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Flux control coefficients determined by inhibitor titration: the design and
analysis of experiments to minimize errors
J. Rankin SMALL*
Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh, Scotland, U.K.

This paper is a study into the effects of experimental error on the
estimated values offlux control coefficients obtained using specific
inhibitors. Two possible techniques for analysing the exper-
imental data are compared: a simple extrapolation method (the
so-called graph method) and a non-linear function fitting method.
For these techniques, the sources of systematic errors are
identified and the effects of systematic and random errors are

INTRODUCTION
In all biochemical experiments there will be a difference, or
'error', between a calculated or observed value and the true
value. Even in the hands of an experienced experimenter with the
'best' equipment available, systematic errors (errors which are
reproducible, such as those due to faulty calibration or biased
observations) and random errors (i.e. fluctuations in observations
which result in differences from experiment to experiment) will
remain. Systematic errors will determine, in general, how accurate
a measurement can be made, while random errors will determine
how precise we can be in making the measurement [1]. If
quantitative conclusions (as opposed to purely qualitative ones)
are to be made from these experiments, the effects of systematic
and random errors on these cohclusions need to be carefully
considered.

Metabolic control analysis (MCA) [2-4] is one such area where
it is hoped that quantitative conclusions can be made. One of the
fundamental concepts of MCA is the control coefficient, which
gives a measure of the sensitivity of a systemic variable to a
particular parameter. The flux control coefficient of enzyme Ei
on flux J is given the symbol C' . There have been many different
techniques developed to determine experimentally the control
coefficients [4]. One of these, developed by Groen et al. [5],
involves titrating out an enzyme's activity using an inhibitor
specific to that enzyme. It has been suggested that the traditional
method (the so-called graph method) of analysing the experi-
mental data to obtain an estimate of the value of the control
coefficient may be highly sensitive to experimental errors [6-8]. It
has also been suggested [8,91, that using a non-linear function to
fit more of the data points than are used by the traditional
method may help to reduce the effects of these errors. This
alternative method, however, will also be subject to random, and
particularly systematic, errors. This study, using numerical
and statistical techniques, aims to identify the sources of the
systematic error in both methods, and attempts to quantify the
effects of random and systematic errors on the estimated values
of the control coefficient obtained. Some conclusions for experi-
mental design will be presented.

quantified, using both statistical analysis and numerical com-
putation. It is shown that the graph method is very sensitive to
random errors and, under all conditions studied, that the fitting
method, even under conditions where the assumptions underlying
the fitted function do not hold, outperformed the graph method.
Possible ways of designing experiments to minimize the effects of
experimental errors are analysed and discussed.

THE GRAPH METHOD
Groen et al. [5] derived a method to determine experimentally the
flux control coefficients using titrations with specific enzyme
inhibitors. As the amount of inhibitor tends to zero, then the
response of the flux to the inhibitor can be expressed in MCA
terms. For the case of an irreversible, specific, inhibitor, Groen
et al. [5] have shown that an estimate of the value of the flux
control coefficient of the inhibited enzyme is given by:

(1)
cJE: - AJ max

where (AJ/AI)1,o is the initial slope of the flux/inhibitor graph,
Jo is the uninhibited flux value and Im.x is the concentration of
inhibitor which totally inhibits the enzyme. For a completely
irreversible inhibitor, i.e. one with a dissociation constant, KD,
equal to zero, Imax can be determined easily from the flux-
inhibitor graph. In most cases the dissociation constant, although
very small, will not be exactly zero, and so a complete inhibition
of enzyme activity does not occur. In this case, Imax must be
determined by extrapolation. All three terms in eqn. (1) can be
estimated solely from a plot of flux against inhibitor con-
centration (see Figure 1). Since for other types of inhibitors, e.g.
competitive and non-competitive, the values ofkinetic parameters
(Ki and/or Ki) are also required [10], and these will probably be
obtainable only from in vitro data, the irreversible (or low KD)
inhibitor is potentially the most accurate to use and so will be the
focus of this study.

ERROR CONSIDERATIONS
To identify the source and effect of the two kinds of experimental
errors, systematic error will be firstly considered in the absence of
random error, and vice versa, before the combined effect of both
kinds is analysed.

Systematic errors can arise from many sources, e.g. techniques
used to quantify fluxes and/or inhibitor levels. However, we will
only be concerned here with systematic errors which are peculiar

Abbreviation used: MCA, metabolic control analysis; abbreviations used only in Scheme 2 and Appendix 3 are defined there.
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Edinburgh EH9 3JT, Scotland, U.K.
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Figure 1 Determination of the parameters required In eqn. (1) to estimate
the value of a flux control coefficient from a plot of flux against Inhibitor
concentration for an essentially Irreversible (low K.) inhibitor

Data points were generated using eqns. (3) and (4), and were randomized as described in the
main paper. The 'experimental' initial slope (continuous line) estimate is determined by
regression analysis to the first three data points. The true initial slope (broken line) is also
shown. The estimate of /mIx, lme, is determined by taking the intercept of two lines generated
by linear regression of (a) the final three points and (b) an appropriate three points taken from
the steepest part of the flux-inhibitor plot. Imt shows the true /ma, value.

to the graph method. Owing to the extrapolation involved there
will be inherent systematic errors associated with the graph
method. The required 'initial slope' is, by definition, the slope
obtained when an infinitesimal amount of inhibitor is added.
Since this is impossible to do in practice, finite amounts of
inhibitor must be used and the initial slope estimated by
extrapolation back to zero inhibitor. The larger these finite
changes are, the less likely that the estimate of the initial slope
will be true. Owing to the convex nature of the flux-inhibitor
slope, these estimates will tend to systematically overestimate the
value of the initial slope. Experimentally, therefore, the best
strategy will be to obtain estimates of the flux at very low levels
of inhibitor (see, however, the following paragraph). In addition,
the value of Imax is most likely to be obtained by extrapolation,
and Gellerich et al. [8] have shown that this form of extrapolation
may, with certain KD values, introduce significant error into the
estimate of the control coefficient.
On top of this systematic error, there will of course be random

errors in the measurements of both the fluxes and inhibitor
concentrations. The initial slope is particularly sensitive to this
kind of error (see Figure 1), and this can have a dramatic affect
on the final value of the control coefficient obtained. It can be
shown (Appendix 1) that, if the first two inhibitor points and the
zero inhibitor point (i.e. three points in total) are used to obtain
an estimate of the initial slope by linear regression, then, in the
absence of systematic errors, the confidence limits around the
estimated value of the control coefficient can be approximated as

follows:

C+A -02 G-j.tn-l (2)

where AI is the difference in concentration between the second
inhibitor point and the zero inhibitor point, o-j/J is the relative
S.D. of the flux estimates, n is the number ofrepeat measurements
of each flux at each inhibitor point and tn-1 is the Student t value
for n -1 degrees of freedom. This equation assumes that each
flux measurement has a constant relative S.D., Imax is determined
accurately and no random error in the inhibitor values occurs.

The most important result from this expression is the fact that

the confidence limits are inversely proportional to AI, i.e. the
smaller the inhibitor concentrations used to determine the initial
slope, the larger the confidence limits will be. This result illustrates
why the use of the graph method is very sensitive to error. To
reduce the effects of random error we must increase AI, i.e. use
greater inhibitor concentrations in our estimate of the initial
slope. However, as stated above, as we increase the amount of
inhibitor we are increasing the amount of systematic error in the
initial slope estimate. There is therefore a serious conflict of
interest.

Eqn. (2) does suggest two possible ways of reducing the effects
of random error. The first is to measure each point many times.
If we assume that there is a constant relative error in all our flux
measurements of 5% (i.e. o,I/JO = 0.05), and the largest inhibitor
concentration which does not introduce any significant systematic
error into the initial flux is 10% of i.e. /max/AI= 10, then
to obtain 95% confidence limits of + 0.1 around our estimate of
C the following must be true:

0. I Vn_ -max... .0J
tni1 AI Jo

- = 7.071
tn-1

The solution to this equation is n = 192. In other words, each
point must be measured more than 192 times to be certain of
obtaining, under these (generous) conditions, 95 % confidence
limits better than C+O.1. Clearly, this is not a feasible solution.
The second possibility is to use more precise methods of

measuring the fluxes, such that the S.D.s of the measurements
are reduced. In a similar manner to above, to obtain 950%
confidence limits better than C+0. 1, with Imax/AI = 10, n = 5
(hence t4 = 2.776), o-, must be less than 0.0057 x Jo. Whether this
level of precision can be obtained is dependent on the system
under study and the techniques involved.
The above results are based on simplifying assumptions, and

so to obtain a better understanding of the range of estimates of
control coefficients which can result due to random and sys-
tematic error, a simulation study was carried out. Computer-
generated flux-inhibitor data sets were produced using eqn. (3)
below. To simulate the effects of random error in the flux
measurements, an algorithm was written which, when given two
values, x and s, generated a random number drawn from a set of
numbers normally distributed around a mean x with a standard
deviation of s. This algorithm was used on each computer-
generated flux 'measurement', Ji, with J, as the mean and a given
S.D. of 5% of J,. This was repeated five times for each J, and an
average taken of the resulting random numbers. Thus each of
these averages ('experimental' Ji values) was assumed to be
analogous to repeating the measurement of each flux, at each
inhibitor point, five times under experimental conditions.

For each data set this whole process was repeated 100 times,
and for each of these 100 experimental sets the graph method was
used to estimate the value of the control coefficient under the
given conditions. In most cases, the initial slope was obtained by
linear regression using the first three (including I, = 0) data
points. In some cases, however, where using only three points
resulted in a positive sign for the initial slope, further inhibitor
points were also used. Jo, the uninhibited flux value, was also
obtained from the same linear regression equation. An estimate
of I.,. was obtained as described in the legend to Figure 1. In the
following results the combined effect of errors in initial slope, Jo
and 'max will therefore be considered.
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Table 1 Effect of experimental error on the estimate of flux control
coefficients using the graphical method
Statistics are based on n= 100.

Experimental error

A/ No
- error Av. S.D.

Case KD Max. CJ CJ CJ Min. Max. %+ 0.1 % ±0.03

A 0.001 0.1 0.33 0.37 0.235 0.003 0.95 20 7
B 0.1 0.1 0.37 0.40 0.254 0.000 1.03 38 12
C 0.001 0.3 0.38 0.38 0.082 0.15 0.56 55 1 7
D 0.1 0.3 0.43 0.41 0.111 0.19 0.75 47 16

assumption it can be shown [11] that:

EIJI = JO. j
EI}-CJ * (EI}-EO) (3)

where JO is the flux at the uninhibited point, E} is the enzyme
concentration at the uninhibited point, E} is the total con-
centration of enzyme not bound to the inhibitor at a con-
centration of inhibitor equal to It, and J' is the resulting flux at
that level of inhibition. To proceed any further, the relationship
between the concentrations of free enzyme and total inhibitor
must be known. For the type of inhibition we are considering, the
enzyme and inhibitor are assumed to be subject to the equi-
librium:

The results are shown for four situations in Table 1. In all
cases, the true value of the control coefficient was set to equal 0.3.
The effects of increasing KD and AI/ImIx were investigated. Case
A shows the best estimate of the control coefficient (0.33) in the
absence ofrandom error, illustrating that, under these conditions,
there is little systematic error. However, when random error was
included, a wide range of estimates was obtained (0-0.95). Only
20 % of the estimates fell within + 0.1 of the true value. In fact,
13 % of the estimates were < 0.1 and 11 % of the estimates were
> 0.7. Case B shows the effect of a larger KD. There is an
immediate increase in the systematic error, as shown in the value
of the estimate of CJ when no random error is included. Again,
when random error was included, a wide range of estimates was
obtained.
By comparing the results for Case C and Case A, we can see

the effect of increasing the range of inhibitor points used to
estimate the initial slope. It is clear that this increase has
introduced more systematic error, but on the other hand it has
reduced the effect of random error. Case D, where both KD and
AI/Imax have been increased, shows the greatest increase in
systematic error, and also a reduction in the effect of random
error.

