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Supplementary Figure 1 - Optimum network cutoff search for QMDiab data 

Supplementary Figure 1. Prior knowledge-informed optimum network cutoff search for QMDiab data. 
Cutoff optimization graph for QMDiab dataset using annotations from the KEGG database (red) and Recon 3D 
database (molecular annotations in orange, reaction annotations in purple), as well as the sub- (green) and super- 
(blue) pathway annotations of the Metabolon platform. Bonferroni-adjusted p-value cutoffs are demarcated in blue 
vertical dashed lines at p = 0.01 (left) and p = 0.05 (right), while FDR-adjusted cutoffs are similarly demarcated in 
red. 

Using the method outlined in Benedetti et al1, biomolecules of the QMDiab dataset were annotated 
using annotations from the KEGG2 and Recon 3D3 databases, as well as sub- and super- pathway 
annotations that describe biochemical processes and broader metabolite groups, respectively, for 
molecules measured on Metabolon platforms. Briefly, we created a Gaussian graphical model (GGM) 
of the QMDiab biomolecules and set the network cutoff at a partial correlation coefficient ranging from 
0.01 to 0.04 (a partial correlation value greater than the cutoff would indicate an edge present in the 
network). For each annotation set, we performed a Chi-square test on an overlap between the GGM 
and the known pathways. Specifically, we calculated a contingency table which classified pairs of 
biomolecules based on whether an edge between them appears in the GGM and they share the same 
annotation (true positive), they only share a GGM edge (false positive), they only share an annotation 
(false negative), or they share neither an edge nor an annotation (true negative). The optimal cutoff is 
defined as that with the highest test statistic. For the QMDiab dataset, the optimal cutoff varied per 
annotation set, with the omic specific annotations (sub- and super- pathways) being optimal at a more 
stringent cutoff, while the cross-omic annotation sets (KEGG and Recon) being optimal at a higher 
coefficient. This lack of agreement illustrates the correlation-based platform bias within the QMDiab 
dataset, as there does not exist a single optimal correlation cutoff. 
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Supplementary Figure 2 - QMDiab Enriched Module Composition
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Supplementary Figure 2. Table of QMDiab module information. Listed are the modules’ ID (for cross 
referencing with Supplementary Data 1), size (number of molecules), enrichment (proportion of significant 
phenotype-associated molecules), height on the hierarchy, and distributions of the members’ datasets and 
pathways (Metabolon platforms only). 
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Supplementary Figure 3 – ROS/MAP Enriched Module Composition 
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Supplementary Figure 3. Table of ROS/MAP 
module information. Listed are the modules’ ID (for 
cross referencing with Supplementary Data 2), size 
(number of molecules), Neurofibrillary Tangles (NFT) 
and Cognitive Decline (CD) phenotype enrichment 
(proportion of significant phenotype-associated 
molecules), height on the hierarchy, and distributions 
of the members’ datasets and pathways 
(metabolomics platform only). 
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Supplementary Figure 4 – Edge representation in MoDentify and MEGENA 
networks  

Supplementary Figure 4. Proportion of edges within platform and between platforms, normalized by all within-
paltform and between-platform edges, respectively of the a) MoDentify Partial Correlation Network with p-value 
cutoff of 0.01 (Bonferroni adjusted) and b) the MEGENA Planar Filtered Network. The platform correlation bias 
affects both methods similarly, overrepresenting within-platform edges as compared to between-platform edges. 
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Supplementary Figure 5 - QMDiab analysis with WGCNA clustering method  

 
Supplementary Figure 5. a) Platform distribution in the WGCNA hierarchical structure on the QMDiab dataset. 
Strong intra-platform correlations can be seen for proteomics (green) and to a lesser extent for urine metabolomics 
(pink). b) Mixed graphical model of the 153 molecules in the largest cluster of the WGCNA analysis with phenotype 
and confounders. To the right, a zoomed in view of nodes with edges to the Type 2 Diabetes phenotype which 
include ornithine and betaine in urine along with the confounder age and one unknown molecule. Both ornithine in 
urine and that specific unknown were found with AutoFocus’ original hierarchical clustering method. 
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To investigate how a clustering method can affect AutoFocus cluster analysis, the QMDiab dataset was 
rerun using WGCNA’s TOM-based hierarchical structure4. This structure was similarly susceptible to the 
problem of platform bias within the resulting hierarchy; while the TOM-based hierarchical clustering more 
substantially distributed the lipidomics data with the other platforms as compared to correlation-based 
clustering, the proteomics data was largely segregated, as large regions of the tree contain only proteins 
(Supplementary Figure 5a).  

The T2D enrichment step identified 13 modules within the TOM hierarchy, including a large, multi-omic 
cluster of 153 molecules that contained many of the same molecules as the energy metabolism module 
found with the correlation-based hierarchy. In contrast to the results in the main manuscript, no bone 
degradation proteins were identified in this cluster, potentially due to the proteomics clustering bias 
mentioned above. This difference in module composition also changed the MGM driver analysis, as all 
the drivers identified in the 153-molecule module were from urine platforms (Supplementary Figure 5b). 
Despite this, both ornithine and one unknown metabolite (labeled “X-14331”) were maintained across 
these two analyses.  

