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Supplementary Note 1
The proof only uses two classical results in OT theory. Firstly, there is a primal-dual relationship
linking the optimal plan to an optimal pair of potentials such that:

Secondly, the optimal value of the entropic OT problem can be expressed with this optimal pair of
potentials:
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Supplementary Table 1. List of the datasets used in this paper and their characteristics.

Dataset Name Technology Modalities Organism Tissue
Cells

(after QC) Labels Batches Reference

Cell lines scCAT-seq RNA, ATAC Human Cell lines 206 3 1 Liu, L. et al1

PBMC 10X 10X
Multiome

RNA, ATAC Human PBMC 9,378 14 1 10X genomics

OP Multiome 10X
Multiome

RNA, ATAC Human Bone
marrow

69,249 22 13 Luecken, M et al.2

BMCITE Cite-seq RNA, ADT Human Bone
marrow

30,672 27 1 Stuart, T. et al.3

OP Cite Cite-seq RNA, ADT Human Bone
marrow

90,261 31 12 Luecken, M et al.2

Smartseq
cortex

Smartseq2 RNA Mouse Somato
sensory
cortex

3005 6 1 Zeisel, A. et al.4

smFISH osmFISH RNA Mouse Somato
sensory
cortex

4530 6 1 Codeluppi, C. et al.5

3omics RNA Seq-Well RNA Human PBMC 16627 12 6 Wilk, A. J. et al.6

3omics ATAC 10X
scATAC-seq

ATAC Human PBMC 21261 18 4 Satpathy, A. T. et al.7

3omics CyTOF Helios
CyTOF

Protein Human PBMC 43232 21 1 Covid-19 Multi-omics Blood
Atlas Consortium8

Patch neurons Patch-seq RNA,
morphologies

Mouse Primary
motor
cortex

1214 7 1 Scala, F. et al9
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https://www.zotero.org/google-docs/?hwvSf3
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https://www.zotero.org/google-docs/?oStkMS


Supplementary table 2. List of genes identified as differentially expressed in both the scRNA and
scATAC gene activities for each B cell cluster.

Cluster 0 Cluster 1 Cluster 2

AIM2, BLK,
CCDC50, CD1C,
COTL1, CTSH,
HLA-DPB1,
HLA-DQA1,
KCNN4,
MAP4K1,
MARCKS,
MS4A1, OAZ1,
POU2AF1,
POU2F2,
PPP1R15A,
PTPN1,
RALGPS2,
SCIMP, SCRN1,
SPIB, SYK,
SYNGR2,
TBC1D9, TFEC,
TLR10,
TNFRSF13B,
UBC, UBE2J1,
WDFY4