Clearly, the estimated value of the control coefficient from the
graph method is subject to a high degree of error. Even in the
best case above (Case C), only 17 % of the estimates fell within
+10% of the true value. The following section of this paper is
concerned with an alternative method of estimating the control
coefficient from the same data set.

THE FITrING METHOD
It is clear from the previous section that much of the error in
value of the control coefficient obtained by the graph method is
due to the high sensitivity of the initial slope to random error. To
reduce the effect of systematic as well as random error, it would
be desirable to use a non-linear function to fit to more (or all) of
the flux-inhibitor data. Due to the general non-linear properties
of enzyme rate equations, it is impossible to obtain an explicit
algebraic equation which expresses the flux through a pathway
solely in terms of system parameters. One alternative is to fit a
polynomial to the data; however polynomials are generally not
very good at approximating functions which are asymptotic in
nature, which is what we may expect as I tends to zero. A
simulation study did, however, show that some improvement
was obtained by this method [9]. An alternative solution is to
assume that the relationship between an enzyme, E, and J, the
flux it carries, is of a rectangular-hyperbolic nature. Using this

E-IfKD
E

where KD is the dissociation constant for the enzyme-inhibitor
complex El, EI is the concentration of the complex, E is the
concentration of the non-inhibitor-bound enzyme and I, is the
free inhibitor concentration. This relationship assumes that the
inhibitor binds non-competitively. The following relationship is
therefore a consequence of this equilibrium:

E} = 0.5 {(E--KD)+ [(-E+ KD)2 +4KDE]} (4)

By substituting eqn. (4) into eqn. (3) we have a possible function
to fit to the inhibitor-flux data (J' versus I). There are four
parameters whose best-fit values will be obtained by non-linear
curve-fitting (JO, Ej, KD and CJ).

Eqn. (4) is only valid for the case where the flux monitored is
that which the inhibited enzyme catalyses. If a flux through
another branch is monitored, then the following flux-enzyme
relationship must be used [12]. For example, if enzyme Ea is the
inhibited enzyme which catalyses the flux JA but the monitored
flux is JB then:

JI_O. a (C-Ea CEa aE-°DB EI_JA . (EaI _Ea°) (5)

where CJA is the control coefficient of the enzyme with respect to
the flux through its own branch, JA and CJB is the control
coefficient of the enzyme with respect to the monitored flux. By
substitution of eqn. (4) into this equation, we again obtain a
possible function to fit to our inhibitor titration data. Note that
a non-linear curve-fit in this case will return best-fit estimates of
five parameters, including the values of the two control
coefficients, i.e. CJ, CJB, Jo, Ea° and KD. This equation is
identical with that used by Gellerich et al. [8] when they
considered this problem, except that they failed to notice that a
second control coefficient could be estimated from the same data
and instead they had an alternative fifth parameter, J,, cor-
responding to the flux at complete inhibition of the enzyme. This
is because, as I tends to infinity (i.e. Ea -+ 0) in eqn. (5), the flux
tends to:

CJB

CAEa)
(6)

The same raw 'experimental' data as were used in the study of
the graph method were used in conjunction with eqns. (3) and (4)
to obtain a best-fit estimate of the control coefficient in the
presence and absence of random error. Since the original data
had been generated using these equations, we will be considering,
in this case, random error alone (i.e. zero systematic error). The
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Table 2 Effect of experimental error on the estimate of flux control Table 4 Effect of experimental error on the estimate of flux control
coefflcients using the flittng method coefficients where the monitored flux Is not the flux carried by the inhibited

enzyme and the ratio of the control coefficients of the enzyme with respect
Statistics are based on n= 100. to the monitored flux and the flux it carries Is equal to 1.2

Experimental error
No

A/ error Av. S.D.
Case KD I/ma. CJ cJ CJ Min. Max. % + 0.1 %± 0.03

A 0.001 0.1 0.30 0.30 0.014 0.27 0.33 100 96
B 0.1 0.1 0.30 0.30 0.028 0.22 0.36 100 75
C 0.001 0.3 0.30 0.30' 0.023 0.25 0.34 100 77
D 0.1 0.3 0.30 0.30 0.034 0.22 0.38 100 59

Table 3 Influence of the true value of the control coefficient on the effects
of experimental error
Statistics are based on n = 20. '%OK1 represents the percentage of the estimates which are
+0.1 of the true value, except for case E, where it represents the percentage of estimates
< 0.15. '%OK2' represents the percentage of the estimates which are +0.1% of the true
value, except for case E, where it represents the percentage of estimates < 0.1.

Experimental error

A/ True No

True error Av. S.D.
Case KD IX CJ CJ CJ CJ Min. Max. %OK1 %OK2

Eg, 0.1 0.4 0.05 0.11 0.15 0.08 0.01 0.28 45 5
Em 0.1 0.4 0.05 0.05 0.05 0.01 0.02 0.07 100 100
Fgra 0.1 0.3 0.8 0.9 0.89 0.06 0.81 1.01 50 40
Fm 0.1 0.3 0.8 0.8 0.8 0.06 0.67 0.91 90 75
Gg,a 0.001 0.1 0.8 0.82 0.79 0.25 0.26 1.33 40 35

effects of systematic errors will be dealt with in the following
sections. Table 2 gives the results for the four different cases. It
is clear that the effect of random error in the flux measurements
has much less effect on the control coefficient ascertained by this
method, as opposed to the graphical method. In all cases the
estimates of the control coefficient fell within +0.1 of the true
value of 0.3, and the spread of estimates, as summarized by the
S.D., also decreased dramatically with the fitting method. It
should be noted, however, that as KD and/or (MI/Ima..) increased,
the fitting method became more susceptible to random error,
although not as much as the graphical method.
To check whether the size of the true control coefficient value

played a role in the effect of random error, further simulations
were carried out using eqns. (3) and (4) with a low value and a
high value for the control coefficient. Note that in these examples
only 20 estimates (as opposed to 100 for the previous examples)
were used to generate the statistics. Table 3 shows a summary of
the results. For the graphical (gra) technique, comparing Case D
in Table 1 (CJ = 0.3), with Case Egra (CJ = 0.05) and Case Fgra
(CJ = 0.8) in Table 3, where all three cases have a similar
AI/ImaX ratio, indicates that the S.D.s in the 'experimental' data
are similar in magnitude, no matter what the value of the
coefficient. This resulted in a reasonable spread of estimates
when the control coefficient was high (Case Fgra), but, owing to
the systematic error resulting from using such a high AI/Imax
ratio, the estimates were clustered around 0.9 instead of 0.8, the
true value. Attempts to decrease the systematic error (Case Ggra)
resulted in a much larger S.D. and hence a large spread of
estimates. Again, for case Eff, [where the fitting (fit) procedure

