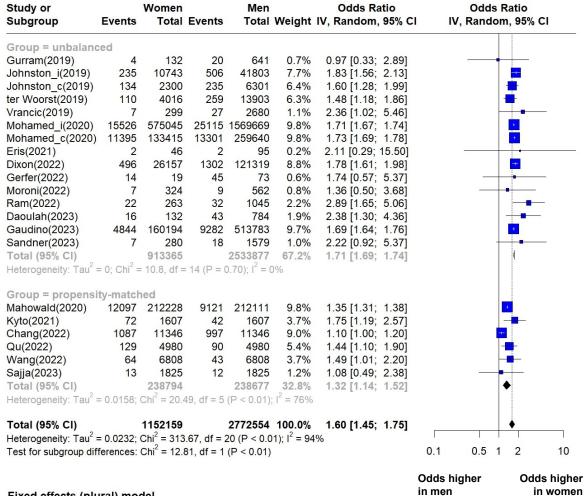
Differences between men and women in short-term outcomes after CABG: a meta-analysis

Daniela Dumitriu LaGrange 12*, Elena Tessitore 32, Philippe Reymond 12, François Mach 32, Christoph Huber 12

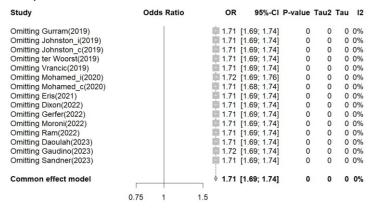

¹Cardiovascular Surgery Division, Department of Surgery, Geneva University Hospitals

² Faculty of Medicine, University of Geneva

³ Cardiology Division, Geneva University Hospitals

*Corresponding author: Daniela.DumitriuLagrange@unige.ch

Figure S1: Forest plots showing pooled odds ratios (OR) for short-term mortality and test for group differences. When within individual studies outcomes were calculated separately by procedure: " i" designates isolated CABG, and "c" designates CABG concomitant with valve repair.


Fixed effects (plural) model

 $Tau^2 = 0.0232$: $Chi^2 = 12.81$. df = 1 (P < 0.01): $I^2 = 94\%$ [92%: 95%]

Test for subgroup differences: P < 0.01

Figure S2: Sensitivity analysis for short-term mortality

Group= unbalanced

Group= propensity-matched

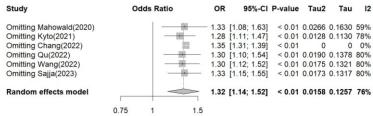
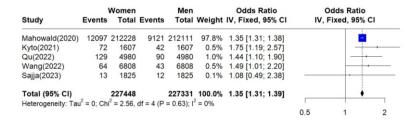



Figure S3: pooled effects and sensitivity analysis for short-term mortality in the propensity-matched group, after omitting Chang (2022)

Group= propensity-matched, after omitting Chang (2022)

Group= propensity-matched, after omitting Chang (2022)

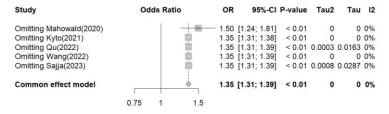
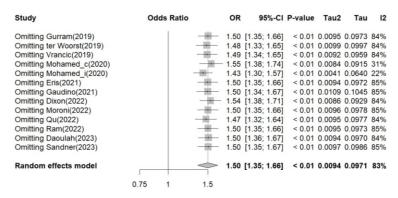


Figure S4: Forest plots showing pooled odds ratios (OR) for postoperative stroke and test for group differences. When within individual studies outcomes were calculated separately by procedure: "_i" designates isolated CABG, and "_c" designates CABG concomitant with valve repair.


Study or Subgroup		Women Total	Events	Men Total	Weight	Odds Rat IV, Random, 9		Odds Ratio IV, Random, 95% CI
Group = unbaland	ced							
Gurram(2019)	1	132	8	641	0.2%	0.60 [0.07; 4	4.87]	•
er Woorst(2019)	43	4016	85	13903	5.1%	1.76 [1.22; 2	2.54]	-
rancic(2019)	4	299	8	2680	0.7%	4.53 [1.36; 1	5.13]	-
lohamed_c(2020)	4927	133415	7034	259640	14.2%	1.38 [1.33;	1.43]	•
ohamed_i(2020)	12076	575045	20406	1569669	14.4%	1.63 [1.59;	1.67]	•
ris(2021)	1	46	1	95	0.1%	2.09 [0.13; 3	4.16]	
audino(2021)	49	2714	125	10479	5.8%	1.52 [1.09; 2	2.12]	<u></u>
xon(2022)	154	26157	558	121319	10.1%			
oroni(2022)	5	324	7	562	0.8%	1.24 [0.39; 3	3.95]	
u(2022)	102	5367	161	14678	7.8%	1.75 [1.36; 2	2.24]	-
am(2022)	1	263	4	1045	0.2%	0.99 [0.11; 8	3.921	
aoulah(2023)	1	132	28	784	0.3%			
andner(2023)	8	280	36	1579	1.6%			_ _
otal (95% CI)		748190		1997074	61.2%	1.50 [1.35;		•
eterogeneity: Tau ²	= 0.0094;	Chi ² = 71	.38, df =	12 (P < 0.0	$(11); I^2 = 83$	3%		
roup = propensi	-							
lahowald(2020)		212228			14.2%	1.39 [1.34;		
hang(2022)	387		364	11346	11.2%	1.07 [0.92;		<u></u>
u(2022)	95		60	4980	5.9%	1.59 [1.15; 2	-	-
ang(2022)	109		62	6808	6.2%		-	
ajja(2023)	7		15	1825	1.2%			
otal (95% CI)		237187		237069		1.31 [1.02;	1.67]	•
eterogeneity: Tau ²	= 0.0536;	$Chi^2 = 21$.08, df =	4 (P < 0.01); $I^2 = 819$	6		
otal (95% CI)		985377		2234143		1.43 [1.29;	1.58]	
eterogeneity: Tau ² :	= 0.0191;	Chi = 12	5.99, df =	17 (P < 0.	$.01$); $I^2 = 8$	37%		
est for subgroup dif	ferences:	$Chi^2 = 0.9$	99, df = 1	(P = 0.32)				0.1 0.5 1 2 10
								Odds higher Odds high