BCL7A, BTG1,
BTLA, DGKD,
FAM129C,
FOXP1,
HLA-DMB,
ICOSLG,
PCDH9, TCL1A,
TSPAN13, YBX3

ACTG1, ANXA1, AOAH, APMAP, APOL3, APOL6, ARF1, ARHGEF1, ARL4C, ATP1A1,
ATP2B4, ATP8B2, BCL11B, BIN2, BTN3A1, BTN3A2, BTN3A3, C11orf21, C1orf21,
CAB39, CALM1, CALR, CAMK4, CANX, CBLB, CCDC88C, CCL5, CCND2, CCND3,
CCSER2, CD2, CD247, CD300A, CD3D, CD3E, CD48, CD5, CD6, CD63, CD8A, CD96,
CDC42SE2, CEP78, CFL1, CFLAR, CHD3, CST7, CTBP2, CTSW, CX3CR1, CYLD,
CYTH1, CYTIP, DGKA, DGKZ, DIAPH1, DIP2A, DOK2, DYNC1H1, DYRK2, EFHD2,
EIF3A, ESYT2, EVL, F2R, FBXW5, FCGR3A, FGD3, FGFBP2, FKBP5, FLNA, FOSL2,
FYN, GBP5, GIMAP1, GIMAP4, GIMAP5, GIMAP7, GLG1, GNLY, GUK1, GZMA, GZMB,
GZMH, HELZ, HERC1, HIPK1, HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, HSPA5, HSPA8,
ID2, IFITM1, IFITM2, IGF2R, IL10RA, IL2RB, IL32, IL6ST, IL7R, INPP4A, IQGAP2,
ITGA6, ITGAL, ITGB1, ITGB2, ITK, ITM2B, JADE2, KCNAB2, KDM3A, KIAA1551,
KLF13, KLRB1, KLRD1, KLRF1, KPNB1, LASP1, LCK, LCP1, LCP2, LDHB, LEF1,
LINC00861, LITAF, LPIN2, MAN1A1, MATK, MBP, MCL1, MGAT4A, MLLT6, MSN,
MYBL1, MYH9, MYL12A, MYL12B, MYL6, MYO1F, NCAM1, NDFIP1, NKG7, PAG1,
PARP8, PBXIP1, PCED1B-AS1, PDE3B, PDZD4, PFN1, PIK3IP1, PIK3R1, PIM1,
PIP4K2A, PPP2R5C, PREX1, PRF1, PRKCQ, PRMT2, PRPF38B, PRSS23, PTPN12,
PTPRA, RAB27A, RAP1B, RARRES3, RASA3, RASAL3, RASGRP1, RASSF1, RASSF5,
RBL2, RBMS1, REST, RICTOR, RNF125, RNF213, RPS6KA3, RUNX3, S100A4,
S100A6, S1PR5, SAMD3, SAMD9, SELPLG, SEMA4D, SH2D1A, SIGIRR, SKP1,
SLAMF7, SLC9A3R1, SLFN5, SMARCA2, SORL1, SPN, SPOCK2, SPTAN1, SRGN,
SSBP3, ST3GAL1, STAT1, STK10, STK38, SYNE1, SYNE2, SYTL2, TAX1BP1, TBX21,
TCF7, TES, TESPA1, TMC8, TNFAIP3, TNFRSF1B, TNIK, TPP2, TPST2, TRABD2A,
TRAF3IP3, TRANK1, TSHZ1, TXK, UBE2G2, UTRN, VIM, WDR82, WIPF1, ZAP70,
ZFP36L2, ZNF91

Supplementary table 3. List of genes identified as differentially expressed in both the scRNA and
scATAC gene activities for each monocyte cluster.

Cluster 4 Cluster 5

ACTN1, ADAM15, ADAM8, AGTRAP, AHNAK, AHR, ALDH2, ANXA1, ANXA6,
APLP2, APOL3, APP, ARHGAP26, ARHGEF40, ASGR2, ATP6V0B, ATP6V1A,
ATP6V1F, BAZ2B, BHLHE40, BLVRB, BST1, CAPG, CASP4, CCDC149, CCDC88A,
CCR1, CCR2, CD14, CD163, CD1D, CD63, CD84, CD93, CDA, CIITA, CKAP4,
CLEC4A, CLEC4E, CLMN, CMIP, CMTM3, COMT, CPD, CPM, CREG1, CRISPLD2,
CRTAP, CSF3R, CST3, CTSA, CTSH, CTSS, CXCR4, CXXC5, CYFIP1, CYP1B1,
CYP27A1, DGKD, DHRS4, DYSF, EFHD2, EIF4G3, EMB, F13A1, F5, FAM129A,
FAM198B, FCN1, FERMT3, FES, FKBP5, FLOT1, FNDC3B, FPR1, FRMD4B, G0S2,
GAPDH, GLRX, GLT1D1, GM2A, GPX1, GRN, H2AFY, HEBP2, HEXB, HK2, HLA-A,
HLA-DQB1, HLA-DRA, HLA-DRB5, HPSE, HSD17B4, IDH1, IGF2R, IGSF6, IL13RA1,
IL4R, IL6R, IL6ST, IMPA2, IQGAP2, IRF2BP2, IRS2, ITGA5, ITGAM, ITGB2,
IVNS1ABP, KCTD20, KDM4B, KDM7A, KIAA0040, KIF13A, KLF10, LAMP2,
LAMTOR1, LAPTM5, LAT2, LBR, LGALS2, LGALS3, LINC00963, LITAF, LPGAT1,
LRP1, LTB4R, LTBR, LY86, LYZ, MAPK14, MARC1, MARCO, METTL9, MGST1,
MID1IP1, MLKL, MLXIP, MNDA, MPEG1, MSRB1, MYCL, MYO1F, NCF4, NFE2,
NFKBIA, NLRP12, NLRP3, NR4A2, NRGN, OSCAR, P4HB, PADI2, PADI4, PARP8,
PEA15, PER1, PID1, PKM, PLA2G7, PLBD1, PLD3, PLEKHO1, PLXND1, PPIF,
PRRC2B, PSTPIP1, PTPRE, PYGL, QPCT, QSOX1, RAB11FIP1, RAB27A, RAB3D,
RBM47, RBP7, RIT1, RPS16, RPS8, S100A10, S100A12, S100A6, S100A8, S100A9,
S1PR3, SCPEP1, SEMA4D, SEPT2, SGK1, SIRPA, SLC2A3, SLC40A1, SMARCD3,
SOCS3, SORL1, STAB1, STX3, SULF2, SYK, TAGLN2, TALDO1, TAPBP, TBC1D9,
TET3, THBS1, TLR4, TMEM173, TMEM205, TMEM71, TNFAIP2, TNFAIP3,
TNFRSF1A, TPP1, TPT1, TREM1, TRIB1, TRPS1, TSPO, TXN, VEGFA, VIM, WLS,
XRN2, YBX3, YWHAE, ZNF385A, ZNF467

