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I. COMPOSITION OF THE QUANTUM DOT DEVICE
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Supplementary Figure 1. (a) Wafer composition of the p-i-n diode containing self-assembled InAs quantum dots. A
0.3 nm AlAs layer prevents occupation of the electron wetting layer states [S1]. Applying a bias voltage V across the diode
deterministically charges the QD with an electron. (b) Waveguide device used in the experiment. The photonic-crystal
waveguide (PCW) uses crystal lattice constant of 246 nm and hole radius of 70 nm in the slow light region.

Our sample is grown by molecular beam epitaxy containing a single layer of self-assembled InAs quantum dots
capped by GaAs, embedded in a p-i-n diode. A forward DC bias voltage V is applied across the diode to stabilize
the charge environment, deterministically charge the QD with an electron and tune the frequencies of QD optical
transitions via the quantum-confined DC Stark effect [S2]. Supplementary Fig. 1 outlines the heterostructure of
the diode. A 174 nm-thin GaAs membrane spanning from the hole-rich p-doped to the electron-rich n-doped layers
is grown on top of the Al0.3Ga0.7As sacrificial layer. The layer of InAs QDs (green) is located at the center of
the membrane for maximal coupling to the optical field. Detailed fabrication steps of the wafer can be found in
Ref. [S3]. To fabricate suspended photonic-crystal waveguides (see Supplementary Fig. 1(b)), the sacrificial layer is
first removed using hydrofluoric acid followed by nanostructure etching with electron-beam lithography and reactive
ion etching [S3, S4]. Underneath the sacrificial layer is an addition of two stacks of distributed Bragg reflectors (DBR),
which increases the reflection of downward-scattered light by 60% [S3]. This is different than the DBR-absent wafer
used in Ref. [S3], and is shown to improve the grating coupler efficiency from 60% to 80% [S3].



3

II. OPTICAL IMAGING SETUP AND SAMPLE MOUNT
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Supplementary Figure 2. Optical imaging setup.

The GaAs photonic chip is placed inside a closed-cycle cryostat (attoDRY1000) at 4K, which contains a vector
magnet that generates up to a maximum 5T magnetic field along the y-direction and 2T in x (indicated in Supple-
mentary Fig. 2). To utilize a high magnetic field (> 2T) in the Voigt geometry, the chip is mounted on a custom-made
L-shape sample mount (dark green) such that the magnetic field is exerted in-plane relative to the waveguide device.
The waveguide structure is brought to focus by translating 3 piezo nano-positioners beneath the sample mount.

To increase the photon collection efficiency, we use a D-shaped mirror to reflect the excitation light into the
microscope objective, which consists of a single lens with a working distance of 1.61 mm and a numerical aperture of
0.68. Due to ≈ 70µm spatial separation between QD position and the collection grating coupler in the photonic-crystal
waveguide, QD-emitted photons from the coupler are directed towards free space without intercepting on the D-shape
mirror and are subsequently collected. Compared to the previous work where a 50:50 beamsplitter was used [S5], the
current design improves both the excitation and collection efficiencies by twofold.
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III. ELECTRONIC SETUP FOR OPTICAL SPIN CONTROL
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Supplementary Figure 3. Illustration of the electron spin rotation setup.

Optical spin control pulses are generated by modulating a laser (CTL from Toptica) with a microwave source. The
laser propagates through a single-pass acoustic-optic modulator (AOM) setup, and subsequently through an electro-
optic modulator (EOM) to generate bi-chromatic nanosecond optical pulses. The EOM is amplitude-modulated by
microwave pulses generated using an arbitrary waveform generator (AWG, Active Technologies AWG5064). Since the
AWG carrier frequency ωc is limited to a maximum 6GHz, it is first mixed with another microwave source (local
oscillator in Supplementary Fig. 3) of frequency ωLO using a frequency mixer to match the tens of GHz Zeeman
ground-state splitting of the electron spin.

The AWG has an internal IQ mixer which offers flexible control over the relative phase between different pulses.
The RF signal out of the AWG is first frequency up-converted via a frequency mixer (Mini-Circuits ZX05-153LH-S+),
which creates two frequency sidebands ωLO±ωc. Next, The low-frequency band is filtered out using a high band-pass
filter (Mini-Circuits ZVBP-10R5G-S+), while the high-frequency band is amplified by a broadband amplifier (ixBlue
DR-PL-20-MO). The amplified RF signal is then used to amplitude-modulate the optical signal passing through the
EOM (ixBlue NIR-MX800-LN-10), resulting in bi-chromatic pulses (i.e., with two optical sidebands) to drive the
two-photon Raman transition. In the current work, ωc = 2.8GHz and ωLO = 8.2GHz are set to drive an electron
Zeeman ground-state splitting of ∆g = 2(ωc + ωLO) = 22GHz at 4T. The factor of 2 stems from the frequency
difference between two sidebands.