Statistics are based on n = 20. '%OK1 represents the percentage of the estimates which are
+ 0.1 of the true value, except for estimate of the ratio, where it represents those estimates
+ 1. '%OK2' represents the percentage of the estimates which are + 0.1 % of the true value
in all four cases.

Experimental error
No

Control True error Av. S.D.
coefficient Method CJ CJ CJ CJ Min. Max. %OK1 %OK2

c&. gra 0.25 0.36 0.35 0.119 0.18 0.62 60 10
fit 0.25 0.25 0.23 0.042 0.15 0.31 95 35
fit 0.30 0.30 0.28 0.052 0.18 0.38 95 35

C a/C'8 fit 1.2 1.2 1.2 0.015 1.16 1.22 100 100

Table 5 Effect of experimental error on the estimate of flux control
coefficients where the monitored flux Is not the flux carried by the Inhibited
enzyme and the ratio of the control coefficients of the enzyme with respect
to the monitored flux and the flux i carries Is equal to 2

Statistics are based on n = 20. '%OK1 ' represents the percentage of the estimates which are
+0.1 of the true value, except for estimate of the ratio, where it represents those estimates
+ 1. '%OK2' represents the percentage of the estimates which are + 0.1 % of the true value
in all four cases.

Experimental error
No

Control True error Av. S.D.
coefficient Method CJ CJ CJ CJ Min. Max. %OK1 %OK2

gra 0.15 0.22 0.22 0.137 0.03 0.46 40 5
fit 0.15 0.15 0.16 0.067 0.06 0.30 85 20
fit 0.30 0.30 0.31 0.137 0.12 0.61 55 20

C4/CaJ fit 2.0 2.0 1.99 0.077 1.82 2.12 100 100

was used], a much better spread of estimates was obtained. In the
case of the high control coefficient value (Ff1w) the graph method
performed equally as well as the fitting method in terms of
spread, but because the systematic error in the fitting method is
set to zero, the estimates obtained by the fitting method were
spread around the true value of the control coefficient.
The use of eqn. (5) (when the monitored flux is in a branch

other than the branch in which the inhibited enzyme lies) in
order to obtain estimates of two flux control coefficients was also
tested. Tables 4 and 5 give summaries of the results for the
example where an enzyme Ea is inhibited and the flux monitored
is JB' assuming the relationships shown in eqns. (4) and (5). The
two control coefficients which can be determined by such an
experiment are therefore CIA, the control coefficient for the flux
through the branch in which the enzyme lies, and CJB, the
control coefficient for the monitored branch flux. Note that,
using the graph method, only CEB can be determined.
As was the case for the unbranched case, the curve-fitting

procedure appears to be less sensitive to random error than the
graph method. The curve-fitting procedure has the added ad-
vantage of providing estimates to the values of two control
coefficients. In the first example (Table 4) the effect of random
error appears to be the same for the estimates of both the
coefficients. In the second example (Table 5), however, the effect
of random error is greater for the, second, additional, control
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coefficient. This is despite the fact that, under the same conditions, and the fact that the correlation is approximately 1 means that
the fitting-procedure estimate of the ratio of the coefficients
(R = CJA/CJB) is not as sensitive to this error. The fact that OUR is R UCJB (8)

much less than expected from the individual S.D. suggests that (see Appendix 2). These results are both reflected in Tables 4 and
the estimates of the two control coefficients are correlated; in 5.
fact, the estimates are highly correlated [correlation coefficient
(r) > 0.997 in both cases]. This positive correlation means that: SYSTEMATIC ERROR AND THE FIITING METHOD

(R < C JA + JB (7) The results presented above suggest that, with the correct choice

Table 6 Effect of saturatdon In a branched system on the estimates of the control coefflcIent values obtained by both the graphical (gra) and the fIttng
(flt) methods
(a) A Saturation is the change in the saturation function, (1 + Si/Km + S./Km ), for enzyme E4. The initial conditions in this case were low flux control and high initial saturation (saturation function
equals 15.51). The parameter values were as described in the legend to Scheme 1 and, in addition, V, = 500, Km = 50 and Km = 75. The value of the dissociation constant, KD, was set
to be 0.01 times the Vmx of the inhibited enzyme. Statistics are based on n = 20. (b) A Saturation is thie change in the saturation function, (1 + S/Km + S/Km), for enzyme E4. The initial
conditions in this case were low flux control and medium initial saturation (saturation function equals 2.47). The parameter values were as described in the legend to Scheme 1, and, in addition,
VMX = 500, Km4, = 50 and Km. = 75. The value of the dissociation constant, KD, was set to be 0.01 times the V,, of the inhibited enzyme. Statistics are based on n= 20.

(a)

Experimental error
Enzyme Flux Control
inhibited A Saturation monitored coefficient Method True value No error CJ Av. CJ S.D. CJ Min. Max.