Fixed effects (plural) model $Tau^2 = 0.0191$; $Chi^2 = 0.99$, df = 1 (P = 0.32); $I^2 = 87\% [80\%; 91\%]$ Test for subgroup differences: P = 0.32

in men in women

Figure S5: Sensitivity analysis for postoperative stroke

Group= unbalanced

Group= propensity-matched

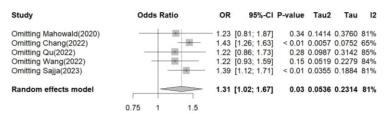


Figure S6: pooled effects and sensitivity analysis for postoperative stroke in the unbalanced group, after omitting Mohamed (2020)

Group=unbalanced, after omitting Mohamed (2020)

Study		Vomen Total	Events	Men Total		Odds Ratio IV, Random, 95% CI	Odds Ratio IV, Random, 95% CI
Gurram(2019)	1	132	8	641	0.6%	0.60 [0.07; 4.87]	
ter Woorst(2019)	43	4016	85	13903			_
Vrancic(2019)	4	299	8	2680			
Eris(2021)	1	46	1	95	0.3%		
Gaudino(2021)	49	2714	125	10479	17.0%		-
Dixon(2022)	154	26157	558	121319	33.8%		
Moroni(2022)	5	324	7	562	2.0%	1.24 [0.39; 3.95]	-
Qu(2022)	102	5367	161	14678	24.5%	1.75 [1.36; 2.24]	-
Ram(2022)	1	263	4	1045	0.6%	0.99 [0.11; 8.92]	
Daoulah(2023)	1	132	28	784	0.7%	0.21 [0.03; 1.53]	•
Sandner(2023)	8	280	36	1579	4.1%	1.26 [0.58; 2.74]	-
Total (95% CI)		39730			100.0%		
Heterogeneity: Tau	$u^2 = 0.012$	5; Chi ² =	= 13.19, d	f = 10 (P	= 0.21); 1	2 = 24%	
							0.1 0.5 1 2 10

Group= unbalanced, after omitting Mohamed (2020)

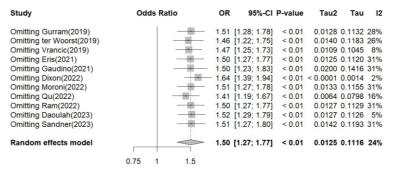
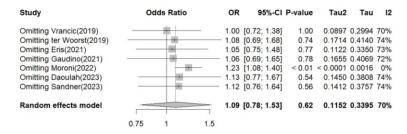


Figure S7: Forest plots showing pooled odds ratios (OR) for myocardial infarction and test for group differences. When within individual studies outcomes were calculated separately by procedure: "_i" designates isolated CABG, and "_c" designates CABG concomitant with valve repair.


Study or Subgroup		omen/ Total		Men Total		Odds Ra IV, Random,		IV	Odds R		Cl
Group = unbala	nced										
Vrancic(2019)	7	299	27	2680	4.1%	2.36 [1.02;	5 461				
ter Woorst(2019)		4016		13903							
Eris(2021)	3	46		95		•	-				
Gaudino(2021)	172	2714	542	10479					-		
Moroni(2022)	60	324				•	-		-		
Daoulah(2023)	7	132	48	784	4.3%	0.86 [0.38;	1.94]			-32	
Sandner(2023)	5	280	32	1579	3.4%	0.88 [0.34;	2.28]				
Total (95% CI)		7811		30082	57.4%	1.09 [0.78;	1.53]		•		
Heterogeneity: Tau	$u^2 = 0.115$	2; Chi ² =	= 19.8, df	= 6 (P <	: 0.01); I ²	= 70%					
Group = propen			400	2012	44.40/	4 00 10 07	4.051			ı .	
ter Woorst(2022)		3913		3913			-			T .	
Wang(2022)		6808									
Sajja(2023)	50	1825 12546				and the second s					
Total (95% CI) Heterogeneity: Tau	2 - 0 044			12546			1.24]		T		
Heterogeneity: Tau	1 = 0.011	4; Cni =	= 3.48, 01	= Z (P =	0.18); 1	= 43%					
Total (95% CI)		20357		42628	100.0%	1.06 [0.87;	1.281		•		
Heterogeneity: Tau	$u^2 = 0.049$						1				
Test for subgroup						• 170		0.1	0.5 1	2	10
			,	. (.							
Fixed effects (pl	ural) mo	del						Odds h	igher		higher women

Fixed effects (plural) model

Tau² = 0.0498; Chi² = 0.07, df = 1 (P = 0.79); I^2 = 64% [28%; 82%] Test for subgroup differences: P = 0.79

Figure S8: Sensitivity analysis for postoperative myocardial infarction

Group= unbalanced

Group= propensity-matched

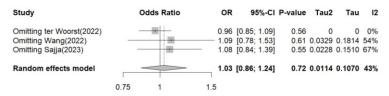


Figure S9: Sensitivity analysis for postoperative atrial fibrillation

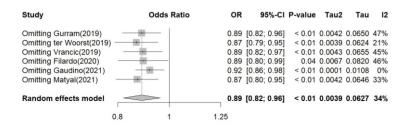


Figure S10: Postoperative atrial fibrillation summary of effects (unadjusted effect in individual studies) after excluding studies in which there was no significant differences in age between men and women (Gurram (2019), Matyal (2021)).