To synchronize between the optical excitation pulses, spin readout, cooling and rotation pulses in the entanglement
pulse sequence, an external RF clock signal of 72.63 MHz generated by a picosecond Ti:Sapphire laser (Coherent
MIRA 900 P) is first divided into two clock signals via a BNC T-splitter to synchronize with the AWG and a
custom-made field programmable gate array (Cyclone V FPGA from Intel), respectively. The FPGA outputs TTL
signals to produce trigger to the AWG and a time-to-digital converter (Time Tagger Ultra) as well as square pulses
for other AOMs (e.g., for spin readout). The photon detection events are recorded using Time Tagger Ultra and
superconducting nanowire single-photon detectors with a timing jitter of 260-290 ps.
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IV. ENTANGLEMENT PULSE SEQUENCE AND EXPERIMENTAL PROCEDURE

In this section, we show explicit steps for generating three-qubit entanglement and elaborate on the experimental
procedure used in the experiment. The entanglement sequence for the three-qubit GHZ state can be written in the
following:

Step 1: Initialize the electron spin state in |↑, ∅, ∅⟩ by optical spin pumping.

Step 2: First π/2 rotation pulse drives the spin to (|↑, ∅, ∅⟩ − |↓, ∅, ∅⟩)/
√
2.

Step 3: Optical excitation with a resonant picosecond pulse produces an early photon conditioned on the spin
state |↓⟩: (|↑, ∅, ∅⟩ − |↓, e, ∅⟩)/

√
2.

Step 4: A π rotation pulse flips the spin ground state to (−|↓, ∅, ∅⟩ − |↑, e, ∅⟩)/
√
2.

Step 5: Another excitation pulse produces a late photon (−|↓, l, ∅⟩ − |↑, e, ∅⟩)/
√
2.

Step 6: A π rotation pulse flips the spin to (−|↑, l, ∅⟩+ |↓, e, ∅⟩)/
√
2.

Step 7: A resonant excitation pulse produces an early photon (−|↑, l, ∅⟩+ |↓, e, e⟩)/
√
2.

Step 8: A π rotation pulse flips the spin state to (|↓, l, ∅⟩+ |↑, e, e⟩)/
√
2.

Step 9: A resonant excitation pulse produces a late photon (|↓, l, l⟩+ |↑, e, e⟩)/
√
2.

Step 10: A π rotation pulse flips the spin state to (|↑, l, l⟩ − |↓, e, e⟩)/
√
2.

Here we use the notation |↑, ∅, ∅⟩ where the first, second, and third place corresponds to the state of the spin, first
photon and second photon, respectively. |∅⟩ denotes the vacuum state. Note that steps 7 to 10 are a repetition of
steps 3 to 6. If steps 6 and 10 are each replaced with π/2 pulse, the final state corresponds to a three-qubit cluster
state.

Supplementary Fig. 4 shows the time-resolved histogram of the GHZ measurement sequence. The first (second) three
peaks correspond to the detection of the first (second) photonic qubit using the self-stabilized time-bin interferometer.
Shaded bars indicate the time gating used for acquiring photon clicks, which we set to be 1 ns and 100 ns for the
photonic and spin qubits, respectively.

To reduce the effect of power drift of the rotation laser at the quantum dot, i.e., pointing instability, we perform
interleaving sequences of three-qubit measurement and spin Rabi oscillation. We calculate a scaling ratio between the
desired spin Rabi frequency Ωi

r for a 4 ns π-pulse and Rabi frequency Ωf
r fitted from the spin Rabi oscillation. We

then adjust the power of the rotation laser in the subsequent iteration by multiplying it by a factor of Ωi
r/Ω

f
r . Note

that the rotation laser power Prot ∝ Ωr since the spin rotation is a two-photon process.
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Supplementary Figure 4. Histogram of the experimental sequence in the first 500 ns. The blue and yellow curves correspond
to the measurements on the two detectors, respectively. The first (second) three pulses corresponds to the first (second) photonic
qubit whereas the last long shaded area corresponds to the spin qubit. The rotation pulses (-650 GHz) are filtered out before
the detectors using a pair of Etalon filters (3 GHz FWHM).
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Supplementary Figure 5. Schematic diagram for nuclear spin cooling. Due to Overhauser shift, the electron spin reso-
nance(ESR) depends on the net nuclear spin polarization Iz.

V. NUCLEAR SPIN NARROWING

In this section, we explain the mechanism of nuclear spin narrowing process that was also detailed in the literature
[S6]. Supplementary Fig. 5 shows the level diagram of a electron spin coupled to the nearby nuclear spin ensemble.
The nuclear spin narrowing process is analogous to Raman cooling in cold atom: The Raman laser induces energy
exchange between the net nuclear spin polarization Iz and the spin, while another pump laser dissipates the energy
of the spin degree of freedom, increasing (decreasing) of Iz when the Raman frequency ωr is red(blue) detuned from
the electron spin resonance(ESR) ωESR.

