Conditional protein splicing of the *Mycobacterium tuberculosis* **RecA intein in its native host** Ryan F. Schneider, Kelly Hallstrom, Christopher DeMott, Kathleen A. McDonough

Supplemental Tables

Table S1: Strains used in this study.

Strain	Description	Source
mc ² 6230	Mtb H37Rv (<i>ДрапCD</i> , <i>ДRD1</i>)	Gift of Dr. William Jacobs, Jr ¹
mc ² 6230 <i>∆recA</i>	<i>recA</i> knockout (Δ <i>recA</i> , Δ <i>panCD</i> , Δ <i>RD1</i>)	This Paper
<i>Mycobacterium smegmatis</i> mc ² 155	Parental (eptCl)	Acquired from BEI ^{2,3}
Mycobacterium smegmatis ⊿recAX	$mc^{2}155 recAX knockout (\Delta recAX)$	Gift from Dr. Keith Derbyshire
E. coli BLR	<i>∆recA</i> derivative of BL21	Novagen
E. coli BL21	For protein expression and purification	Novagen

Table S2: Plasmids used in this study.

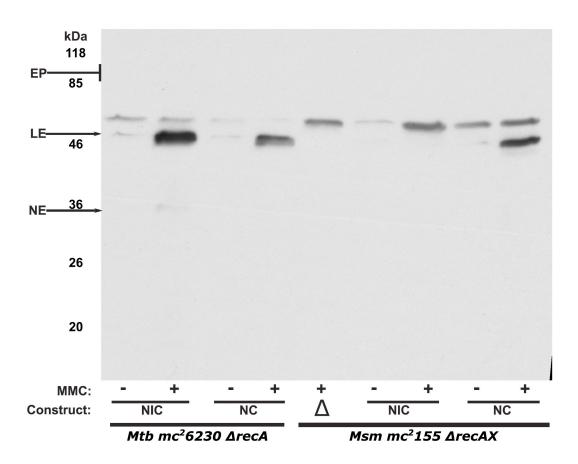
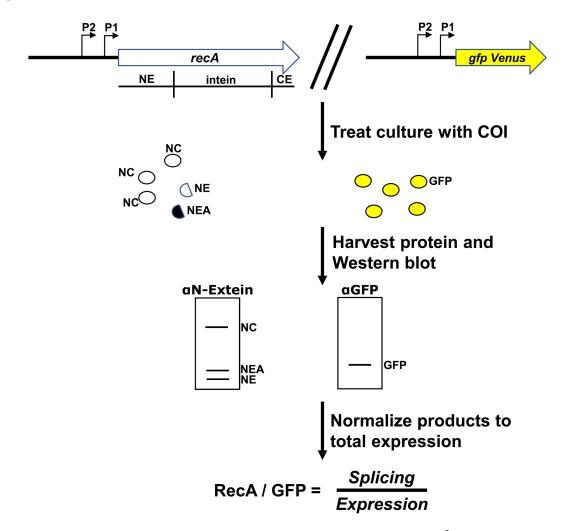
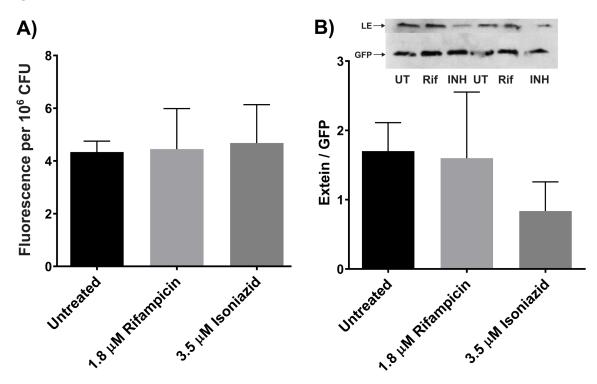
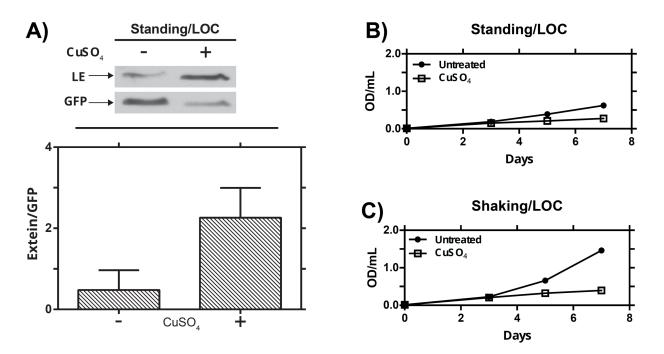