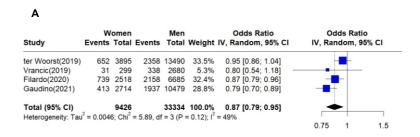


Figure S11: Funnel plots for identification of publication bias, for each of the outcomes: A – postoperative mortality; B- stroke; C – myocardial infarction; D – new onset atrial fibrillation.

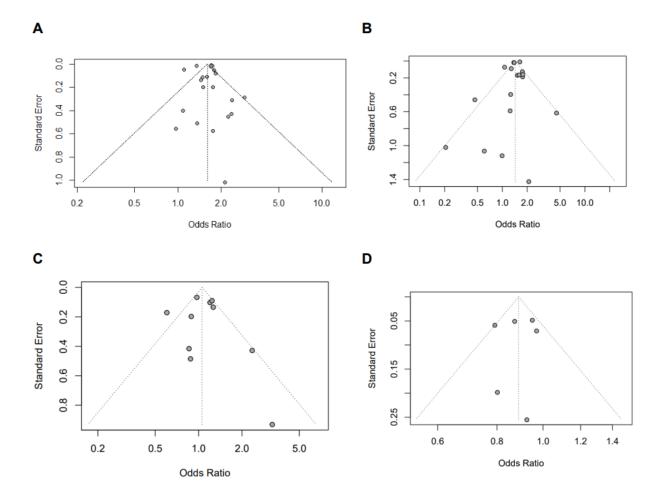


Table S1: Newcastle-Ottawa assessment of studies included in the meta-analysis

Author, year	Postoperative		Select	ion	Comparability	Outcome			
	outcomes of interest	Representativeness of the exposed cohort (CABG patients)	Selection of the non exposed (men/women)	Ascertainment of exposure	Demonstration that outcome of interest was not present at start of study	study controls for In hospital /30-day outcome (*) and propensity matched (*)	Assessment of outcome	Adequacy of follow- up period	Adequacy of follow up of cohorts
Gurram, 2019 ¹	mortality	*	*	*	*	*	*	*	*
	stroke	*	*	*	*	*	*	*	*
Johnston, 2019 ²	mortality	*	*	*	*	*	*	*	*
ter Woorst, 2019 ³	mortality	*	*	*	*	*	*	*	*
	stroke	*	*	*	*	*	-	*	*
	myocardial infarction	*	*	*	*	*	-	*	*
	atrial fibrillation	*	*	*	*	*	-	*	*
Vrancic, 2019 ⁴	mortality	*	*	*	*	*	*	*	*
	stroke	*	*	*	*	*	-	*	*
	myocardial infarction	*	*	*	*	*	-	*	*
	atrial fibrillation	*	*	*	-	*	-	*	*
Filardo, 2020 ⁵	atrial fibrillation	*	*	*	*	*	*	*	*
Mahowald, 2020 ⁶	mortality	*	*	*	*	**	*	*	*
	stroke	*	*	*	*	**	-	*	*
Mohamed, 2020	mortality	*	*	*	*	*	*	*	*
	stroke	*	*	*	*	*	-	*	*

	1	1	1		1		1		
Eris, 2021 8	mortality	*	*	*	*	*	*	*	*
	stroke	*	*	*	*	*	-	*	*
	myocardial infarction	*	*	*	*	*	-	*	*
Gaudino, 2021 ⁹	mortality	*	*	*	*	*	*	*	*
	stroke	*	*	*	*	*	-	*	*
	myocardial infarction	*	*	*	*	*	*	*	*
	atrial fibrillation	*	*	*	*	*	-	*	*
Kytö, 2021 ¹⁰	mortality	*	*	*	*	**	*	*	*
Matyal, 2021 ¹¹	atrial fibrillation	*	*	*	*	*	-	*	*
Chang, 2022 ¹²	mortality	*	*	*	*	**	*	*	*
	stroke	*	*	*	*	* *	-	*	*
Dixon, 2022 13	mortality	*	*	*	*	*	*	*	*
	stroke	*	*	*	*	*	-	*	*
Gerfer, 2022 ¹⁴	mortality	*	*	*	*	*	*	*	*
Moroni, 2022 15	mortality	*	*	*	*	*	*	*	*
	stroke	*	*	*	*	*	-	*	*
	myocardial infarction	*	*	*	*	*	*	*	*
Qu, 2022 ¹⁶	mortality	*	*	*	*	**	*	*	*
	stroke	*	*	*	*	**	-	*	*
Ram, 2022 ¹⁷	mortality	*	*	*	*	*	*	*	*
	stroke	*	*	*	*	*	-	*	*
Ter Woorst, 2022 ¹⁸	myocardial infarction	*	*	*	*	*	-	*	*

