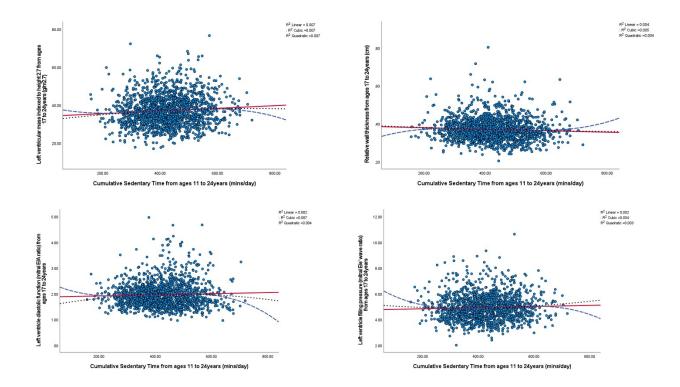
Supplementary Appendix

Accelerometer-based Sedentary Time and Physical Activity from Childhood through Young

Adulthood with Progressive Cardiac Changes: A 13-Year Longitudinal Study

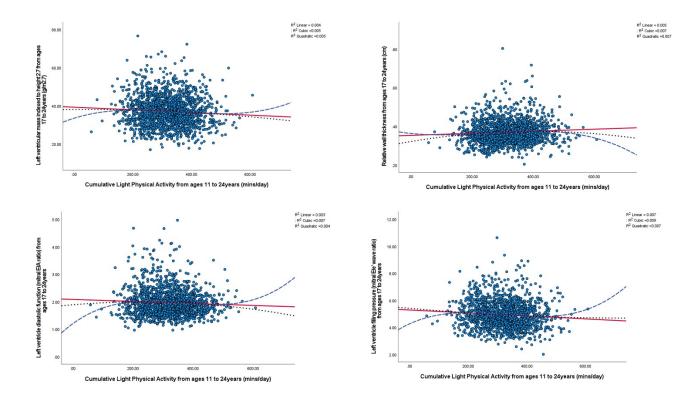
Andrew O. Agbaje MD, MPH, PhD^{1,2}

¹Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences,

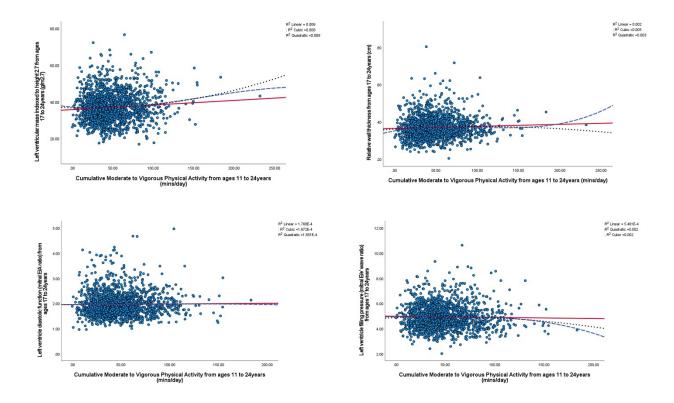

University of Eastern Finland, Kuopio, Finland

²Children's Health and Exercise Research Centre, Department of Public Health and Sports

Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK


Address correspondence to:

Andrew O. Agbaje, MD, MPH, PhD, FESC, FAHA, Cert. Clinical Research (*Harvard*) Professor (associate) of Clinical Epidemiology and Child Health Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio Campus. Address: Yliopistonranta 8, P.O. Box 1627, 70211 Kuopio, Finland E-mail: andrew.agbaje@uef.fi


Supplemental Figure 1 Unadjusted linear, cubic, and quadratic regression plots of cumulative sedentary time (mins/day) from ages 11 - 24 years with cardiac measures from ages 17 - 24 years.

Linear regression is red solid line, quadratic regression is black dash line, cubic regression is blue long dash line.

Supplemental Figure 2 Unadjusted linear, cubic, and quadratic regression plots of cumulative light physical activity (mins/day) from ages 11 - 24 years with cardiac measures from ages 17 - 24 years.

Linear regression is red solid line, quadratic regression is black dash line, cubic regression is blue long dash line. LPA, light physical activity.

Supplemental Figure 3 Unadjusted linear, cubic, and quadratic regression plots of cumulative moderate to vigorous physical activity (mins/day) from ages 11 - 24 years with cardiac measures from ages 17 - 24 years.