ACOT9, ALDH3B1, ARRDC2,
ASAH1, C15orf39, CDKN1B,
CDKN1C, CKB, CRIP1, CSF1R,
CSK, CYTH1, FAM110A,
FAM49A, FCGR3A, FOXO1,
FZD1, GNAI2, GPI, GPR137B,
HES4, HLA-E, HSBP1, HSPA8,
IFITM2, IQSEC1, KLF11, KLF12,
KLF2, KLF7, KNDC1, LFNG,
LRMP, LRRC25, LRRFIP1, LYL1,
LYN, MAFB, MEG3, METRNL,
MGLL, MRPS35, MS4A7, MTSS1,
MYO1G, MYOF, NECAP2,
PDPK1, PIK3CG, PILRA, PKN1,
PPP1R17, PSAP, PTP4A2,
PTPN1, PTPRC, RALB, RHOB,
RIN3, RNH1, RRAS, SAT1,
SFT2D2, SLC44A2, SMAD2,
SNX5, SPG11, SPRED1, SSBP4,
TPTEP1, UNC119, VPS35,
WARS, WAS, XIAP, YBX1,
ZBTB7A, ZFAND5, ZFR, ZNF703



Supplementary Table 4. Results of the differential expression analysis for the cluster 6 of monocytes
in the tri-omics experiment. The output of scanpy’s rank_gene_groups method (which uses a one
versus all two-sided t-test with benjamini-hochberg correction) is displayed for two known marker
genes of monocyte-derived dendritic cells.
names scores logfoldchanges pvals pvals_adj
CCR7 2.67e+01 5.40e+00 2.06e-157 9.74e-154

CD2 2.15e+01 5.61e+00 2.75e-102 8.79e-100

Supplementary Table 5. List of the number of features measured in each modality of the datasets
used and the number of neurons in hidden layers of the autoencoders .
Dataset Name Number of features Hidden size
Cell lines/RNA >10000 64

Cell lines/ATAC >10000 64

PBMC 10X/RNA >10000 64

PBMC 10X/ATAC >10000 64

OP Multiome/RNA >10000 64

OP Multiome/ATAC >10000 64

BMCITE/RNA >10000 64

BMCITE/ADT 25 20

OP Cite/RNA >10000 64

OP Cite/ADT 134 32

Smartseq cortex >10000 64

smFISH 33 25

Covid RNA >10000 64

Hemato ATAC >10000 64

Covid CyTOF 48 32

Neurons/RNA >10000 64

Neurons/Images 2048 128



Supplementary table 6. Comparison of the running times of the benchmarked methods on the 10X
PBMC dataset (9,378 cells per modality).

Method Device Runtime

Seurat_v3 CPU 12mn 18s

LIGER CPU 5mn 49s

MultiMAP CPU 2mn 6s

Uniport GPU 56mn 59s

scGLUE GPU 32mn 24s

scConfluence GPU 23mn 38s

Supplementary Figure 1. 2D UMAP visualizations of the cell embeddings obtained by LIGER on the
cell lines dataset for different values of the dimension of the latent space. Different colors in these
UMAP plots correspond to the three different cell lines present in the data while the shape of the point
markers correspond to the modality of origin of each cell (scRNA, scATAC).



Supplementary Figure 2. 2D UMAP visualizations of the cell embeddings obtained by the five
baselines (Seurat, Liger, MultiMAP, Uniport and scGLUE) on the PBMC 10X dataset. Cells are
colored based on their modality of origin and their cell type annotation.