E1 -14.28 "A C"A gra 0.61 0.73 0.72 0.09 0.58 0.89
fit 0.61 0.61 0.60 0.04 0.52 0.69

JB C6B gra 0.66 0.78 0.79 0.11 0.62 0.97
fit 0.66 0.66 0.67 0.09 0.51 0.81

C JA fit 0.61 0.66 0.67 0.10 0.50 0.81

C C gra 0.57 0.69 0.68 0.13 0.47 0.97
fit 0.57 0.57 0.56 0.08 0.40 0.68

CIA fit 0.61 0.57 0.56 0.08 0.39 0.70

E4 3.25 C Jo gra -0.08 -0.14 -0.26 0.14 -0.04 -0.56
fit -0.08 -0.09 -0.10 0.04 -0.03 -0.56

C4C mfit 0.08 0.08 0.09 0.04 0.03 0.20

JC CEC gra 0.08 0.13 0.17 0.11 0.01 0.32
fit 0.08 0.08 0.08 0.01 0.06 0.10

E5 17.62 CER gra -0.48 -0.64 -0.61 0.19 -0.24 -0.93
fit -0.48 -0.47 -0.51 0.14 -0.27 0.83

CEC fit 0.44 0.44 0.47 0.13 0.23 0.75

JC CE5C gra 0.44 0.59 0.61 0.11 0.45 0.85
fit 0.44 0.43 0.45 0.06 0.36 0.53

(b)

Experimental error
Enzyme Flux Control
inhibited A Saturation monitored coefficient Method True value No error CJ Av. CJ S.D. CJ Min. Max.

E, -1.44 "A C gra 0.61 0.72 0.71 0.09 0.57 0.90
fit 0.61 0.6 0.6 0.06 0.49 0.72

JB CE
J

gra 0.65 0.77 0.79 0.10 0.65 1.00
fit 0.65 0.65 0.68 0.09 0.54 0.81

C"JA fit 0.60 0.65 0.68 0.10 0.53 0.82

JC CE1C gra 0.57 0.69 0.67 0.13 0.42 0.92
fit 0.57 0.57 0.56 0.09 0.36 0.73

C"A fit 0.61 0.57 0.56 0.10 0.35 0.74

E4 0.32 CE' gra -0.12 -0.19 -0.22 0.15 -0.01 -0.49
4 t -0.12 0.65 0.68 0.09 0.54 0.81

CECJ fit 0.12 0.12 0.12 0.04 0.05 0.23
E4

JC CE4C gra 0.12 0.19 0.28 0.11 0.06 0.54
fit 0.12 0.12 0.12 0.02 0.07 0.16

E5 1.75 CEJ gra -0.42 -0.55 -0.50 0.13 -0.23 -0.78
fit -0.42 -0.41 -0.40 0.11 -0.22 -0.65

CEC fit 0.42 0.42 0.41 0.12 0.22 0.71

JC CEC gra 0.42 0.55 0.54 0.12 0.31 0.77
fit 0.42 0.41 0.42 0.05 0.35 0.55
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Scheme 1 A simple branched pathway

All enzymes show linear kinetics, vi = (Vmax.i/Km) * (Si-S/lK), except enzyme E4 whose rate
equation is v4 = (l*4/Km43) * (S - S2/K4)/(l + Sl/Km4 + S2/Km4 ). Pools of XA, XB and Xc are

considered to be constant. The initial values of the parameters were set as follows: XA= 500;
X8= 0.01; XC = 0.01; VM"', =250; Km =1000; K1= 0.82; Vm,,,2= 625; Km2 = 1000;

K2 = 1.15; V,a,3 = 750; Km3 =1000; K3=2.5; K4= 1.2; Vmax. = 1000; Km = 1000;

K5 = 1.1. Vms, Km and Km were set to achieve the initial conditions required.

of functions, the fitting method is more precise and accurate than
the graphical one. In this section, the effect of systematic error in
the fitting method will be examined. If the functions chosen do
not accurately reflect the true relationships then this will introduce
systematic error into the determination of the control coefficient
value. Widely inaccurate functions should be indicated by a poor
goodness-of-fit, but a more serious problem may arise if the
function is consistent with the data, in that a reasonable fit is
obtained, but the interpretation of what the best-fit parameter
values represent is flawed.

Eqns. (3) and (5) are derived on the assumption that either
linear kinetics hold, or that if any non-linearities do occur (e.g.
saturability), they do not change significantly in response to the
change in inhibitor concentration. It is likely, however, that these

assumptions will not be valid throughout the whole range of
inhibitor values. Any deviation from expectation will introduce
a component of systematic error. Since it is not possible to obtain
exact algebraic solutions for these non-linear conditions, it is
necessary to resort to computer simulation to assess the relative
size of this error component and its effect on the estimates
obtained. The following test data were generated using a
metabolic simulation package known as SCAMP [13].

Previous simulation studies [12] have suggested that eqns. (3)
and (7) may be reasonably robust with respect to saturation. To
test this idea further, and its implication for determining control
coefficient values, the five-step branched pathway shown in
Scheme 1 was modelled. It was assumed that step 4 was subject
to substrate and product saturation, while the remaining steps
showed linear kinetics. The effect of inhibiting three of the
enzymes independently was investigated.
Three different initial conditions were chosen: condition 1

(results summarized in Table 6a), where the saturable enzyme

had a low flux control coefficient for the flux it carries and the
initial degree of saturation (1 + SJ/Km4,+ S2/Km) is high (15.51);
condition 2 (results summarized in Table 6b), where the saturable
enzyme also had a low flux control coefficient for the flux it
carries, but the initial degree of saturation was less extreme
(2.47); and condition 3, where the saturable enzyme had a high
flux control coefficient for the flux it carries and the initial degree
of saturation was 2.65.
The results of Tables 6(a), 6(b) and 7 show that estimates

obtained by the fitting procedure for the monitored flux control
coefficient CJx remain consistently better than the graphical
technique, despite the large changes in saturation seen. In the
absence of random error, the fitting procedure estimates showed
little or no systematic error under these conditions. The in-
troduction of random error (statistics based on 20 repeats)
introduced little further systematic error (as seen by the good fit
of the average estimate to the true value). The spread ofestimates
was similar to those found when the effect of random error alone
was investigated. In the cases where the value of a second control
coefficient could be estimated, the situation was different.
Although the estimates of the monitored flux control coefficient
showed little systematic error, the estimates of the second

Table 7 Effect of saturaton in a branched sytem on the estmates of the control coefficient values obtained by both the graphical (gra) and the fitting
(fit) method
A Saturation is the change in the saturation function, (1 + $/Km + S2/Km4) for enzyme E4. The initial conditions in this case were high flux control and medium initial saturation (saturation function
equals 2.65). The parameter values were as in the legend to Scheme 2 and, in addition, V. 4

= 50, Km = 50 and Km, = 75. The value of the dissociation constant, KD, was set to be 0.01
times the Vma of the inhibited enzyme. Statistics are based on n= 20.