The mechanism for nuclear spin narrowing can be further explained in Fig. 5. Here the Raman frequency is resonant
to ESR at Iz and the spin dissipates from |↓⟩ to |↑⟩ at a rate of Γ. The ESR is shifted by the Overhauser interaction
by 2AcIz, where Ac is the hyperfine coupling energy per nucleus. When the net nuclear spin polarization reduces to
Iz − 1, the net polarization increasing transitions such as |↑, Iz − 1⟩ → |↓, Iz⟩ become closer to resonant compared to
the decreasing transitions such as |↑, Iz⟩ → |↓, Iz − 1⟩ or |↑, Iz − 1⟩ → |↓, Iz − 2⟩. After further dissipation from |↓⟩
to |↑⟩, the net polarization increases after this process. Similarly, when the net nuclear spin polarization increases
above Iz, the net polarization decreasing transitions are more resonant and thus in combination with the dissipation
channel, the net polarization is reduced.

During nuclear spin narrowing, the ESR corresponding to Iz becomes a stable point and the frequency fluctuation
around Iz is reduced. Therefore, the measured Ramsey time is significantly increased due to the stabilized ESR.

VI. OPTICAL CYCLICITY MEASUREMENT

To estimate optical cyclicity of the negatively charged QD in a PCW, we follow the approach in Ref. [S7] to perform
two sets of measurements shown in Supplementary Fig. 6. For the first measurement, we measure its radiative lifetime
using p-shell excitation by a picosecond Ti:Sapphire laser (Coherent MIRA 900P) locked at ≈ 20 nm blue-detuned
from the QD resonance. We fit the radiative decay with a single exponential function and extract a lifetime of
1/Γ = 235(1) ps, suggesting a waveguide-induced Purcell enhancement of 4.2 compared to τo ≈ 1 ns in bulk.
The decay rate γY of the inhibited optical transition |↑↓⇑⟩ → |↑⟩ can then be estimated from fitting its optical

pumping rate γosp as a function of probe power P . We perform two-color spin pumping measurements, where a

400 ns probe pulse drives the transition |↓⟩ → |↑↓⇑⟩ with optical Rabi frequency Ωp = Γ
√
P/Psat controlled by P and

saturation power Psat. At each power, we fit the fluorescence decay during the probe pulse with a single exponential
to extract γosp. From here a list of values of γosp as a function of P is obtained (Supplementary Fig. 6(b)) and
subsequently fitted with the function [S7]:

γosp(P ) = γY

∫
G(δe, σe)

P/Psat

2P/Psat + 1 + 4δ2e/Γ
2
dδe, (1)

where δe is the laser detuning from resonance, G(δe, σe) is a Gaussian distribution of spectral diffusion with a standard
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(a) (b)

Supplementary Figure 6. (a) Time-resolved fluorescence decay of a negatively charged QD measured at 0 T magnetic field
at bias voltage 1.331 V. The QD lifetime is extracted from a single exponential fit. (b) Rate of optical pumping as a function
of the pump power.

deviation in drift of σe = 2π · 0.532 GHz (extracted independently from the spectral broadening observed in resonant
fluorescence spectroscopy). The fit results in γY = 0.114(9) ns−1 yielding an optical cyclicity of

C ≡ γX
γY

=
Γ− γY
γY

= 36(3), (2)

which is 2.5 times larger than that of the previous QD reported in Ref. [S7].

VII. EXPERIMENTAL VERIFICATION OF TWO-QUBIT ENTANGLEMENT

As a complementary measurement, we also generate a two-qubit entangled Bell state consisting of an electron spin
and a single photon and measure its fidelity. The entangled state is generated by implementing a single repetition of
the protocol depicted in Fig. 2a of the main text. Note that the π-rotation pulse applied after emission of the late
time-bin is used only for spin projection in the −z-basis. For characterizing spin-photon correlations in the equatorial
basis, this rotation pulse is therefore replaced by a π/2-pulse to form a spin-echo sequence, as has been previously
done in Ref. [S5].

The spin-photon entanglement fidelity is exactly decomposed into FBell = Tr{ρexp|ψBell⟩⟨ψBell|} = Tr{ρexp(P̂z +

χ̂)/2} [S5], where the ideal spin-photon Bell state is |ψBell⟩ = 1√
2
(|e ↓⟩ − |l ↑⟩). χ̂ = 1

2

∑
k(−1)kM̂k = −M̂y + M̂x,

M̂x = σ̂x and M̂y = −σ̂y. P̂z = |0⟩⟨0|⊗2
+ |1⟩⟨1|⊗2

measures correlations in the z-basis. Conditioned on two-photon
coincidences between the photon emission window and spin readout, the probabilities of measuring the spin-photon
state in different bases are reported in Supplementary Fig. 7, with the corresponding expectation values documented
in Supplementary Table 1. The measured fidelity exceeds the classical bound of 50% by 52 standard deviations,
demonstrating two-qubit entanglement.
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Supplementary Figure 7. Fidelity characterization of two-qubit entanglement. Shaded bars correspond to the ideal case.
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Measurement Values

⟨P̂z⟩ 91.7(4)%

⟨M̂y⟩ −60(1)%

⟨M̂x⟩ 62(1)%

⟨χ̂⟩ 61(1)%

FBell 76.3(5)%

Supplementary Table 1. Summary of expectation values and fidelity for two-qubit entanglement.