Linear regression is red solid line, quadratic regression is black dash line, cubic regression is blue long dash line. MVPA, moderate to vigorous physical activity.

N=766	LVMI ^{2.7} (g/m ^{2.7})		RWT (cm)		LVDF (E/A)		LVFP (E/e´)	
	β (95% CI)	p-value	β (95% CI)	p-value	β (95% CI)	p-value	β (95% CI)	p-value
Continuous cumul	ative predictor variables fr	om ages 11	1 – 24 years					
Sedentary Time								
Model 1	$0.014\ (0.012 - 0.016)$	<0.0001	$0.000 \ (0.000 - 0.000)$	<0.0001	0.000 (-0.000 – 0.000)	0.602	$0.004 \ (0.003 - 0.004)$	<0.0001
Model 2	$0.004 \ (0.001 - 0.006)$	0.002	0.000 (-0.000 - 0.000)	0.646	0.000(0.0000.000)	0.004	0.002 (0.001 - 0.002)	0.002
Light physical act	ivity							
Model 1	-0.019 (-0.0210.017)	<0.0001	$0.000 \ (0.000 - 0.000)$	<0.0001	$0.000 \ (0.0000.000)$	<0.001	-0.005 (-0.0050.004)	<0.0001
Model 2	-0.017 (-0.0200.015)	<0.0001	$0.000 \ (0.000 - 0.000)$	<0.0001	$0.000\ (0.000 - 0.000)$	<0.001	-0.004 (-0.0040.003)	<0.0001
Moderate to vigor	ous physical activity							
Model 1	0.003 (-0.006 - 0.011)	0.497	-0.000 (-0.000 - 0.000)	0.916	-0.001 (-0.001 - 0.000)	0.011	0.001 (-0.001 - 0.003)	0.207
Model 2	0.010 (0.002 - 0.019)	0.016	0.000(-0.000-0.000)	0.207	-0.001 (-0.001 - 0.000)	0.005	$0.003\ (0.002 - 0.005)$	<0.001
Categorical cumul	ative predictor variable fro	m ages 11	– 24 years					
Moderate to vigor	ous physical activity (<40	mins/day a	s reference)					
40 - < 60 mins/day	-0.587 (-1.1040.071)	0.026	0.007 (0.003 - 0.012)	0.002	-0.034 (0.0650.002)	0.036	0.200 (0.102 - 0.297)	<0.001
$\geq 60 mins/day$	-0.249 (-0.729 - 0.232)	0.311	$0.004 \ (0.000 - 0.008)$	0.059	-0.026 (-0.056 - 0.003)	0.081	0.343 (0.255 - 0.432)	<0.001

Supplemental Table 1 Longitudinal associations of cumulative sedentary time and physical activity from ages 11 through 24 years with the progressive change in left ventricular mass and diastolic function from ages 17 through 24 years.

Model 1 was adjusted for sex, age at baseline and other time varying covariates measured at both baseline and follow-up such as low-density lipoprotein cholesterol, insulin, triglyceride, high-sensitivity C reactive protein, high-density lipoprotein cholesterol, heart rate, systolic blood pressure, glucose, fat mass, lean mass, smoking status, family history of hypertension/diabetes/high cholesterol/vascular disease, socioeconomic status. Model 2 was an additional adjustment for sedentary time, light physical activity or moderate to vigorous physical activity depending on the predictor. For categorical predictor variable analyses, all the above listed covariates were adjusted for negated for medel. Skewed covariates were logarithmically transformed. Regression coefficients (β) were computed from generalized linear mixed-effect model for repeated measures; CI, confidence interval; LVDF, left ventricular diastolic function; LVFP, left ventricular filling pressure; LVMI^{2.7}, left ventricular mass indexed for height^{2.7}; RWT, relative wall thickness, A 2-sided P-value <0.05 is considered statistically significant. Multiple testing was corrected with Sidak correction. Multiple imputations were used to account for missing variables. For continuous variable predictors (ST, LPA and MVPA), a 1-minute change is associated with the point estimate unit change in the outcome. For categorical variable predictor (MVPA), time spent in a category in relation to the reference is associated with the point estimate unit change in the outcome.