Wang, 2022 ¹⁹	mortality	*	*	*	*	* *	*	*	*
	stroke	*	*	*	*	**	-	*	*
	myocardial infarction	*	*	*	*	**	*	*	*
Daoulah, 2023	mortality	*	*	*	*	*	*	*	*
	stroke	*	*	*	*	*	-	*	*
	myocardial infarction	*	*	*	*	*	*	*	*
Gaudino, 2023	mortality	*	*	*	*	*	*	*	*
Sajja, 2023 ²²	mortality	*	*	*	*	**	*	*	*
	stroke	*	*	*	*	* *	-	*	*
	myocardial infarction	*	*	*	*	**	*	*	*
Sandner, 2023 ²³	mortality	*	*	*	*	*	*	*	*
	stroke	*	*	*	*	*	-	*	*
	myocardial infarction	*	*	*	*	*	*	*	*
Gupta, 2020 ²⁴ (excluded for overlapping with Gaudino 2023)	mortality	*	*	*	*	*	*	*	*
Lin, 2022 ²⁵ (excluded for overlapping with Chang, 2022)	mortality	*	*	*	*	*	*	*	*
O'Shaughnessy, 2022 ²⁶ (excluded for overlapping with Gaudino 2023)	mortality	*	*	*	*	*	*	*	*
Safdar, 2022 ²⁷ (excluded for overlapping	mortality	*	*	*	*	*	*	*	*

with Gaudino					
2023)					

- 1. Gurram A, Krishna N, Vasudevan A, Baquero LA, Jayant A, Varma PK. Female Gender is not a Risk Factor for Early Mortality after Coronary Artery Bypass Grafting. *Ann Card Anaesth*. 2019;22(2):187-193. doi:10.4103/aca.ACA 27 18
- 2. Johnston A, Mesana TG, Lee DS, Eddeen AB, Sun LY. Sex Differences in Long-Term Survival After Major Cardiac Surgery: A Population-Based Cohort Study. *J Am Heart Assoc.* 2019;8(17):e013260. doi:10.1161/JAHA.119.013260
- 3. Ter Woorst JF, van Straten AHM, Houterman S, Soliman-Hamad MA. Sex Difference in Coronary Artery Bypass Grafting: Preoperative Profile and Early Outcome. *J Cardiothorac Vasc Anesth*. 2019;33(10):2679-2684. doi:10.1053/j.jvca.2019.02.040
- 4. Vrancic JM, Navia DO, Espinoza JC, Piccinini F, Camporrotondo M, Benzadon M, Dorsa A. Is sex a risk factor for death in patients with bilateral internal thoracic artery grafts? *J Thorac Cardiovasc Surg*. 2019;158(5):1345-1353.e1. doi:10.1016/j.jtcvs.2019.01.025
- 5. Filardo G, Ailawadi G, Pollock BD, da Graca B, Phan TK, Thourani V, Damiano RJ. Postoperative atrial fibrillation: Sex-specific characteristics and effect on survival. *J Thorac Cardiovasc Surg.* 2020;159(4):1419-1425.e1. doi:10.1016/j.jtcvs.2019.04.097
- 6. Mahowald MK, Alqahtani F, Alkhouli M. Comparison of Outcomes of Coronary Revascularization for Acute Myocardial Infarction in Men Versus Women. *Am J Cardiol*. 2020;132:1-7. doi:10.1016/j.amjcard.2020.07.014
- 7. Mohamed W, Mohamed MO, Hirji S, Ouzounian M, Sun LY, Coutinho T, Percy E, Mamas MA. Trends in sex-based differences in outcomes following coronary artery bypass grafting in the United States between 2004 and 2015. *Int J Cardiol*. 2020;320:42-48. doi:10.1016/j.ijcard.2020.07.039
- 8. Eris C, Engin M, Sunbul SA, As AK, Erdolu B. Early Postoperative Results of On-Pump Coronary Endarterectomy: Is Gender a Risk Factor? *Heart Surg Forum*. 2021;24(4):E662-E669. doi:10.1532/hsf.3929
- 9. Gaudino M, Di Franco A, Alexander JH, Bakaeen F, Egorova N, Kurlansky P, Boening A, Chikwe J, Demetres M, Devereaux PJ, Diegeler A, Dimagli A, Flather M, Hameed I, Lamy A, Lawton JS, Reents W, Robinson NB, Audisio K, Rahouma M, Serruys PW, Hara H, Taggart DP, Girardi LN, Fremes SE, Benedetto U. Sex differences in outcomes after coronary artery bypass grafting: a pooled analysis of individual patient data. *Eur Heart J*. 2021;43(1):18-28. doi:10.1093/eurheartj/ehab504
- 10. Kytö V, Sipilä J, Rautava P, Gunn J. Sex Differences in Outcomes Following Acute Coronary Syndrome Treated With Coronary Artery Bypass Surgery. *Heart Lung Circ*. 2021;30(1):100-107. doi:10.1016/j.hlc.2020.02.009