Experimental error
Enzyme Flux Control
inhibited A Saturation monitored coefficient Method True value No error CJ Av. CJ S.D. CJ Min. Max.

El -1.62 JA gra 0.56 0.69 0.69 0.12 0.48 0.86
fit 0.56 0.56 0.57 0.05 0.49 0.66

JB CE° gra 0.64 0.76 0.78 0.07 0.66 0.89
fit 0.64 0.64 0.66 0.07 0.66 0.89

CJA fit 0.56 0.64 0.67 0.07 0.53 0.78

JC CE1C gra 0.36 0.49 0.50 0.16 0.12 0.85
fit 0.36 0.36 0.37 0.04 0.30 0.44

CJA fit 0.56 0.36 0.37 0.04 0.30 0.45

E4 0.16 CE4 gra 0.60 0.73 0.75 0.12 0.59 0.92
fit 0.60 0.60 0.60 0.07 0.43 0.69

E5 1.51 JC CESC gra 0.25 0.37 0.38 0.12 0.16 0.54
fit 0.25 0.24 0.24 0.02 0.21 0.29
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Scheme 2 A complex model system showing various non-lnearities

6i) and 3 are considered to be constant pools. The pools of the remaining
metabolites are variables. Abbreviations used: PYRc, cytoplasmic pyruvate; PYRm, mitochondrial
pyruvate; OMm, mitochondrial oxaloacetate; OAAc, cytoplasmic oxaloacetate; PEP,
phosphoenolpyruvate; GAP, glyceraldehyde 3-phosphate; FDP, fructose 1,6-bisphosphate; F6P,
fructose 6-phosphate; G6P, glucose 6-phosphate; GLU, glucose.

coefficient were generally poor. The reason for this differing
response of the two estimates could lie in the fact that the initial
part ofthe flux-inhibitor relationship will be highly dependent on
the value of the control coefficient with respect to the monitored
flux. Since the change in saturation will be significantly less at the
lower inhibitor levels, the predictions based on linear assumptions
remain reasonable. A good estimate of the second control

coefficient depends on predicting accurately the flux at very large
inhibitor levels (see above) and hence the full effect of the large
changes in the saturation function may be brought to bear.
The above model included only one of many forms of non-

linearity. To gain a little insight into what may occur in reality,
a much more complex model was studied. The structure of the
model, loosely based on gluconeogenesis in rat hepatocytes, is
shown in Scheme 2. Details of the reaction mechanisms and
parameter values can be found in Appendix 3. The reaction
mechanisms contain examples ofthe many forms of non-linearity
(saturability of most enzymes, bimolecular reactions, cofactors,
sigmoidal kinetics and feedback inhibition). This model has only
been slightly modified from a model used for different purposes
before [9], where the parameter values were not chosen to reduce
the effects of non-linearity. Most of these values were set
before the large change relationships were derived [11,12], and
the changes made to the model (making ATP and ADP free
variables) will have had the effect ofincreasing the non-linearities.
Despite the highly non-linear nature of this model, the results of
two inhibitor 'experiments' (Table 8) show that, as was the case
with the simple model, the estimates for the control coefficient
with respect to the monitored flux were very good; however,
when eqn. (5) was used, the estimate of the value of the second
coefficient was affected by the non-linearities.
A second source of systematic error in the fitting method may

come from an inappropriate function assumed for the relation-
ship between enzyme activity and inhibitor concentration. With-
out knowing what this error is, the effects cannot be quantitatively
evaluated. In some cases these effects may not be large. For
example if the equation used throughout this paper (eqn. 4) were
accurate at low, but not at higher, levels of inhibitor, then, as was
seen for the non-linearity cases above, the estimate obtained by
the fitting method may still be reliable. If the errors occurred at
the lower levels of inhibitor, then the estimate may be inaccurate
using the fitting method. Note that the already inaccurate graph
method will be even more inaccurate under these conditions.

DISCUSSION
In this paper it has been shown that there are a number of
problems involved in estimating control coefficient values using
specific inhibitor titrations. Evidence presented suggests that the
graphical method can be extremely sensitive to random error.
This is on top of the inherent systematic error of this method.
Attempts to reduce the systematic error by using lower inhibitor
points to estimate the initial slope will increase the sensitivity of
the method to random errors and will probably be

Table 8 Effect of various non-llnearlfles In a complex system on the estimates of the control coefficlent values obtained by both the graphical (gra) and
the fittng (fit) method
Statistics are based on n = 20.

Experimental error
Enzyme Flux Control
inhibited monitored coefficient Method True value No error Ci Av. CJ S.D. CJ Min. Max.