VIII. MONTE CARLO SIMULATION

In order to investigate the contributions of various error sources to the state fidelity, we run Monte Carlo simulations
taking into account all known errors in the experimental setup. To estimate the future scaling of the entanglement
source, we also simulate the fidelity using optimized setups with InAs and GaAs QDs. We verify the validity of the
MC simulation by comparing it with analytical expressions derived in Sec. IX.

A. Simulation Settings and Summary of Results

Three sets of parameters used for simulations are listed in Supplementary Table 2, corresponding to parameters
for the InAs QD in the current experiment, the next iteration with optimized settings (e.g., 90◦-rotated waveguide
orientation with ∆ = 30GHz), and future experiments with GaAs QDs.

Parameters
Simulation Setup

InAs QDs (current) InAs QDs (optimized) GaAs QDs

Radiative lifetime 1/Γ 235 ps 235 ps 235 ps

Cyclicity C 36 36 36

Spin rotation Q-factor Q 34 36 68

Spin readout fidelity Fr 98% 99% 99%

Spin initialization fidelity Fint 99% 99% 99%

Pure dephasing rate γd 0.069 ns−1 0.069 ns−1 0.069 ns−1

Excitation laser detuning −2 GHz 0 GHz 0 GHz

Frequency splitting between cycling transitions ∆ 10 GHz 30 GHz 30 GHz

Excitation pulse shape Gaussian Gaussian Gaussian

Excitation pulse area 0.7π 1π 1π

Excitation pulse duration (FWHM intensity) 30 ps 30 ps 30 ps

High-frequency nuclear spin noise ✓ ✓ ×

Supplementary Table 2. List of parameters used for the simulation. The excitation laser detuning is the detuning of the
excitation laser relative to the targeted cycling transition. The amplitude of nuclear spin noise is extracted from the spin echo
visibility measurement, see Sec. VIII B. For simulations in GaAs QDs, we assume the nuclear spin noise to be negligible.

In the optimized setup, the increased frequency splitting ∆ = 30GHz due to the rotated waveguide implies that we
can use a full π-pulse for resonant optical excitations, as the probability of off-resonant excitation becomes negligible
with a larger ∆. We also expect a modest improvement of the spin readout fidelity to 99%, owing to the larger ∆. For
the simulation with GaAs QDs, we take ∆ = 30GHz and assume that the spin rotation Q-factor can be improved by
a factor of two with negligible nuclear spin noise. In all cases, we take the pure dephasing rate γd ≈ 0.069 ns−1 using
the formula Vs ≡ Γ/(Γ + 2γd) [S8] where Vs = 96.8% is the single-photon indistinguishability extracted in Fig. 4d of
the main text.

To investigate the contribution of experimental imperfections to the state fidelity, we run Monte Carlo simulations
using each set of error parameters in Supplementary Table 2. The simulated results for the current experiment are
summarized in Supplementary Table 3. To isolate the contribution of individual error sources, we first run simulations
taking into account all errors, which yields an entanglement fidelity Fo. We then perform a second simulation to extract
the fidelity Fp where an error source p is removed from the simulation. The fidelity error due to p alone can therefore
be estimated as Fp−F0. Although this approach assumes that all errors are independent, it gives a useful estimate of
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what to focus on for further optimization. Apart from three main fidelity error contributions mentioned in Table 1 of
the main text, here in Supplementary Table 3 the corresponding fidelity error from imperfect spin readout, phonon-
induced pure dephasing of the excited state and finite optical cyclicity are also included. Note that the simulated
fidelity obtained is averaged over 104 Monte Carlo simulations.

All error sources Fidelity error

Off-resonant excitation 11.4 %

Nuclear spin noise 6.0 %

Spin-flip error during rotation 3.2 %

Spin readout error 1.2 %

Phonon-induced pure dephasing 0.7 %

Finite cyclicity 0.6 %

Supplementary Table 3. Simulated fidelity error contribution. The error contribution due to a source p is calculated as the
difference in simulated fidelity with and without p.
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B. Simulation of Nuclear Spin Noise for Spin-echo Visibility Measurement
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Supplementary Figure 8. Power spectral density (PSD) of the linearly coupled Overhauser field component along the
quantization direction of the electron spin. Here ω is the frequency of the noise arising from the Larmor precession of nuclear
spins. This plot is reproduced from Stockhill, et al., (2016) [S9].