- 11. Matyal R, Qureshi NQ, Mufarrih SH, Sharkey A, Bose R, Chu LM, Liu DC, Senthilnathan V, Mahmood F, Khabbaz KR. Update: Gender differences in CABG outcomes-Have we bridged the gap? *PLoS One*. 2021;16(9):e0255170. doi:10.1371/journal.pone.0255170
- 12. Chang FC, Chen SW, Chan YH, Lin CP, Wu VCC, Cheng YT, Chen DY, Hung KC, Chu PH, Chou AH. Sex differences in risks of in-hospital and late outcomes after cardiac surgery: a nationwide population-based cohort study. *BMJ Open.* 2022;12(2):e058538. doi:10.1136/bmjopen-2021-058538
- 13. Dixon LK, Dimagli A, Di Tommaso E, Sinha S, Fudulu DP, Sandhu M, Benedetto U, Angelini GD. Females have an increased risk of short-term mortality after cardiac surgery compared to males: Insights from a national database. *J Card Surg*. 2022;37(11):3507-3519. doi:10.1111/jocs.16928
- 14. Gerfer S, Gaisendrees C, Djordjevic I, Ivanov B, Merkle J, Eghbalzadeh K, Schlachtenberger G, Rustenbach C, Sabashnikov A, Kuhn-Régnier F, Mader N, Wahlers T. Gender-related propensity score match analysis of ECMO therapy in postcardiotomy cardiogenic shock in patients after myocardial revascularization. *Perfusion*. 2022;37(5):470-476. doi:10.1177/02676591211004363
- 15. Moroni F, Beneduce A, Giustino G, Briede I, Park S, Daemen J, Claude Morice M, Nakamura S, Meliga E, Cerrato E, Makkar RR, D'Ascenzo F, Lucarelli C, Capranzano P, Tchetche D, Templin C, Kirtane A, Buzman P, Alfieri O, Valgimigli M, Mehran R, Colombo A, Montorfano M, Chieffo A, Latib AM, Onuba Y, Serruys PW, Mieghem NM, Jegere S, Erglis A, Palacios IF, Margey R, Agnihotri A, Kim Y, Chakravarty T, Sheiban I, Marra S, Pavani M, Naber C, Fajadet J, Lefevre T, Mangiameli A, Capodanno D, Tamburino C, Leon MB, Moses JW, Tanaka A, Cartier J, Sawaya FJ, Kawamoto H, Stefanini GG, Pisaniello M, Benedictis M, Varbella F, Sharma SK. Sex Differences in Outcomes After Percutaneous Coronary Intervention or Coronary Artery Bypass Graft for Left Main Disease: From the DELTA Registries. *JAHA*. 2022;11(5):e022320. doi:10.1161/JAHA.121.022320
- 16. Qu WW, Wei JW, Binongo JN, Keeling WB. Sex Differences in Failure-to-Rescue After Coronary Artery Bypass Grafting. *Ann Thorac Surg*. 2022;114(5):1596-1602. doi:10.1016/j.athoracsur.2021.09.070
- 17. Ram E, Sternik L, Moshkovitz Y, Iakobishvili Z, Zuroff E, Peled Y, Herscovici R, Raanani E. Coronary Artery Bypass Grafting Following Acute Coronary Syndrome: Impact of Gender. Semin Thorac Cardiovasc Surg. 2022;34(3):920-929. doi:10.1053/j.semtcvs.2021.07.015
- 18. Ter Woorst JF, Olsthoorn JR, Houterman S, van Straten BHM, Soliman-Hamad MA. Sex Difference in Long-Term Survival After Coronary Artery Bypass Grafting Is Age-Dependent. *J Cardiothorac Vasc Anesth*. 2022;36(5):1288-1295. doi:10.1053/j.jvca.2021.08.104
- 19. Wang E, Wang Y, Hu S, Yuan S. Impact of gender differences on hemostasis in patients after coronary artery bypass grafts surgeries in the context of tranexamic acid administration. *J Cardiothorac Surg.* 2022;17(1):123. doi:10.1186/s13019-022-01874-y

- 20. Daoulah A, Elsheikh-Mohamed NE, Yousif N, Hersi AS, Alharbi AW, Almahmeed W, Alshehri M, Alzahrani B, Elfarnawany A, Alasmari A, Abuelatta R, Al Garni T, Ghani MA, Amin H, Hashmani S, Al Nasser FOM, Hiremath N, Arafat AA, Elmahrouk Y, Kazim HM, Refaat W, Selim E, Jamjoom A, El-Sayed O, Dahdouh Z, Aithal J, Ibrahim AM, Elganady A, Qutub MA, Alama MN, Abohasan A, Hassan T, Balghith M, Hussien AF, Abdulhabeeb IAM, Ahmad O, Ramadan M, Alqahtani AH, Qenawi W, Shawky A, Ghonim AA, Elmahrouk A, Naser MJ, Abozenah M, Shawky AM, Alqahtani AM, Ahmed RA, Abdelaziz AF, Alhamid S, Lotfi A. Does Gender Affect the Outcomes of Myocardial Revascularization for Left-Main Coronary Artery Disease? *Angiology*. Published online March 11, 2023:33197231162481. doi:10.1177/00033197231162481
- 21. Gaudino M, Chadow D, Rahouma M, Soletti GJ, Sandner S, Perezgrovas-Olaria R, Audisio K, Cancelli G, Bratton BA, Fremes S, Kurlansky P, Girardi L, Habib RH. Operative Outcomes of Women Undergoing Coronary Artery Bypass Surgery in the US, 2011 to 2020. *JAMA Surg*. 2023;158(5):494-502. doi:10.1001/jamasurg.2022.8156
- 22. Sajja LR, Mannam G, Kamtam DN, Balakrishna N. Female gender does not have any significant impact on the early postoperative outcomes after coronary artery bypass grafting: a propensity-matched analysis. *Indian J Thorac Cardiovasc Surg.* 2023;39(3):231-237. doi:10.1007/s12055-022-01465-5
- 23. Sandner S, Kastrati A, Niessner A, Böning A, Zeymer U, Conradi L, Danner B, Zimpfer D, Färber G, Manville E, Schunkert H, von Scheidt M, TiCAB Investigators. Sex differences among patients receiving ticagrelor monotherapy or aspirin after coronary bypass surgery: A prespecified subgroup analysis of the TiCAB trial. *Int J Cardiol*. 2023;370:129-135. doi:10.1016/j.ijcard.2022.10.166
- 24. Gupta S, Lui B, Ma X, Walline M, Ivascu NS, White RS. Sex Differences in Outcomes After Coronary Artery Bypass Grafting. *J Cardiothorac Vasc Anesth*. 2020;34(12):3259-3266. doi:10.1053/j.ivca.2020.04.030
- 25. Lin DSH, Lin YS, Lee JK, Kao HL. Sex differences following percutaneous coronary intervention or coronary artery bypass surgery for acute myocardial infarction. *Biol Sex Differ*. 2022;13(1):18. doi:10.1186/s13293-022-00427-1
- 26. O'Shaughnessy S, Tangel V, Dzotsi S, Jiang S, White R, Hoyler M. Non-White Race/Ethnicity and Female Sex Are Associated with Increased Allogeneic Red Blood Cell Transfusion in Cardiac Surgery Patients: 2007-2018. *J Cardiothorac Vasc Anesth*. 2022;36(7):1908-1918. doi:10.1053/j.jvca.2021.11.021
- 27. Safdar B, Mori M, Nowroozpoor A, Geirsson A, D'Onofrio G, Mangi AA. Clinical Profile and Sex-Specific Recovery With Cardiac Rehabilitation After Coronary Artery Bypass Grafting Surgery. *Clin Ther.* 2022;44(6):846-858. doi:10.1016/j.clinthera.2022.04.002