Designation	Description	Source
pMBC409	Single Copy, integrating (AttP) vector to express transcriptional reporters or <i>recA</i> complements; Kan ^R , Hyg ^R , Amp ^R	Described in Girardin et al ⁴
pMBC1809	mVenus-based <i>recA</i> transcriptional reporter; Kan ^R , Hyg ^R , Amp ^R	This Paper
pMBC2149	Full Mtb <i>recA</i> gene driven by native Mtb promoters; Kan ^R , Hyg ^R , Amp ^R	This Paper
pMBC2169	Inteinless Mtb <i>recA</i> gene driven by native Mtb promoters; Kan ^R , Hyg ^R , Amp ^R	This Paper
pMBC2290	Mtb N-extein driven by native Mtb promoters; Kan ^R , Hyg ^R , Amp ^R	This Paper
pMBC1650	pET28a+ expressing N-extein; Kan ^R	This Paper
pMBC1651	pET28A+ expressing intein; Kan ^R	This Paper
pMBC1652	pET28a+ expressing C-extein; Kan ^R	This paper

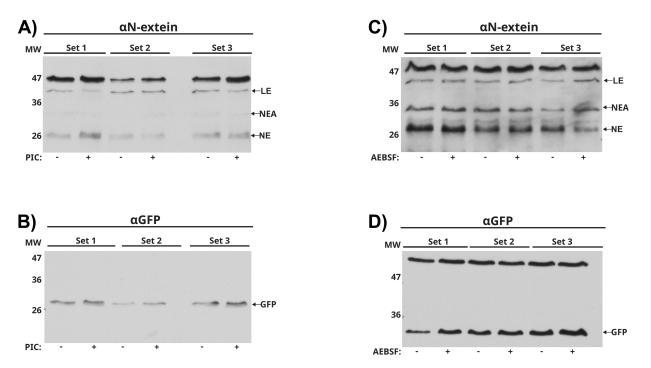
Table S3: Primers used in this study.


Designation	Sequence	Description
KM4059	ggggggatcctctagatttaagaaggagatatacatatggtgag caagggcgaggagctg	mVenus forward
KM4138	gggaagctttgatcaccgcggccatg	mVenus reverse
KM4194	tgcagtggatcccgcaccgccagg	recA promoter forward
KM4195	cctagtggatcccatggtgcctctcctgtg	recA promoter reverse
KM4345	agagatatacggcccggagt	recA qRT
KM4346	ccgagcttcttggcatagtc	recA qRT
KM4290	acgtaaacggccacaagttc	GFPv qRT
KM4291	aagtcgtgctgcttcatgtg	GFPv qRT
KM3727	gggaattcacgcagacccccgatcgg	recA NE for protein purification fwd
KM3728	ggaagetttcacttgttcttgacgacettgac	<i>recA</i> NE for protein purification rev
KM3729	gg <u>gaattc</u> tgcctcgcagagggc	<i>recA</i> intein for protein purification fwd
KM3730	ggaagetttcaacagttgtgcacgacaaccc	<i>recA</i> intein for protein purification rev
KM3731	gggaattctcgcccccttcaagca	recA CE for protein purification fwd
KM3732	gggagetetcagaagtegaegggg	recA CE for protein purification rev
KM5105	gatatcgtgttgagcagatcgtcggtgatccgga	recA full complement fwd
KM5106	gcggccgctcagaagtcgacggggggggg	<i>recA</i> full complement rev
KM5584	gatatcgcctgctcttcgcgctcagaag	recA inteinless complement NE fwd
KM5585	caaggtcgtcaagaacaagtgttcgccccccttcaagcagg	recA inteinless complement NE rev
KM5586	gaagggggggggaacacttgttcttgacgaccttgacccggg	recA inteinless complement CE fwd
KM5587	gatatcgacgccgaaaggtcagatccgg	recA inteinless complement CE rev
KM6016	aagettgageagategteggtgate	recA N-Extein only complement fwd
KM6017	aagettetacttgttettgacgacettgac	recA N-Extein only complement rev
KM4413	ttgcaccaggctgtagcgggagtct	Hygromycin resistance cassette fwd
KM4414	ccgctgaccgggaacaccgtgctc	Hygromycin resistance cassette fwd
KM5107	cttgttcttgacgaccttgacccgggt	N-extein reverse (to check KO)

Supplemental Figures for


Conditional protein splicing of the *Mycobacterium tuberculosis* **RecA intein in its native host** Ryan F. Schneider, Kelly Hallstrom, Christopher DeMott, Kathleen A. McDonough


Figure S1: RecA precursor was not detected in other mycobacteria. *M. tuberculosis* $\Delta recA$ and *M. smegmatis* $\Delta recAX$ were complemented with intein-containing recA (NIC) or inteinless recA (NC) alleles driven by their native mycobacterial promoters. Cells were grown to mid-log and treated for 3 days with Mitomycin C to induce recA transcription and RecA production. Protein from cultures was harvested for western blotting against the N-extein, which detects ligated exteins (LE) and the N-extein (NE) as well as precursor (see Figure 1B). EP: expected size of precursor RecA, which was not detected.


Figure S2: Schematic of experimental setup and analysis. Mtb auxotroph mc^26230 harboring a native *recA* allele and a *gfp* allele driven by the native Mtb *recA* promoters is grown to the desired phase and treated with conditions of interest (COI). If treatment induces *recA* production, RecA products and GFP will be made at a higher level compared to untreated. After treatment, total protein lysate is extracted and subjected to western blotting targeting the N-extein (left), GFP (right) or Intein (not shown). Western blots are quantitated by densitometry and the ratio of RecA product to GFP is calculated to normalize for changes in transcriptional expression.