LVMI ^{2.7} (g/m ^{2.7})		RWT (cm)		LVDF (E/A)		LVFP (E/e')	
β (95% CI)	p-value	β (95% CI)	p-value	β (95% CI)	p-value	β (95% CI)	p-value
			Male (n	=344)			
Sedentary Time							
Model 1 0.032 (0.028 – 0.036)	<0.0001	$0.000\ (0.000 - 0.000)$	<0.0001	0.001 (0.000 - 0.001)	<0.0001	$0.004 \ (0.004 - 0.004)$	<0.0001
<i>Model 2</i> 0.002 (-0.003 – 0.007)	0.394	0.000 (-0.0001 - 0.000)	0.512	$0.000 \ (0.000 - 0.001)$	0.001	0.002 (0.001 - 0.003)	<0.0001
Light physical activity							
<i>Model 1</i> -0.045 (-0.048 – 0.041)	< 0.0001	$0.000\ (0.000 - 0.000)$	<0.0001	-0.001 (-0.001 - 0.000)	<0.0001	-0.004 (-0.0050.004)	<0.0001
<i>Model 2</i> -0.046 (-0.050 – -0.041)	<0.0001	$0.000 \ (0.000 - 0.000)$	<0.0001	0.000 (-0.0010.000)	0.044	-0.003 (-0.0040.002)	<0.0001
Moderate to vigorous physical act	tivity						
<i>Model 1</i> 0.015 (0.002 – 0.028)	0.022	-0.000(0.000 - 0.000)	0.102	0.000(-0.001-0.000)	0.559	-0.002 (-0.004 - 0.000)	0.101
<i>Model 2</i> 0.049 (0.037 – 0.061)	<0.0001	$0.000\ (0.000 - 0.000)$	0.023	$0.000 \ (0.000 - 0.001)$	0.168	$0.003 \ (0.000 - 0.005)$	0.018
			Female	(n=422)			
Sedentary Time							
Model 1 0.003 (0.000 – 0.005)	0.020	$0.0001 \ (0.0001 - 0.0001)$	0.043	$0.000 \ (0.000 - 0.000)$	0.033	0.000(0.000 - 0.001)	0.318
Model 2 $0.009 (0.005 - 0.012)$	<0.0001	-0.0001 (-0.0001 - 0.0001)	0.465	-0.000(0.000 - 0.000)	0.422	0.001 (0.000 - 0.002)	0.004
Light physical activity							
Model 1 0.002 (-0.001 – 0.004)	0.249	-0.000 (-0.0000.0001)	<0.0001	$0.000 \ (0.000 - 0.000)$	0.001	0.000(0.0001 - 0.001)	0.035
<i>Model 2</i> 0.008 (0.005 – 0.012)	<0.0001	-0.000 (-0.0000.0001)	0.001	0.000 (-0.0010.0001)	0.005	0.001 (0.001 - 0.002)	0.000
Moderate to vigorous physical act	tivity						
Model 1 -0.020 (-0.0320.009)	0.001	$0.000 \left(0.000 - 0.000 ight)$	0.002	0.000 (-0.001 - 0.001)	0.581	-0.003 (-0.005 - 0.000)	0.033
<i>Model 2</i> -0.013 (-0.0250.001)	0.033	0.000(0.000 - 0.000)	0.002	0.000(-0.001-0.001)	0.601	-0.002 (-0.005 - 0.001)	0.164

Supplemental Table 2 Longitudinal associations of cumulative sedentary time and physical activity from ages 11 through 24 years with the progressive change in left ventricular mass and diastolic function from ages 17 through 24 years according to sex.

Model 1 was adjusted for age at baseline and other time-varying covariates measured at both baseline and follow-up such as low-density lipoprotein cholesterol, insulin, triglyceride, high-sensitivity C reactive protein, high-density lipoprotein cholesterol, heart rate, systolic blood pressure, glucose, fat mass, lean mass, smoking status, family history of hypertension/diabetes/high cholesterol/vascular disease, socioeconomic status, and predictor by follow-up time interaction effect. Model 2 was an additional adjustment for sedentary time, light physical activity, or moderate to vigorous physical activity depending on the predictor. Skewed covariates were logarithmically transformed. Regression coefficients (β) were computed from generalized linear mixed-effect model for repeated measures; CI, confidence interval; LVDF, left ventricular diastolic function; LVFP, left ventricular filling pressure; LVMI^{2.7}, left ventricular mass indexed for height^{2.7}; RWT, relative wall thickness, A 2-sided P-value <0.05 is considered statistically significant. Multiple testing was corrected with Sidak correction. Multiple imputations were used to account for missing variables. For continuous variable predictors (ST, LPA and MVPA), a 1-minute change is associated with the point estimate unit change in the outcome.