Table S2: Criteria for myocardial infarction in the studies included in the analysis

Article	Definition of myocardial infarction (MI)
Ter Woorst 2022 ¹	Perioperative MI – definition not provided
Wang 2022 ²	Perioperative myocardial infarction: is diagnosed by an Isolated elevation of CK-MB to ≥10×99th percentile upper reference limit (URL) or cTn (I or T) to ≥70×URL during the first 48 h following CABG surgery with or without ECG or imaging changes of MI
Sajja 2023 ³	Post-operative MI was defined as electrocardiographic (ECG) changes consistent with infarction (new significant Q waves in two contiguous leads in the absence of previous left ventricular hypertrophy (LVH), or conduction abnormalities) or evolving ST segment to T wave changes in two contiguous leads, or new left bundle branch block, or ST segment elevation requiring thrombolysis or percutaneous coronary intervention (PCI), and cardiac markers (troponins or creatinine kinase myocardial band (CK-MB)) in the necrosis range.
Vrancic 2019 ⁴	Early (30-days) MI - No definition provided
Ter Woorst 2019 ⁵ Eris 2021 ⁶	Perioperative infarction - definition not provided Perioperative myocardial infarction was defined as the formation of a new Q wave in ≥2 consecutive leads on the electrocardiogram and a TnI value >10 times the 99th percentile upper reference value within the first 48 hours after surgery.
Gaudino 2021 ⁷	In hospital myocardial infarction: ART trial: MI within 72 hours of CABG MI post-CABG defined as: - elevation of cardiac markers to at least 5 x the upper limit of normal or - development of new pathological Q waves in at least two contiguous leads. CORONARY trial: MI perioperative (within 72 hours of surgery): MI is defined by any of the following three criteria: - a CK-MB measurement ≥5 x 99th percentile upper reference limit (URL) without new pathological Q waves or new LBBB (non-Q wave MI) or with new pathological Q waves or new LBBB (Q wave MI); - angiographic evidence of new graft or native. MI non-perioperative (later than 72 hours after surgery): Detection of rise and/or fall of cardiac biomarkers with at least one value above the 99th percentile of the URL together with evidence of myocardial ischaemia with at least one of the following: - symptoms of ischaemia; - ECG changes indicative of new ischaemia [new ST-T changes or new LBBB]; - development of pathological Q waves in the ECG; or - imaging evidence of new loss of viable myocardium or new regional wall motion abnormality. GOPCABE Trial: MI within 72 hours after surgery is defined by the observation of at least one of the following three criteria: - measured CK-MB ≥ 5 x 99th percentile upper reference limit; or - angiographic evidence of new graft or native coronary artery occlusion; or - imaging evidence of new loss of viable myocardium. MI later than 72 hours after surgery was defined as a rise of cardiac biomarkers with at least one value above the 99th percentile of the upper reference limit in conjunction with evidence of myocardial ischemia with at least one of the following: - symptoms of ischemia; or - ECG changes indicative of new ischemia (new ST-T changes or new