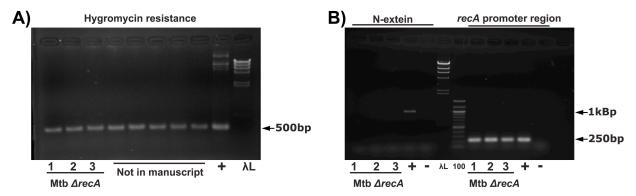
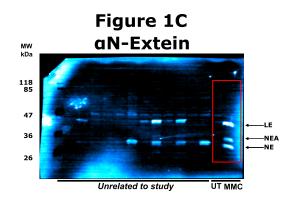
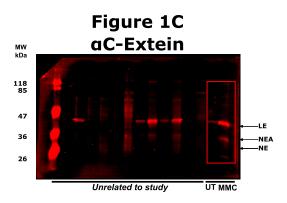

Figure S3: First-line therapeutics rifampicin and Isoniazid do not induce the *recA* transcription or RecA splicing. Mtb auxotrophic strain mc²6230 harboring our *recA* transcriptional reporter was grown to mid-log phase and then treated with rifampicin or isoniazid. (A) *recA* transcription in response to the two therapeutics as read by our GFP based transcriptional reporter system. (B) Western blot of RecA production in response to rifampicin or isoniazid. Error bars represent standard deviation of two biological repeats.

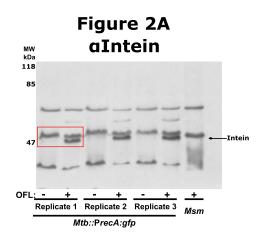
Figure S4: Growth does not affect copper-induced splicing. Mtb cultures starting at OD0.035 were grown in the presence or absence of copper for seven days either standing or shaking in low oxygen conditions supplemented with carbon dioxide (LOC). Copper was added at the time cultures were started. A) Representative western blot with quantitative analysis of RecA ligated extein (LE) produced in response to copper in standing LOC. Error bars represent standard deviation of three biological repeats. B) Optical density of cultures grown in standing LOC conditions with copper absent (black circle) or present (open square). C) Optical densities of cultures grown in shaking LOC conditions with copper absent (black circle) or present (open square).

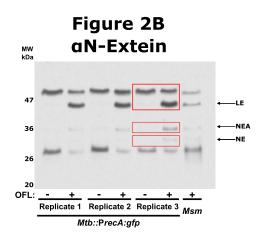
Figure S5: Treatment with protease inhibitors does not affect levels of RecA or intein. Mtb mc²6230 harboring a native *recA* allele and a *gfp* allele driven by the native Mtb *recA* promoters was grown to (A, B) mid-log phase before treating with 1:1000 dilution of Sigma Aldrich's protease inhibitor cocktail for 24hrs in triplicate. (A) Western blot analysis targeting the N-extein. (B) Western blot analysis targeting GFP. (C-D) Mtb mc²6230 harboring a native *recA* allele and a *gfp* allele driven by the native *recA* promoters was grown to late-log phase and treated with AEBSF for 48hrs in triplicate. Western blot analysis targeted the N-extein (C) or GFP (D).

Figure S6: PCR confirming knockout of the *recA* gene in mc²6230. (A) PCR targeting a ~500bp section of the hygromycin resistance cassette encoded on the phagemid (negative water only control not shown). (B) PCR targeting either the *recA* promoter region + N-extein (~1kb) or the *recA* promoter region (~230bp). The positive control for PCRs was heat-killed H37Rv and the negative control was water only. λ L: NEB lambda phage DNA digested with HindIII. 100: NEB's 100bp ladder.


References for supplemental information:


- 1. Sambandamurthy, V.K. *et al. Mycobacterium tuberculosis* DeltaRD1 DeltapanCD: a safe and limited replicating mutant strain that protects immunocompetent and immunocompromised mice against experimental tuberculosis. *Vaccine* **24**, 6309-6320 (2006).
- 2. Snapper, S.B., Melton, R.E., Mustafa, S., Kieser, T. & Jacobs, W.R., Jr. Isolation and characterization of efficient plasmid transformation mutants of *Mycobacterium smegmatis*. *Mol Microbiol* **4**, 1911-1919 (1990).
- 3. Panas, M.W. *et al.* Noncanonical SMC protein in *Mycobacterium smegmatis* restricts maintenance of *Mycobacterium fortuitum* plasmids. *Proc Natl Acad Sci U S A* **111**, 13264-13271 (2014).
- 4. Girardin, R.C. & McDonough, K.A. Small RNA Mcr11 requires the transcription factor AbmR for stable expression and regulates genes involved in the central metabolism of *Mycobacterium tuberculosis*. *Mol Microbiol* **113**, 504-520 (2020).


Supplementary compilation of full gel images used for western blots shown in:


Conditional protein splicing of the *Mycobacterium tuberculosis* RecA intein in its native host Ryan F. Schneider, Kelly Hallstrom, Ph.D., Christopher DeMott, Ph.D., Kathleen A. McDonough, Ph.D.