To simulate the effect of high-frequency nuclear spin noise in InAs QD on the spin-echo visibility measurement
(Fig. 3c of the main text), we first obtain the nuclear noise spectrum by reconstructing the power spectral density

(PSD) of the linearly coupled Overhauser field component B
∥
OH (the superscript “∥” denotes field projection along the

quantization direction of the electron spin) originating from In, Ga and As nuclear spins using the data provided in
Ref. [S9]. Due to the interplay between Larmor precession of different nuclei species, the linearly coupled Overhauser

field noise δB
∥
OH acting on the electron spin also oscillates according to the PSD, resulting in collapse and revival of

the spin echo signal. Supplementary Fig. 8 shows the relative amplitude between different nuclear noise frequency
components. To simulate the spin echo visibility corresponding to the PSD noise spectrum, we express the phase Φ
induced on the electron spin superposition state |↑⟩+ eiΦ|↓⟩ in terms of the discretized PSD with a 1MHz resolution:

Φj = A
∑
i

√
PSD(ωi)

∫ tj+1

tj

sin(ωit+ ϕi)dt, (3)

where the square root of the power spectrum
√

PSD(wi) is used to weigh each frequency component wi, and we
assign each wi a random phase ϕi at the beginning of the simulation. Here the phase Φj is accumulated over the
waiting time between π/2- or π-rotation pulses, i.e., in a spin echo sequence, where the subscript j = 1 (j = 2) is
the phase accumulated between the first (second) π/2 pulse at time t1 (t3) and the middle π-pulse at time t2. We
multiply all frequency components with a common amplitude A which is the only fitting parameter. The visibility
in the spin echo sequence is measured by the classical contrast in spin readout counts between two opposite phases

of the last π/2-rotation pulse, which corresponds to | cos (Φ2 − Φ1) + 1|/2. The zero-frequency component of δB
∥
OH

(which determines the spin dephasing time T ∗
2 ) is assumed to be filtered out by the spin echo sequence.

To fit the experimental spin echo data in the main text, we fix the visibility at the zero echo delay to 90%, limited
by 98% π-rotation fidelity and 2% spin initialization error. The obtained fit exhibits strong agreement with the
experimental data, specifically demonstrating a rapid decay and subsequent revival of echo visibility as the spin echo
spacing increases (see main text Fig. 3).
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IX. COMPARISON OF MONTE CARLO SIMULATION WITH THEORY

To further validate our simulated results, we now compare the simulated three-qubit fidelity with analytical fidelity
expressions for various error sources. For investigating scalability of the time-bin protocol towards more entangled
photons, the analytical theory enables generalization of the entanglement fidelity to N photons. The fidelity error per
generated photon can also be obtained from the fidelity slope, which is useful for computing the error thresholds of
quantum computing architectures. Note that N = n− 1, where n is the total number of qubit including the QD spin.

A. Optical Cyclicity

The GHZ entanglement protocol relies on repeated optical excitations of the same transition to emit single photons
of identical frequency and polarization into each time-bin. This requires an optical transition with a strong preferential
decay channel which preserves the spin state, and is quantified by the ratio between dominant and inhibited decay
rates C ≡ γX/γY > 1. The effect of finite cyclicity C on the N -photon GHZ fidelity has been theoretically investigated
in Ref. [S10], where the fidelity was perturbatively expanded to first order:

F (N)
GHZ ≈ 1− 1

2(C + 1)

(
N − 1

2

)
, (4)

which holds when frequency filtering is applied. For estimation of the GHZ state fidelity, the cyclicity error is simulated
by introducing a probability of Raman spin-flip process 1/(1 + C) during optical excitations, where the spin can be
flipped by the operator |↑⟩⟨↓|.

Supplementary Fig. 9(a) plots the simulated three-qubit fidelity F (2)
GHZ as a function of cyclicity C, which agrees

well with Eq. (4). In Supplementary Fig. 9(b) we also plot F (N)
GHZ versus photon number N , at different values of C.

Black circles correspond to fidelities at the current value of cyclicity C = 36. A two times improvement in C gives
0.68% fidelity error per photon.

Supplementary Figure 9. (a) Comparison between the simulated and analytical fidelities under finite cyclicity C. (b) Plot

of F (N)
GHZ as a function of photon number N at different values of C.
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B. Incoherent Spin-flip Error

Spin decoherence induced by the spin rotation laser results in depolarization of the entangled spin-photon state,
which has previously been observed in Refs. [S5, S11]. Although the decoherence mechanism is not well-understood,
here we model the laser-induced spin decoherence as a T1 process, i.e., the QD electron spin is removed by the red-
detuned rotation laser [S12] and the QD is later repopulated with a random electron spin state. In our model we
assume this process occurs instantaneously. In reality, no photon is detected if the QD spin is absent. It thus has less
influence on the fidelity measurement if the process is not instantaneous. This could lead to overestimation of the
spin-flip error. After the QD is repopulated, the resulting spin state is assumed to have an equal probability to end
up in either |↑⟩ or |↓⟩, which is a reasonable approximation given ℏ∆g ≪ kBT , where ∆g is ground-state splitting, T
is the sample temperature, and ℏ and kB are the reduced Planck constant and Boltzmann constant, respectively.

Early photon  Late photon

Time

Supplementary Figure 10. Estimation of ⟨P̂z⟩ for 2-qubit state using a tree diagram. After each π-pulse, there are two
possible outcomes with probability of spin-flip (pf , effective 2π rotation due to the spin flip and π-pulse) and no spin-flip (1−pf ,
effective π-rotation), respectively. The red (blue) colored states are detected using measurement sequences with (without) the
last π pulse [π].