Supplementary Figure 3. 2D UMAP visualizations of the cell embeddings obtained by the five
baselines (Seurat, Liger, MultiMAP, Uniport and scGLUE) on the OP Multiome dataset. Cells are
colored based on their modality of origin, their cell type annotation or their batch of origin.



Supplementary Figure 4. 2D UMAP visualizations of the cell embeddings obtained by the five
baselines (Seurat, Liger, MultiMAP, Uniport and scGLUE) on the BMCITE dataset. Cells are colored
based on their modality of origin or their cell type annotation.



Supplementary Figure 5. 2D UMAP visualizations of the cell embeddings obtained by the five
baselines (Seurat, Liger, MultiMAP, Uniport and scGLUE) on the OP Cite dataset. Cells are colored
based on their modality of origin, their cell type annotation or their batch of origin.



Supplementary Figure 6. Evaluation of the cell type FOSCTTM for all methods on the four
benchmark datasets as well as the cell lines dataset. The horizontal line y=0.5 is the theoretical result
of the trivial approach which consists in the random alignment of cells from the same cell type across
modalities. Error bars in the plots specify the standard deviation across n=5 random initialization
seeds for each method and they are centered on the median result. Inside bar plots, small dark stars
represent individual seed results. Source data are provided as a Source Data file.



Supplementary Figure 7. 2D UMAP visualizations of the cell embeddings obtained by the six
baselines (Seurat, Liger, MultiMAP, Uniport, scGLUE and GimVI) on the scRNA/smFISH dataset.
Cells are colored based on their modality of origin and their cell type annotation.



Supplementary Figure 8. Spatial pattern of expression of scConfluence’s imputations on the thirty
held-out smFISH genes which were not displayed in Figure 6.



Supplementary Figure 9. Spatial pattern of expression of GimVI’s imputations (bottom) on three
held-out smFISH genes and their ground-truth pattern of expression (top). Spearman correlations
between the ground-truth and imputed counts are written at the bottom.



Supplementary Figure 10. Heterogeneity inside the scRNA B cells. (a) scRNA B cell clusters
derived from a unimodal analysis and marker expressions. (b) Comparison of the cluster obtained in
the tri-omics integration analysis and clusters obtained by analyzing the scRNA B cells on their own.
(c) Dotplot of known marker genes of memory, naive and plasma B cells.

Supplementary Figure 11. scRNA NKT cells. UMAP 2D projections of scConfluence’s cell
embeddings of scRNA cells in cluster 7, 8 and 9. Cells are colored based by their cluster annotation
and their level of expression of CD3E and NCAM1 which are markers of CD8 T cells and NK cells
respectively.



Supplementary Figure 12. Unimodal embeddings of scRNA-seq and morphologies before
integration. UMAP visualizations of cell embeddings obtained by training independent autoencoders
on the two modalities, (a) scRNA counts and (b) neuronal morphologies, without integrating them
together. Cell embeddings are colored by their transcriptomic cell type annotations.



Supplementary Figure 13. The impact of the mass parameter for different degrees of
unbalancedness. Using the same evaluation metrics and datasets as in Figure 2, we compare the
results of training of the scConfluence model with different values of the mass parameter . Error
bars in the plots specify the standard deviation across n=5 random initialization seeds for each
method and they are centered on the median result. Inside bar plots, small dark stars represent
individual seed results. Source data are provided as a Source Data file.

Supplementary Figure 14. 2D UMAP visualizations of the scRNA cell embeddings obtained by
scConfluence. The “original” embeddings correspond to scRNA cells directly encoded to the latent
space while the “cycle” embeddings are results of applying first the ATAC modality’s decoder then the
ATAC modality’s encoder to the “original” embeddings.

https://www.codecogs.com/eqnedit.php?latex=m#0


Supplementary Figure 15. Proportions of cell types present in each modality across the four cell
lines scenarios in the first experiment. Source data are provided as a Source Data file.



Supplementary Figure 16. Proportions of cell types present in each modality of the mouse
somatosensory cortex experiment. Source data are provided as a Source Data file.



Supplementary Figure 17. Proportions of cell types present in each modality of the tri-omics PBMC
experiment. Source data are provided as a Source Data file.



Supplementary Figure 18. Proportions of cell types present in each modality of the Patch-seq
experiment. Source data are provided as a Source Data file.