	PREVENT IV Trial: Perioperative MI was defined as a creatine kinase-MB (CK-MB) fraction of greater than 10 times the URL or greater than 5 times the URL with new Q waves longer than 30 ms in 2 contiguous leads or, if postoperative CK-MB samples were not available, new Q waves longer than 30 ms in 2 contiguous leads. Perioperative MI was diagnosed if CK-MB was elevated within 24 hours of surgery when there was not an interval clinical event and when the elevation was not attributable to a preoperative MI. Postoperative MI was defined as either spontaneous (CK-MB >2 times the URL or new Q waves >30 ms in 2 contiguous leads), after percutaneous coronary intervention (CK-MB >3 times the URL or new Q waves >30 ms in 2 contiguous leads), or after CABG surgery (CK-MB >10 times the URL or > times the URL with new Q waves >30 ms in 2 contiguous leads). For patients for whom CK-MB samples and electrocardiograms were not available, MI could be defined by the presence of "myocardial infarction," "heart attack," or similar term in the medical record documenting that an MI had occurred after the initial CABG procedure.
Moroni 2022 ⁸	In hospital myocardial infarction: In- hospital non– Q- wave MI was defined as the elevation of the serum creatine kinase isoenzyme myocardial band that was 5x the upper limit of normal in the CABG group, in the absence of new pathological Q waves. In this analysis were included as
	cumulative MI all Q- wave MI that occurred during hospital stay Q- wave MI was defined as the development of new pathological Q waves in 2 or more contiguous leads with or without creatine kinase or creatine kinase- myocardial band levels elevated above normal.
Daoulah 2023	Hospital MI: Coronary artery bypass grafting (CABG) related MI is termed type 5 MI. Coronary procedure-related MI #48 hours after the index procedure is arbitrarily defined by an elevation of cTn values >10 times for type 5 MI of the 99th percentile URL in patients with normal baseline values. Patients with elevated pre-procedural cTn values, in whom the preprocedural cTn level are stable (#20% variation) or falling, must meet the criteria for a >10 fold increase and manifest a change from the baseline value of >20%. In addition with at least one of the following: - Development of new pathological Q waves; - Imaging evidence of loss of viable myocardium that is presumed to be new and in a pattern consistent with an ischaemic aetiology; - Angiographic findings consistent with a procedural flow-limiting complication such as coronary dissection, occlusion of a major epicardial artery or graft, side-branch occlusion-thrombus, disruption of collateral flow or distal embolization. Isolated development of new pathological Q waves meets the type 5 MI criteria if cTn values are elevated and rising but less than the pre-specified thresholds for CABG.
Sandner 2023 ⁹	30-days MI: CABG-related myocardial infarction (MI) is arbitrarily defined as elevation of cardiac biomarker values (>10 x 99th percentile upper reference limit, URL) in patients with normal baseline cTn values (≤99th percentile URL). In addition, either (i) new pathological Q waves or new LBBB, or (ii) angiographically documented new graft or new native coronary artery occlusion, or (iii) imaging evidence of new loss of viable myocardium or new regional wall motion abnormality. The term acute MI should be
	used when there is evidence of myocardial necrosis in a clinical setting consistent with

acute myocardial ischemia. Under these conditions any one of the following criteria meets the diagnosis for MI: • Detection of a rise and/or fall of cardiac biomarker values [preferably cardiac troponin (cTn)] with at least one value above the 99th percentile URL and with at least one of the following: Symptoms of ischemia. New or presumed new significant ST-segment–T wave (ST–T) changes or new left bundle branch block (LBBB). Development of pathological Q waves in the ECG. Imaging evidence of new loss of viable myocardium or new regional wall motion abnormality. Identification of an intracoronary thrombus by angiography or autopsy. • Cardiac death with symptoms suggestive of myocardial ischemia and presumed new ischemic ECG changes or new LBBB, but with death occurring before cardiac biomarkers were obtained, or before cardiac biomarker values would be increased.

- 1. Ter Woorst JF, Olsthoorn JR, Houterman S, van Straten BHM, Soliman-Hamad MA. Sex Difference in Long-Term Survival After Coronary Artery Bypass Grafting Is Age-Dependent. *J Cardiothorac Vasc Anesth*. 2022;36(5):1288-1295. doi:10.1053/j.jvca.2021.08.104
- 2. Wang E, Wang Y, Hu S, Yuan S. Impact of gender differences on hemostasis in patients after coronary artery bypass grafts surgeries in the context of tranexamic acid administration. *J Cardiothorac Surg.* 2022;17(1):123. doi:10.1186/s13019-022-01874-y
- 3. Sajja LR, Mannam G, Kamtam DN, Balakrishna N. Female gender does not have any significant impact on the early postoperative outcomes after coronary artery bypass grafting: a propensity-matched analysis. *Indian J Thorac Cardiovasc Surg*. 2023;39(3):231-237. doi:10.1007/s12055-022-01465-5
- 4. Vrancic JM, Navia DO, Espinoza JC, Piccinini F, Camporrotondo M, Benzadon M, Dorsa A. Is sex a risk factor for death in patients with bilateral internal thoracic artery grafts? *J Thorac Cardiovasc Surg.* 2019;158(5):1345-1353.e1. doi:10.1016/j.jtcvs.2019.01.025
- 5. Ter Woorst JF, van Straten AHM, Houterman S, Soliman-Hamad MA. Sex Difference in Coronary Artery Bypass Grafting: Preoperative Profile and Early Outcome. *J Cardiothorac Vasc Anesth*. 2019;33(10):2679-2684. doi:10.1053/j.jvca.2019.02.040
- 6. Eris C, Engin M, Sunbul SA, As AK, Erdolu B. Early Postoperative Results of On-Pump Coronary Endarterectomy: Is Gender a Risk Factor? *Heart Surg Forum*. 2021;24(4):E662-E669. doi:10.1532/hsf.3929
- 7. Gaudino M, Di Franco A, Alexander JH, Bakaeen F, Egorova N, Kurlansky P, Boening A, Chikwe J, Demetres M, Devereaux PJ, Diegeler A, Dimagli A, Flather M, Hameed I, Lamy A, Lawton JS, Reents W, Robinson NB, Audisio K, Rahouma M, Serruys PW, Hara H, Taggart DP, Girardi LN, Fremes SE, Benedetto U. Sex differences in outcomes after coronary artery bypass grafting: a pooled analysis of individual patient data. *Eur Heart J*. 2021;43(1):18-28. doi:10.1093/eurheartj/ehab504
- 8. Moroni F, Beneduce A, Giustino G, Briede I, Park S, Daemen J, Claude Morice M, Nakamura S, Meliga E, Cerrato E, Makkar RR, D'Ascenzo F, Lucarelli C, Capranzano P, Tchetche D, Templin C, Kirtane A, Buzman P, Alfieri O, Valgimigli M, Mehran R, Colombo A, Montorfano M, Chieffo A, Latib AM, Onuba Y, Serruys PW, Mieghem NM, Jegere S, Erglis A, Palacios IF, Margey R, Agnihotri A, Kim Y, Chakravarty T, Sheiban I, Marra S, Pavani M, Naber C, Fajadet J, Lefevre T,