To estimate how spin-flip error affects the entanglement fidelity, we analyze all possible spin-flip events after an
entanglement sequence and track down the probabilities of individual states after each operation. During each spin
π-rotation, the spin state has a probability of pf = 1

2 (1− e−κTπ ) to flip its state (on top of the π rotation).
As an example, we break down all possible outcomes from the two-qubit entanglement sequence which is shown in a

tree diagram (see Supplementary Fig. 10). After the first π/2-rotation pulse, the resulting state has equal population
in |↑⟩ and |↓⟩, regardless of whether a spin flip occurs. Since ⟨P̂z⟩ evaluates the population contrast between basis
states (no coherence terms required), a spin flip during the first π/2-pulse does not affect the ⟨P̂z⟩ measurement.
However, during the first π rotation: If a spin flip occurs, either no photon is emitted (|∅, ↓⟩) or both an early photon
and a late photon are emitted (|e1, l1, ↑⟩). The former state does not count toward the overall statistics since no photon
is detected, while the latter has twice the probability since photons from both |e1, ↑⟩ and |l1, ↑⟩ can be detected (our
collection efficiency is limited, making it unlikely that we detect both). Furthermore, since only |↑⟩ can be measured
by optical spin pumping, an additional π pulse is used to transfer |↓⟩ to |↑⟩, which leads to 4 additional possible
outcomes. Summing over the probability of all detected states, the Z-basis expectation value is:

⟨P̂(2)
z ⟩ =

pf + (1− pf ) + p2f + (1− pf )
2

2pf + (1− pf ) + 2p2f + (1− pf )
2
≈ 1− pf , (5)

where the first-order expansion in the last step further approximates the results to one spin-flip event per entanglement
sequence.

Similarly, the n-qubit Z-basis expectation value can be expanded in the first order as

⟨P̂(n)
z ⟩ ≈ 1− (2n− 3)pf , (6)
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For ⟨χ̂⟩, when a spin-flip event occurs, the spin coherence drops to zero as the entangled state becomes mixed.
Therefore,

⟨χ̂⟩ = 1× (e−κTs) + 0× (1− e−κTs) = e−κTs , (7)

where Ts is the total duration of the rotation pulse in a sequence, i.e., Ts = (2n− 3)Tπ.
To validate our Monte Carlo simulation, we compare the above model with the simulated fidelity in Supplementary

Fig. 11, which shows good agreement in the limit of κ/Ωr ≪ 1. The spin-flip error κ/Ωr introduces damping to the
visibility of Rabi oscillations and is related to the quality factor Q via the π-pulse duration Tπ = π/Ωr:

1

Q
≡ Tπ
T1/e

= π
κ

Ωr
, (8)

which holds when the rotation fidelity error due to finite T ∗
2 is negligible, i.e., Ωr ≫ 1/T ∗

2 . As a subject of interest, in

Supplementary Fig. 11(b), F (N)
GHZ is plotted in the limit of small photon number N ≤ 5 at various values of Q. Here

we observe that a twofold reduction in κ (or improvement in Q) could minimize the fidelity error per photon to 2%.
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Supplementary Figure 11. (a) Comparison between the simulated and analytical fidelities as a function of normalized

spin-flip rate κ/Ωr. The vertical dashed line corresponding Q = 34. (b) Plot of F (N)
GHZ as a function of photon number N for

different quality factor Q.
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C. Initialization Fidelity

To account for initialization error in the simulation, we define Fint as the probability of successful initialization
of the spin state |↑⟩ by optical pumping of the transition |↓⟩ → |⇓↓↑⟩. A random number i ∈ [0, 1] is drawn and
compared with Fint. If i ≤ Fint (i > Fint), the initial state becomes |↑⟩ (|↓⟩). Similarly, this error is included in the
theory by modifying the spin density matrix ρ̃s as

ρ̃s → Fintρ̃s + (1− Fint)ρ
ideal
s , (9)

where ρideals is the spin density matrix after applying a perfect π/2 pulse on the spin state |↓⟩. It is straightforward
to show that the entanglement fidelity is expressed by

F (N)
GHZ = Fint, (10)

which does not depend on the photon number in the generated state. Supplementary Fig. 12(a) compares the

simulation and theory, and Supplementary Fig. 12(b) shows that the initialization error is directly mapped to F (N)
GHZ

as predicted by Eq. (10).

Supplementary Figure 12. (a) Comparison between the simulated and analytical fidelities under initialization error. (b)

Plot of F (N)
GHZ as a function of photon number N at different values of Fint.
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D. Spin Readout Fidelity

Spin readout is performed in the experiment by optically pumping the |↓⟩ → |⇑↓↑⟩ transition, where |↓⟩ (|↑⟩) is
translated to |1⟩ (|0⟩). To incorporate spin readout error into the simulation, we introduce Fr as the fidelity of reading
out |1⟩, whereas 1− Fr corresponds to the probability of erroneously reading |0⟩. The entanglement fidelity is:

F (N)
GHZ =

1

2
(⟨P̂z⟩+ ⟨χ̂⟩), (11)

where

⟨P̂z⟩ = |0⟩⟨0|⊗n
+ |1⟩⟨1|⊗n

, ⟨χ̂⟩ = |0⟩⟨1|⊗n
+ |1⟩⟨0|⊗n

=
1

n

n∑
k=1

(−1)k⟨M̂k⟩. (12)

For ⟨P̂z⟩, reading out the wrong spin results in the detection of the wrong state, i.e, |1⟩⊗N |0⟩s⟨1|
⊗N ⟨0|s or

|0⟩⊗N |1⟩s⟨0|
⊗N ⟨1|s. Therefore, ⟨P̂z⟩ = Fr + 0(1− Fr) = Fr.

