically produced hydroxyl radicals (OH_pred): 44-45% missing. Features with no missing 
values are not shown. Feature descriptions are included in a supplemental Excel file (Table S3). Note: n, sample size.
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Figure S5. Model performance benchmarking. Point of departure estimates are compared against authoritative 
values. “ToxValDB Surrogate” refers to the surrogate values from Table S5 of Aurisano et al. (2023).13 “QSAR” 
refers to the final model developed in this study, described in the main text. “ToxCast/httk” refers to the 
combination of high-throughput in vitro bioactivity data with toxicokinetic data using reverse dosimetry. 
Specifically, these values are the PODNAM,50 values from Table S2 of Paul Friedman et al. (2020)14. The figure is 
further subdivided by the target effect category from left to right. Note: POD, point of departure; QSAR, 
Quantitative Structure-Activity Relationship; RMSE, root-mean-squared error, MedAE, median absolute error; R2, 
coefficient of determination; n, sample size.  
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Figure S6. Frequency of features deemed important across replicate models. Features were extracted from OPERA 
2.9.9,10 The figure is subdivided by the target effect category from left to right. The x-axis represents the number of 
times each feature was deemed important across the cross-validated replicate models illustrated in Figure S2. The 
feature selection scheme is illustrated in Figure S1. Features present in the final models are highlighted with a 
distinct color. The remaining important features were excluded from the final models to avoid overfitting. Feature 
descriptions are included in a supplemental Excel file (Table S3). 
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Figure S7. Feature importance scores for the final model for general noncancer effects. Features were extracted 
from OPERA 2.9.9,10 These scores were used to select important features (see section, Model Training Steps). The 
feature selection scheme is illustrated in Figure S1. The boxes show the median and interquartile range with outliers 
omitted. Feature descriptions are included in a supplemental Excel file (Table S3). Note: RMSE, root-mean-squared 
error, MedAE, median absolute error; R2, coefficient of determination.  
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Figure S8. Feature importance scores for the final model for reproductive/developmental effects. Features were 
extracted from OPERA 2.9.9,10 These scores were used to select important features (see section, Model Training 
Steps). The feature selection scheme is illustrated in Figure S1. The boxes show the median and interquartile range 
with outliers omitted. Feature descriptions are included in a supplemental Excel file (Table S3). Note: RMSE, root-
mean-squared error, MedAE, median absolute error; R2, coefficient of determination.  
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Figure S9. Feature importance scores for the replicate models for general noncancer effects. Features were extracted 
from OPERA 2.9.9,10 These scores were used to select important features (see section, Model Training Steps). The 
feature selection scheme is illustrated in Figure S1. The boxes show the median and interquartile range with outliers 
omitted. Feature descriptions are included in a supplemental Excel file (Table S3). Note: RMSE, root-mean-squared 
error, MedAE, median absolute error; R2, coefficient of determination.  
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Figure S10. Feature importance scores for the replicate models for reproductive/developmental effects. Features 
were extracted from OPERA 2.9.9,10 These scores were used to select important features (see section, Model 
Training Steps). The feature selection scheme is illustrated in Figure S1. The boxes show the median and 
interquartile range with outliers omitted. Feature descriptions are included in a supplemental Excel file (Table S3). 
Note: RMSE, root-mean-squared error, MedAE, median absolute error; R2, coefficient of determination.  
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Figure S11. Cumulative distributions of point of departure across different data sources. “Authoritative” refers to 
the values from authoritative and regulatory assessments from Figure S5 of Aurisano et al. (2023).13 “ToxValDB 
Surrogate” refers to the surrogate values from Table S5 of Aurisano et al. “QSAR” refers to the final model 
developed in this study, described in the main text. The intersection of chemicals is shown in the top half of the 
figure. The bottom half shows all chemicals with original authoritative PODs (PODauthoritative), all chemicals from 
ToxValDB with surrogate PODs (PODsurrogate), excluding those chemicals with PODauthoritative values, and all 
“application chemicals” with QSAR-derived PODs (PODQSAR), excluding those chemicals in the other two datasets. 
The application chemicals were on the Merged NORMAN Suspect List (SusDat)11,12 and within the applicability 
domain of SEEM3.8 The figure is further subdivided by the target effect category from left to right. Note: POD, 
point of departure.  
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Figure S12. Predicted points of departure with feature selection versus without feature selection for all chemicals in 
this study. “Application chemicals” refer to those on the Merged NORMAN Suspect List (SusDat)11,12 and within 
the applicability domain of SEEM3,8 excluding any training chemicals. The figure is subdivided by the target effect 
category from left to right. Note: POD, point of departure; RMSE, root-mean-squared error, MedAE, median 
absolute error; R2, coefficient of determination; n, sample size.   
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Figure S13. Pairwise scatterplots and kernel density estimate plots for selected features. Features were extracted 
from OPERA 2.9.9,15,10 Diagonal cells show the kernel density estimate plots, illustrating the distribution of 
individual features. “Application chemicals” refer to those on the Merged NORMAN Suspect List (SusDat)11,12 and 
within the applicability domain of SEEM3,8 excluding any training chemicals. Note: log10_CATMoS_LD50_pred, 
LD50 point estimate model from the Collaborative Acute Toxicity Modeling Suite [units of log10-transformed 
mg∙(kg-d)-1]; log10P_pred, octanol-water partition coefficient (log10-transformed); TopoPolSurfAir, topological 
polar surface area (A2); MolWeight (g∙mole-1)  
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Figure S14. Predicted points of departure stratified by missing features. Feature names are displayed in the y-axis 
with sample sizes in parentheses. A vertical dashed line passes through the median of “All Samples.” “Application 
chemicals” refer to those on the Merged NORMAN Suspect List (SusDat)11,12 and within the applicability domain of 
SEEM3,8 excluding any training chemicals. The figure is further subdivided by the target effect category from top to 
bottom. The boxes show the median and interquartile range with outliers omitted. Feature descriptions are included 
in a supplemental Excel file (Table S3). Note: POD, point of departure.   
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Table S2. OECD Checklist for the assessment of (Q)SAR models. 