Mangiameli A, Capodanno D, Tamburino C, Leon MB, Moses JW, Tanaka A, Cartier J, Sawaya FJ, Kawamoto H, Stefanini GG, Pisaniello M, Benedictis M, Varbella F, Sharma SK. Sex Differences in Outcomes After Percutaneous Coronary Intervention or Coronary Artery Bypass Graft for Left Main Disease: From the DELTA Registries. *JAHA*. 2022;11(5):e022320. doi:10.1161/JAHA.121.022320

9. Sandner S, Kastrati A, Niessner A, Böning A, Zeymer U, Conradi L, Danner B, Zimpfer D, Färber G, Manville E, Schunkert H, von Scheidt M, Grothusen C, Cremer J, Attmann T, Friedrich I, Oberhoffer M, Knosalla C, Walther T, Wimmer-Greinecker G, Siepe M, Grubitzsch H, Joost A, Schaefer A, Misfeld M, Laufer G, Wiedemann D, Englberger L, Hambrecht R. Sex differences among patients receiving ticagrelor monotherapy or aspirin after coronary bypass surgery: A prespecified subgroup analysis of the TiCAB trial. *International Journal of Cardiology*. 2023;370:129-135. doi:10.1016/j.ijcard.2022.10.166

Table S3: terminology and definition of postoperative atrial fibrillation in the studies included in the analysis, and preoperative data

Article	Terminology and definition of postoperative atrial fibrillation (PoAF)	Preoperative data:
Gurram 2019 ¹	PoAF: no definition provided	No statistically significant difference between men and women in preoperative sinus rhythm: Females 132 out of 132 (100%), Males 637out of 641 (99.37%); p = 0.363
Ter Woorst 2019 ²	Postoperative new-onset AF: no definition provided	No statistically significant difference between men and women regarding preoperative AF (Women 121 out of 4016 (3.0%), Men 413 out of 13903 (3.0%), p=0.878)
Vrancic 2019 ³	Early (30-day) AF: no definition provided	Data not provided (baseline characteristics description does not provide data on preoperative AF)
Filardo 2020 ⁴	Post-CABG new-onset AF: new-onset in-hospital post-CABG AF, defined as any episode detected via continuous electrocardiogram/telemetry monitoring for the duration of the hospital stay and documented by a physician in the chart, regardless of duration or need for treatment	Included consecutive patients without a history of AF, no data on preoperative AF available for patients excluded from the study
Gaudino 2021 ⁵	Postoperative atrial fibrillation: no definition provided	Data not provided
Matyal 2021 ⁶	In-hospital post-operative AF : no definition provided	Preoperatively, a significantly larger proportion of women had a history of heart failure, but there was no statistically significant difference between men and women regarding preoperative arrythmia

 Gurram A, Krishna N, Vasudevan A, Baquero LA, Jayant A, Varma PK. Female Gender is not a Risk Factor for Early Mortality after Coronary Artery Bypass Grafting. *Ann Card Anaesth*. 2019;22(2):187-193. doi:10.4103/aca.ACA_27_18

- 2. Ter Woorst JF, van Straten AHM, Houterman S, Soliman-Hamad MA. Sex Difference in Coronary Artery Bypass Grafting: Preoperative Profile and Early Outcome. *J Cardiothorac Vasc Anesth*. 2019;33(10):2679-2684. doi:10.1053/j.jvca.2019.02.040
- 3. Vrancic JM, Navia DO, Espinoza JC, Piccinini F, Camporrotondo M, Benzadon M, Dorsa A. Is sex a risk factor for death in patients with bilateral internal thoracic artery grafts? *J Thorac Cardiovasc Surg.* 2019;158(5):1345-1353.e1. doi:10.1016/j.jtcvs.2019.01.025
- 4. Filardo G, Ailawadi G, Pollock BD, da Graca B, Phan TK, Thourani V, Damiano RJ. Postoperative atrial fibrillation: Sex-specific characteristics and effect on survival. *J Thorac Cardiovasc Surg.* 2020;159(4):1419-1425.e1. doi:10.1016/j.jtcvs.2019.04.097
- 5. Gaudino M, Di Franco A, Alexander JH, Bakaeen F, Egorova N, Kurlansky P, Boening A, Chikwe J, Demetres M, Devereaux PJ, Diegeler A, Dimagli A, Flather M, Hameed I, Lamy A, Lawton JS, Reents W, Robinson NB, Audisio K, Rahouma M, Serruys PW, Hara H, Taggart DP, Girardi LN, Fremes SE, Benedetto U. Sex differences in outcomes after coronary artery bypass grafting: a pooled analysis of individual patient data. *Eur Heart J*. 2021;43(1):18-28. doi:10.1093/eurheartj/ehab504
- 6. Matyal R, Qureshi NQ, Mufarrih SH, Sharkey A, Bose R, Chu LM, Liu DC, Senthilnathan V, Mahmood F, Khabbaz KR. Update: Gender differences in CABG outcomes—Have we bridged the gap? Deo S, ed. *PLoS ONE*. 2021;16(9):e0255170. doi:10.1371/journal.pone.0255170