On the other hand, the measurement of ⟨χ̂⟩ requires projection of each qubit onto M̂k basis with eigenstates |±k⟩ =
(|0⟩ ± eikπ/n|1⟩)/

√
2, where k ≤ n is the number of qubits. Since in the experiement spin readout is only available in

|1⟩, we use two separate measurement configurations for every M̂k basis: In one configuration, a spin rotation pulse
R̂(π/2, θ = ikπ/n) is applied to transfer |+k⟩ (|−k⟩) to |1⟩ (|0⟩). In the other configuration, R̂(π/2, θ = ikπ/n + π)
transfers |+k⟩ (|−k⟩) to |0⟩ (|1⟩). Thus, readout of the wrong spin state is equivalent to switching between the |+⟩
and |−⟩ spin states. To see this, ⟨χ̂⟩ can be written as:

⟨χ̂⟩ = |0⟩⟨1|⊗n
+ |1⟩⟨0|⊗n

=
(−1)k

2n

[(
(|+k⟩ − |−k⟩)(⟨+k|+ ⟨−k|)

)⊗n

+

(
(|+k⟩+ |−k⟩)(⟨+k| − ⟨−k|)

)⊗n]
. (13)

After factoring out Eq. (13), only the diagonal terms have non-zero coefficients of either 1/2n or −1/2n, depending on
the parity of the sum of k and the number of |−k⟩ terms in the state, i.e., for the two-qubit case, |+k+k⟩⟨+k+k| and
|+k−k⟩⟨+k−k| have opposite signs due to their even and odd numbers of |−k⟩ terms, respectively. Therefore, ⟨χ⟩ is
given by the difference between even parity and odd parity terms. By measuring the wrong spin state, i.e., switching
between |+⟩ and |−⟩ for the spin qubit, the parity of all diagonal terms is switched with probability Fr, leading to
⟨χ̂⟩ = Fr + (−1)(1−Fr). The overall readout fidelity is then:

F (N)
GHZ =

3Fr − 1

2
, (14)

which is indeed independent of the photon number N in the GHZ state, as spin readout error is always performed at
the end of the experimental protocol. In the simulation, the output density matrix is simulated for each measurement
setting, and the readout error is introduced as the final step of the simulation. Supplementary Fig. 13 shows great

Supplementary Figure 13. Comparison between the simulated and analytical fidelities under spin readout error.

agreement between simulated fidelity and the analytical form in Eq. (14).
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E. Phonon-induced Pure Dephasing

Unwanted coupling of the QD optical transition to a phonon thermal bath results in broadening of the QD zero-
phonon line as well as a broad phonon sideband [S8, S13–S15]. The former gives rise to dephasing of the excited state
at a rate of γd and subsequenct emission of incoherent photons, which degrade their interference, whereas the latter is
filtered out with frequency filters. The effect of phonon-induced pure dephasing on the GHZ fidelity can be expressed
by [S10]

F (N)
GHZ =

1

2
+

1

2

(
Γ

Γ + 2γd

)N

, (15)

where Γ is the total decay rate of the excited state |⇑↓↑⟩. To consider this in the Monte Carlo simulation, we introduce
a random phase (0 to 2π) between |↑⟩ and |↓⟩ after each photon generation event, with a probability determined by
γd/Γ.
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Supplementary Figure 14. (a) Comparison between simulated and analytical fidelities under phonon-induced pure dephasing.

(b) Plot of F (N)
GHZ as a function of photon number N for different values of the ratio between γd and Γ.
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F. Optical Excitation Errors

In this section, we consider two error mechanisms that occur during optical pulsed excitation of the transition
|↓⟩ ↔ |⇑↓↑⟩. The first error originates from the spectral overlap between the excitation laser and the undesired
transition |↑⟩ ↔ |⇓↓↑⟩, which leads to a non-zero probability of exciting |↑⟩, emitting photons of a different frequency.
Although these photons can be filtered out, they lead to dephasing of the coherence [S10]. The second error process
takes place when the pulse duration of the excitation laser Tpulse approaches the excited state lifetime 1/Γ. In such a
case, the QD could be driven twice emitting multiple photons within the excitation pulse.