It is worth noting that when the hierarchy is created using a TOM-based distance matrix and average 
linkage as is used in the original WGCNA analysis4, the resulting tree can have a very high maximum 
depth (the maximum number of internal nodes between the tree’s root and a leaf). In the instance of large 
datasets such as QMDiab, a high maximum depth hinders tree visualization due to memory limitations. 
As such, results presented here were explored without the aid of AutoFocus’ visual interface. 
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Supplementary Figure 6 – Enrichment Peak Threshold Metrics and Analysis 

 
Supplementary Figure 6. Enrichment Threshold impact on cluster features analysis for the a) QMDiab 
dataset, and b) ROS/MAP dataset on both Cognitive Decline and Neurofibrillary tangles phenotypes.  

The AutoFocus R package contains functionality to perform an analysis assessing the impact of enrichment 
threshold on the returned clusters. The metrics assessed in this analysis are 1. The range of cluster heights 
(height of the highest cluster minus height of the lowest cluster), 2. The range of cluster sizes (size of the largest 
cluster minus size of the smallest cluster), 3. The number of clusters, 4. The proportion of nodes in clusters that 
are not significantly associated to the desired phenotype (# non-significant nodes in clusters divided by # of all 
nodes in clusters), and 5. The number of significant nodes not included in any cluster with size greater than 2 
(also called singletons).  
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In Supplementary Figure 6, these 5 metrics are calculated across thresholds between 0.01 and 0.99 at 
increasing increments of 0.01 for the QMDiab dataset, and the ROS/MAP dataset for both cognitive decline and 
neurofibrillary tangles. Each metric plotted is normalized to that metric’s maximum across all thresholds, putting it 
on a scale of 0 to 1. For all three analyses, the cluster height and size ranges stabilize after a threshold of ~0.3. 
As expected, the number of singletons increases and the non-significant node proportion decreases as the 
threshold becomes more stringent, only returning clusters with very dense signal. 

In order to provide a rough guideline for a potential threshold choice, we derived a 6th metric, the “Noise 
Minimizing Score” that combines the non-significant node proportion with the singletons, which is maximized 
when both are low, indicating the returned clusters are including significant molecules while excluding non-
significant nodes. This is calculated by summing the normalized non-significant node proportion and the 
normalized number of singletons, inverting that summation such that higher indicates more optimal, and then 
normalizing to the maximum score across all thresholds to restrict the scale from 0 to 1. The maximum Noise 
Minimizing score is indicated in Supplementary Figure 6. Interestingly, this score peaks at a threshold of 0.66 for 
both phenotypes in the ROS/MAP dataset.  
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Supplementary Figure 7 - Enrichment Peak Identification and “Piggy-backers” 

Supplementary Figure 7. Example visualization of “piggy-backer” filtration process through example scenarios. 
The enrichment threshold in this example is set to 0.5. Note that the piggy-backer threshold is the same as the 
enrichment threshold set when scanning the hierarchy for clusters; it is not an independent threshold. 
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When traversing the hierarchical structure from root to leaves to identify enrichment peaks, we run into 
the issue of “piggy-backers”, which are defined as peaks that reach the enrichment threshold only due to 
one child reaching the enrichment threshold, and the joining of the two children dilutes the signal (reduces 
the fraction of significant molecules in the cluster). To filter out these piggy-backers, we implement the 
following workflow: 

Once an internal node in the hierarchical structure is found that surpasses the user defined enrichment 
threshold (in this example, the threshold will be set as 0.5), we initially label it as a peak (Supplementary 
Figure 7, left). This node will be referred to as the “Parent”. It consists of an internal node descendant to 
the left (“Left Child”) and to the right (“Right Child”). This will result in three possible situations: 

1. Both the Left Child and the Right Child also surpass the enrichment threshold. In this case, both 
children are enriched for signal, meaning neither is diluting the signal and therefore the Parent is 
a true peak and not a piggy-backer (Supplementary Figure 7, Case 1). 
 

2. Only one Child meets the enrichment threshold. Without loss of generality, let the Left Child have 
a higher enrichment than the Right Child. In this case: 
 

a. If the number of significant children in the Left Child is not enough for the Parent cluster 
to surpass the threshold (i.e. # significant children in Left Child cluster/ # nodes in Parent 
Cluster < 0.5), this means that the significant nodes in the Right Child were contributing to 
rather than diluting the Parent Cluster’s enrichment, and therefore the Parent is a true 
peak and not a piggy-backer (Supplementary Figure 7, Case 2). 
 

b. If the number of significant children in the Left Child is enough for the Parent cluster to 
surpass the threshold (i.e., # significant children in Left Child cluster/ # nodes in Parent 
Cluster > 0.5), this means that the Parent cluster could be enriched only due to the Left 
Child without the contribution of the Right Child. The Parent is then deemed a piggy-backer 
and the Left Child is labeled as a peak. The Left Child will then undergo the same piggy-
backer identification process as the Parent, and the tree will continue to be traversed down 
the Right Child (Supplementary Figure 7, Case 3).  

 
  



   
 

   
 

17 

References 

1. Benedetti, E. et al. A strategy to incorporate prior knowledge into correlation network cutoff 
selection. Nat. Commun. 11, 5153 (2020). 

2. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids 
Res. 28, 27–30 (2000). 

3. Brunk, E. et al. Recon3D enables a three-dimensional view of gene variation in human 
metabolism. Nat. Biotechnol. 36, 272–281 (2018). 

4. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. 
BMC Bioinformatics 9, 559 (2008). 

 