J2 C2J2 PC

C 6J6 PC

cIJ2
PC

J6 c6

gra 0.88
fit 0.88
gra 0.62
fit 0.62
fit 0.88

gra 0.31
fit 0.31

0.95 1.00
0.89 0.93
0.75 0.79
0.63 0.66
0.62 0.66
0.44 0.45
0.32 0.32

0.06 0.90 1.09
0.05 0.84 1.02
0.12 0.57 1.05
0.10 0.47 0.85
0.11 0.46 0.86
0.13 0.24 0.65
0.04 0.23 0.39
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counterproductive. Improving the precision offlux measurements
would, of course, reduce the effect of random errors on the
estimate of the control coefficient, but statistical analysis suggests
that, to obtain reasonable confidence limits, the error in the flux
measurements will have to be very small. Statistical evidence (not
shown) also suggests that increasing the number of points used
to determine the initial slope, or having a geometric distribution
of points within the 'initial' range, will have only a limited effect.
This is backed up by numerical studies. Statistics were determined
for a modification of Case A, Table 1, where either (a) a
geometric distribution of the first three points was used to
determine the initial slope or (b) extra points were added between
the first and third point such that ten points were used to
determine the initial slope. The statistics generated, based on 20
repeats, were (a) average estimate of CJ = 0.41, S.D. = 0.26 and
(b) average estimate of CJ = 0.40, S.D. = 0.23. These results
show no significant difference from those shown in Table 1.
Although systematic error will tend to overestimate the

estimated value of the control coefficient, random error can,
in certain cases, overwhelm this error so that a significant
proportion ofestimates may underestimate the true value. Hence,
from a single experiment, it cannot be claimed with any degree
of certainty that the estimate obtained is greater than the true
value. Repeating the experiment an increasing number of times,
and averaging the estimates, will cause this mean estimate to tend
towards the estimated value which would be obtained in the
absence of random error. This estimate will, however, still reflect
the systematic error. Note, however, that the mean estimate may
fluctuate widely at low numbers of repeats. For Case A in Table
1 it took 18 repeats before the mean estimate fluctuated within
+ 10% of the mean based on 100 repeats. It is clear that the
graphical method must be used with extreme care, and there
should be some attempt to provide confidence limits either
empirically (as was done for eqn. 2) or experimentally, by
repeating the experiment a number of times.
The 'fitting' technique has been shown to be, under the

conditions studied, less susceptible than the graph method to
random errors. In addition, when the conditions were such that
there was potential for systematic error (due to the erroneous use
of eqn. 3 or 5) being introduced, the technique remained robust,
in that the estimate of the monitored flux control coefficient
showed very little systematic error. However, when eqn. (5) was
used under these same conditions, the estimate of the value of the
non-monitored flux control coefficient was not as robust. For
this reason, the confidence in this estimate will rely heavily on the
confidence in which it is believed that the assumptions used in the
derivation of eqn. (5) hold (or are only relaxed to a small degree).
The use of inhibitors to determine flux control coefficients

must be done with great care. The inhibitor must be specific to
one enzyme, and measurements must be done extremely ac-
curately and/or appropriate functions used. Owing to these
inherent difficulties, it may be suggested that there are other ways
to use these inhibitors to determine control coefficients. A better
option may be to use the inhibitors to perturb a system and
measure the relative responses of fluxes and metabolites and
determine the value of the metabolite elasticity coefficients

[9,15,16], or control coefficients directly, as suggested in a recent
publication [17]. These methods, of course, will again rely on
extrapolation and will also be subject to experimental error. The
effects of these errors will have to be determined to see whether
these alternative methods will provide more accurate and/or
precise results. A simulation study [9] has suggested that this
may be the case. In addition, another study [18] has suggested
that the control coefficient values obtained via elasticity values
may be insensitive to errors in the values of many of these
elasticities.
Only one type of inhibition was investigated in this study.

Other types, e.g. competitive, mixed, etc., require, in order to use
the graph method, either a knowledge of kinetic parameter
values and/or metabolite concentrations or a method of
obtaining the response of the enzyme to the inhibitor in isolation
from the system, but under in vivo conditions. Both these
approaches will increase the effects of both random and
systematic error, in the former because most kinetic parameters
are determined in vitro and hence may be inappropriate, and in
the latter case because this will involve extrapolation to an initial
slope and hence will suffer the same consequences as the
extrapolation to the initial slope ofthe flux-inhibitor relationship.
Whether relationships between flux and enzyme activity used in
this investigation will be as robust under non-linear conditions
when competitive and/or mixed inhibition is used remains to be
discovered.
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APPENDIX 1
Derivation of eqn. (2) of the main paper
In the following derivations, y will stand for the flux
measurements and x the inhibitor concentrations. The estimated
value of the control coefficient, C, using linear regression on the
initial inhibitor points, can be expressed as:

C b 'max
a

where a and b are the best-fit estimates of the intercept and slope
respectively. If we assume that Imax is known exactly, then the
standard error (se) of C can be related to the standard error of
the flux measurements as follows [1]:

se2 se, + se.
C2 b2 a2

sey..Oa yi2+ sey, 8b y\2
Yi ayi a y, ay, (A1

Using standard linear-regression equations (see [2]), it is
possible to obtain an expression for eqn. (Al) in terms of
individual x and y values. Using the assumptions that the relative
standard errors of all the flux measurements are equal in mag-
nitude i.e. sel./y. = sey/y for all i used in the initial slope and
intercept estimation, that the inhibitor values (x values) are
equally (arithmetically) distributed, three points are used for the
linear regression and that the middle flux value is approximately
half the difference of the first and third, then we obtain:

se2 se2 [2+2-Ay/y1+(Ay/y1)2
C2 Y2[ (Ay/y1)2

+ 30 + 2 - (Ay/yl)2 + 6 -Ayly~
64+ 4 - (Aylyl)2 + 32 -Ayly,

In the inhibitor titration experiments, to minimize systematic
errors, Ay/y1 4 1. If this is true, then the first term inside the
square brackets of the above equation will totally dominate the
value of expression and hence, after rearrangement, an estimate
of the standard error of C is:

(A2)se y AV. YCse
Ay

The value of C is approximately equal to (Ay/y1) Imax /Ax,
where Ax is the largest concentration of the inhibitor used in the
regression (i.e. in the case x3). Substituting this expression into
eqn. (A2) gives:

I., sey. Iax
Y Ax

(A3)

The relative standard error of y, (se,/y), is related to the
relative standard deviation of y, ov/y, by:

sey -OVytn-I
Y Y v;S

where n is the number of repeat measurements of each inhibitor
point and t is the Student t value for the desired confidence limits.
Using standard statistical techniques to obtain confidence limits,
eqn. (2) of the main paper can thus be generated, i.e.:

C+ max..<. J.n-l
- AI J vf

(A4)

where orI/J_ o-/y
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APPENDIX 2
Derivation of eqns. (7) and (8) of the main paper
For the purpose of this derivation, let A CJA, B=CEB and
R = A/B. From [1] the standard deviation of R, CR' can
be approximately expressed as:

(oCR/R)2 1 (C-A/A)2 + (oR/B)2 -2oTAB/(A * B)
where OAB is the covariance of A and B. Since the correlation
between A and B is positive, R > 1 and both A and B are less
than 1, then (eqn. 7 of the main paper):

O'R < aA + 0B

In addition, since the correlation coefficient is very close to unity,
[2]:

O'AB A'B

Since we are dealing with only random errors, the fitted initial
slope and the fitted final slope of the inhibitor titration should
deviate from the true values by a similar amount. Since the initial
slope error will be reflected in the error in B, and the final slope
error in the error of R, a0B and oCR should be similar in value.
Using these assumptions, the following (eqn. 8 of the main
paper) is a consequence:

CA KR B
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APPENDIX 3
Reaction mechanisms and parameter values for Scheme 2 of the main paper
Some metabolite abbreviations are defined in the legend to Scheme 2 of the main paper. Others are as follows: PT, mitochondrial
pyruvate translocator; PC, pyruvate carboxylase; Vm.ax. t Vmax. of oxaloacetate transport, t, across the mitochondrial membrane; Kmtm,
Km of OAAm with respect to t; Kmtc, Km of OAAc with respect to t; PEPCK, phosphoenolpyruvate carboxykinase; PK, pyruvate
kinase; LPK, allosteric constant for pyruvate kinase; COM, combined steps; Vm.. FBP, Vmax of fructose-i,6-bisphosphatase; PGI,
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phosphoglucoisomerase; GP, glucose-6-phosphatase; V'2m~A TPc, V.nax. of non-specified ATP-consuming reactions; Keq,,c, equilibrium
constant of non-specified ATP-consuming reactions; DHAP, dihydroxyacetone phosphate; TPI, triosephosphate isomerase; CIT(R),
citrate.

Reaction mechanisms

El: PYRc-_PYRm

Vmx PT-PYRc- PYRm/Keq, PT
max. PYRm+PYRc

E: PYRm OAAm

U~PC PYRm -OAAm/K,qP

KmPYRmfl1+PYJRJflKmPYRm+OAAm/KmOAAm

E3 OAAm.OAAc

VOAAt OAAm-OAAC/Keq. t

Km tm 1+ OAAm/Km tm + OAAc/Km tc

E: OAAc PEP

Vnax. PEPCK OAAc-GTP- PEP GDP/K,eq PEPCK
KmOAAc-KmGTP 04

where

0
OAAc GTP_+PEP GDP OAAc-GTP OAAc PEP PEP-GDP
4 KmOAc KGTP mPEPKmGDP KmGTP*KmOAAC KmOAAc*KmPEP KmPEP-KmGDP
GDP-GTP OAAc-PEP-GTP PEP-GDP-GTP

KmGDP-KmGTPKmOAAc-KmPEP-Km GTP KmGTP*KmGDP*KmPEP
E5: PEP+ADP-I_PYRc+ATP

ADP PEP
(1+PEP/K.PEPPK)2P-ADP+kmADPPKKm PEPP

va

LPK.(I+ATP/KmATPPK +(1 +PEP/KmPEPPK)3
PK1 + FDP/Km FDPPK!

E6: PEP-GAP

V.nax. COM-(PEP -GAP/Ke~q COM)
E7 : 2 GAP.-_FDP

V.nax. ALD GAP-GAP -Ke~q TPI- FDP/Keq.ALD
KmGAP*KmDHAP 07

where

97=1I+_GAP GAP-Keq TPI FDP GAP-Keq TPILGAP GAP-FDP

AmA+ K eDH + +m GA emq HP+ AKmGAPKmDHAP KmFDPALD K A* HPKFDPALDIGA
E8: FDP-±-F6P

Vnax. FBP-FDP
FDP+iKmFDP*(1 +AMP/IKAMP)

E9: F6P.,,-G6P
Vnax. PGI- (F6P- G6P/Keq. PGI)

E1o: G6P-,rGLU
Vnax. GP-G6P

(1 + GLUIK, GLU) JG6P+KmG6P-(I +J,/I4/P1+CITR/IK4CIT)]
E,,:ATP-ADP

VMnax ATPc-(ATP -ADP/Keq. c)
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Parameter values

Vmax. PT = 11.27, Keq PT = 2.77, PYRc = 1.5.

Vmax. PC = 0.515, Km PYRm = 4.4 x 10-2, Keq PC = 0.222, Km OAAm = 5x 10-2.

VOAAt = 1.1, Km tm = 0.011, Kmtc = 0.021, Keq t = 0.88.

Vmax. PEPCK = 50, Km OAAc = 1.5 x 10-1, Km GTP = 1.6 x 10'-, Km PEP = 1.2, Km GDP = 6.3 x 10-2, Ke PEPCK = 0.372,
GTP = 0.475, GDP = 4.5 x 10-.

Vmax. PK = 52.89, KmPEP,. = 0.19, KmFDPpg = 0.002, KmATPp = 9.3, KmADPKg = 0.3, LPK = 3400-

Vmax. COM = 1, Kq COM = 0.03125.

Vmax.ALD = 200, Keq ALD = 300, Km GAP = 0.3, KmDHAP =1 X 10-4, Km FDPALD = 3 x 10-3, K, GAP = 3 x 10-', Keq TPI=0.045.

Vmax FBP = 1. 5, KmFDP = 1.2 x 10-3, K,AMP = 0.2, AMP = 0.3.

Vmax. PGI= o00, Keq PGI= 3.333333.

Vmax. GP= 6, KiGLU= 88, KmG6P= 2, K Pi= 6x 10-, K,CIT= 13, Pi = 0.01, CITR = 13, GLU= 1.

V.ax ATPc = 0.2483, Keq c 0.1,

Conserved metabolites: (A TP+ ADP) = 8.31.
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