Principle Assessment element Outcome 
Defined endpoint 
1.1 Clear scientific and 

regulatory purpose 
The predicted endpoint is a human-equivalent point of departure 
(POD) in mg∙(kg-d)-1 for oral exposure, to be used as a surrogate for in 
vivo PODs based on experimental animal studies. Separate predictions 
are made for general noncancer effects and 
reproductive/developmental effects. 

1.2 Transparency of the 
underlying 
experimental data 

The underlying experimental data are from the ToxValDB and were 
previously reported in Aurisano et al. (2023).13 References to the 
underlying toxicology studies are in the ToxValDB Version 9.1 
available from U.S. EPA.6 

1.3 Quality of the 
underlying 
experimental data 

Original data curation was performed by U.S. EPA. Additional 
curation procedure was described by Aurisano et al., 2023.13 For the 
QSAR model, chemicals with ≤ 3 studies were excluded to ensure 
higher quality (Figure 1). 

Unambiguous algorithm 
2.1 Description of the 

algorithm and/or 
software 

The paper describes the use of a random forests implementation in 
scikit-learn,16 referencing the specific version number (1.2.2). The 
methods for feature selection and cross validation are generally 
described in the text and Figures S1-S2. OPERA 2.9, used for feature 
extraction, is available publicly on GitHub with a user guide.10  

2.2 Inputs and other options Current model outputs are available for > 30,000 chemicals expected 
to occur in the environment11,12 that are within the applicability 
domain of SEEM3,8 based on input of chemical identifiers (DTXSID) 
(Figure 4). A graphical user interface will be made available for 
downloading predictions. 

2.3 Model accessibility The model will be publicly available upon publication. 
Defined domain of applicability 
3.1 Clear definition of the 

applicability domain 
and limitations of the 
model 

The paper defines the applicability domain (AD) in two stages. First, 
chemicals must pass the “QSAR-ready” standardization workflow in 
order to be considered within the “general AD” of the model. Second, 
feature-specific ADs are generated from OPERA 2.9.9,10 Predictions 
can still be generated for chemicals outside this feature-specific AD 
with median imputation, but those features are flagged. 

Appropriate measures of goodness-of-fit, robustness and predictivity 
4.1 Goodness-of-fit, 

robustness 
The paper transparently describes the statistical metrics and cross-
validation method used to evaluate performance (Equations S3-S6 
and Figure S2). 

4.2 Predictivity Extensive, two-stage cross-validation was used to estimate the 
predictive power (R2) and prediction errors (RMSE, MedAE) for an 
external dataset (Figure S2). Performance was also evaluated relative 
to reference values in the form of authoritative PODs (Figure S5). 

Mechanistic interpretation   
5.1 Plausibility of the 

mechanistic 
interpretation 

The most important feature is consistently the QSAR-predicted LD50, 
derived from in vivo rat acute oral toxicity studies,15 which is an 
indicator of the acute mammalian potency of a chemical. Other 
important features are physical and chemical properties with clear 
interpretations (Figures S6-S10). Feature descriptions are included in 
a supplemental Excel file (Tables S3-S4). 

Results of applying the (Q)SAR Assessment Framework to our modeling framework (Figure 1), demonstrating how 
our framework conforms to general principles and criteria for use of QSAR models.17   
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