To investigate the entanglement fidelity under these errors, for a single optical excitation in the Monte Carlo
simulation, we first estimate the probabilities of off-resonant excitation (i.e., probability of driving |↑⟩ → |⇓↓↑⟩) and
two-photon emission, which are found by solving optical Bloch equations describing the excitation and emission from
a two-level system: 

ρ̇gg0 = Ω(t) · Im(ρeg0)

ρ̇ee0 = −Ω(t) · Im(ρeg0)− ρee0Γ

ρ̇eg0 = i ·∆L · ρeg0 + i · Ω(t)
2 · (ρee0 − ρgg0)− ρeg0

Γ
2

(16)


ρ̇gg1 = Ω(t) · Im(ρeg1) + ρee0Γ

ρ̇ee1 = −Ω(t) · Im(ρeg1)− ρee1Γ

ρ̇eg1 = i ·∆L · ρeg1 + i · Ω(t)
2 · (ρee1 − ρgg1)− ρeg1

Γ
2

(17)

ρ̇gg2 = ρee1Γ, (18)

where ρijk is the atomic density matrix element |i⟩⟨j|, i, j ∈ {e, g} and k is the number of emitted photons considered
up to 2 photons, i.e., ρgg0 (ρee0) is the ground-state (excited-state) population in which no photon is emitted. Ω(t)
is the time-dependent optical Rabi frequency, assuming a Gaussian profile for the excitation laser. ∆L is the laser
detuning relative to an optical transition. Γ is the excited-state decay rate assumed to be equal for |⇑↓↑⟩ and |⇓↓↑⟩.

To model the current experiment, we set the laser detuning ∆L = 12GHz from the undesired transition |↑⟩ → |⇓↓↑⟩
to estimate the probability of off-resonant excitation, and ∆L = 2GHz from the desired transition |↓⟩ ↔ |⇑↓↑⟩ for
computing the re-excitation probability. For the optimized InAs and GaAs QDs simulations, the corresponding ∆L

can be found in Supplementary table. 2. For simulations with a Gaussian excitation pulse, Eqs. (16)-(18) can only
be solved numerically. Therefore, to verify our simulation code we now choose a square pulse and consider only the
off-resonant excitation error, which enables a direct comparison with the closed form derived analytically in Ref. [S10]:

F (N)
GHZ =

1

2

DN
1 +DN

2

(D2 +D3)N
, (19)

where the relevant terms read

D1 = |c0c2|2

D2 = |c0c2|2 + |c0ϕ2|2 + |ϕ0c2|2 + |ϕ0ϕ2|2

D3 = |c1c3|2 + |c3ϕ1|2 + |c1ϕ3|2 + |ϕ3ϕ1|2 + |c3c2|2 + |c3ϕ2|2 + |ϕ3c2|2 + |ϕ3ϕ2|2,

with the wavefunction coefficients

|ϕ1|2 =
3
√
3π

8∆̃
− 3π2

2∆̃2

(
3

8
− 1

π2

)
, |ϕ2|2 =

π
√
3

8∆̃
|c2|2, |ϕ3|2 =

3

16

(√
3π

8∆̃
− 3π2

16∆̃2

)
, |ϕ0|2 =

13
√
3π

128∆̃
|c2|2

|c0|2 = 1, |c1|2 =

√
3π

2∆̃
, |c2|2 = 1− |c1|2, ∆̃ =

∆L

Γ
.

The expressions above assume perfect frequency filters and a square pulse of the optimal duration T opt
pulse =

√
3π/∆L

such that a optical π-pulse resonantly drives the transition |↓⟩ ↔ |⇑↓↑⟩, while a 2π-pulse is applied on the off-resonant
transition. We reproduce this condition in our simulation and compare it to the analytical form in Eq. (19), see
Supplementary Fig. 15(a). We observe very good agreement between theory and simulation over a laser detuning
from ∆L = 10GHz to 100GHz. Supplementary Fig. 15(b) shows the predicted scaling of the off-resonant excitation
error with photon numbers.
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Supplementary Figure 15. (a) Comparison between the simulated and analytical fidelities under off-resonant excitation

error. (b) Plot of F (N)
GHZ as a function of photon number N for different values of the laser detuning ∆L.

X. PHOTON DETECTION EFFICIENCY

Loss source Efficiency % Loss (dB) Source

Waveguide-coupling factor β 90 -0.46 Estimated

Less-than-π excitation pulse 80 -0.97 Estimated

Emission into the zero phonon line 95 -0.22 Ref. [S3]

Two-sided waveguide configuration 50 -3.01 Estimated

Propagation loss in GaAs waveguide (free carrier absorption, grating coupler loss) 56 -2.52 Measured

Transmission in the collection fiber 60 -2.22 Measured

Total efficiency from quantum dot to the collection fiber 11.5 -9.4

50/50 Beamsplitter in TBI 50 -3.01 Estimated

Additional loss in TBI due to other optic elements 60 -2.22 Measured

Total transmission after two etalon filters 90 -0.46 Measured

Fiber coupling to the detection fiber before SNSPDs 70 -1.55 Measured

Fiber transmission to SNSPDs 85 -0.71 Measured

SNSPDs detection efficiency 70 -1.55 Measured

State characterization and detection 11.2 -9.5

Total loss from quantum dot to detection 1.3 -18.9

Supplementary Table 4. Compilation of all photon loss sources in the entanglement experiment. SNSPDs stands for
superconducting nanowire single-photon detectors from PhotonSpot.
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