Overview

The different sections of the supplementary material
cover the following aspects of our GradICON approach.

* Appendix A.1 provides a justification of our noise as-
sumptions, details of the derivation of the regularization
properties of GradICON, and additional insights on the
convergence behavior of GradICON.

* Appendix A.2 describes our affine data augmentation
strategy in detail.

e Appendix A.3 provides detailed comparisons of
GradICON to other regularizers, including the loss
curve and examples associated with the experiment
in Sec. 5.3.

» Appendix A.4 describes the details of the experiment
in Sec. 5.4 with convergence speed demonstration on
OALI dataset.

* Appendix A.5 shows an expanded version of Table 2
from the main manuscript. In particular, this table pro-
vides information on the provenance of these validation
results.

* Appendix A.6 provides details on inference times,
memory use, and numbers of parameters for some key
learning-based registration approaches.

* Appendix B shows example registration results for the
OAI, HCP, and COPDGene datasets.

» Appendix C discusses potentials for negative societal
impacts of our work.

A. Supplementary material
A.1l. Analysis details

Experiments on the main modeling hypothesis. The main
modeling hypothesis in the implicit regularization analy-
sis of Sec. 3.3 is that the noise term n can be neglected
in the Taylor expansion V®AB (@F4) = vAB(9BA) 4
eV2QAB(9BA)(nBA) + o(e). In this formula, we argue
in the main text that the noise term n”4 can be neglected
with respect to €, which is the scale of the noise on the Ja-
cobian. Indeed, only the low-frequency noise should appear
since integration is a low-pass filter, but we expect this low-
frequency noise to be dampened by the similarity measure,
which is an L? norm on the images. On the synthetic dataset,
we checked that our hypothesis is valid as a first approx-
imation. From a given output of the network ®;'5 @54,
we estimated the closest 45, 54 in L2 norm to our data.
Although this estimate is certainly biased, it is the first nat-
ural estimator to check our assumption. In Fig. 5, we plot
the noise n*% and its corresponding gradient VnA5 in one

chosen direction (indicated by the red arrow in the plots on
the right-hand side).

0.2 Test case 1
0.14 k
0] A, A
1 ha'l

0.0 I
v
0.1 ‘
-0.24 nAB
-0.3 — Al

0.0
029 Test case 2
ool /J\ N’\ f‘\
0.01

-0.31 —V:14H

0.0

AB

Figure 5. Two finite difference estimations of the noise n**” and
the gradients Vn?Z on the synthetic dataset. The magnitude of
the gradient is an order of magnitude higher which confirms our
hypothesis.

Derivation details. Some steps that were omitted in the main
text are explained hereafter. Our main object of interest is
the GradICON regularizer

ﬁGradICON _ ||V (I)AB((I) (

reg] - IHi‘ : (14)
In what follows, we use V insteand of V,. Making the
assumption that the neural network will try to be perfectly
inverse consistent in order to minimize Eq. (14), but will
make some error due to limited capacity or imprecision in
the training process or just because of trying to balance the
matching term and the inverse consistency, we decompose
each neural network output <I>é4B , ® f 4 into two components,
a perfectly inverse consistent component &5 and random

noise endB, je.,

£GradICON _ HV[CI)AB((I)EA) + 5nAB

reg

2
(@7)] =1 -
5)
By applying the chain rule, this can be rewritten as
EGr‘adICON || @AB q)eBA)+

reg
e(VnAP)(9F4)) - (VOPA + evnPA) — 1|2 .
Next, we Taylor-expand the term V®AB (@A) e,
VAB(PBA 1 enBA) with respect to ¢, yielding
VeAP (974 =
VOAB(0PA) 4 V2B (9B 4)nPA 4 o(e) |
where V248 (dBA)n B4 is the appropriate tensor product.
It is clear that the last term can be dropped in the limit of

(16)

A7)

small €. Plugging this approximation into Eq. (16), we get
ﬁfer;dICON ~ H(V(I)AB(‘I)BA)
4 EVQ(I)AB((I)BA)nBA
+e(VntP)(@7))
2
(VOB 4 evnPh) 1| .
Upon distributing terms,
Efgg«adICON ~ Hv@AB(@BA) . v@BA
4 €v2¢)AB((I)BA)nBA . V(DBA
+e(VnAB) (@54 . volAa
+ VOAB(®BA) . cvpBA (19)
+ eV2AB (9B BA . oy BA
+ e(VnAP) (@54 . evnBA
2
_IHF :
The first term equals I and so cancels with the last term.
Further, by assuming small ¢, we drop terms in €2, yielding
ﬁfé‘g&ldICON ~ ||€v2q)AB((I)BA)nBA . v@BA
+e(VnAB)(@F4) . vaBa (20)
+VOAB(9B4) . evn A
Following arguments above regarding the relative magni-
tudes of n and Vn, the first term in Eq. (20) can be neglected,
and also € can be factored out to obtain
[’fer;dICON ~ EQHV’ILAB(CI)QBA)V(I)BA
+ VOB (@B vRBA| 3
Now, we justify and then use the approximation
VnAB (@54 = vnAB(884) 4+ 0(e) . (22)
To proceed, we make the following remarks. Inversion of
the map preserves a first-order expansion in ¢, i.e.,
[©77)71 = @74 — cVBPA (AT (74)) 4 ofz) , (23)
which can be checked by composition. A similar first-order
expansion holds for the Jacobian determinant, i.e.,
Det(V[®5P]71) = Det(V[@AB] ") + O(e) . (24)
As a consequence, for a differentiable function (possibly
vector valued) I, we have
1([@74) (@) = I([@P4 (@) + Oe), (25)
by Eq. (23) and first-order Taylor expansion of I. We com-
bine the three above equations in what follows. Since VnA5

is a white noise, this formula is justified in the following
sense. For a given vector-valued differentiable function / on

(18)

2y

the image domain €2, we have

| 9t (@A @) - 1a) de

= [9nta) - H(@F @) Der(V(O] (@) da

= [Inta) (@5 (@) Der(V[0P4) @) da + O
= /Q vnAB (B4 . I(z)dz + O(e)

(26)
where, in the first and the last equation, we used the change
of variable formula. This brings us to

GradICON .2 AB(gBA BA
Lres e[Vt P (P4 VO
+ VeAE (@B PAL
which is Eq. (7) in the main text. We now expand the square
to get

27

‘C‘(Eer‘gadICON ~ 52 (||vnAB(¢)BA)vq)BA||2F‘

+ VOB (@54 7B

+2(VntP (@ Vel [veltP] (984 vn) b)
(28)
and an application of the fact that &4 and ®54 are inverses

of each other gives

GradICON
‘Creg ~

_ 2
2([[VntB @B ver L + |[vera] T vnsa |
+2(Vn B (@B VRPA, [VOrA) T vaBl))
(29)
When taking expectation in Eq. (9) of the main text, the
white noise independence assumption implies that
E[VnZBA(y)anB ()] =0 (30)
for all coordinates 7, j and x,y € §2; this explains that the
cross-term vanishes. Thus, we arrive at

E[EGradICON] ~ E[ez(HV”AB((I)BA)V@BAHi "

Teg
[tves ™ wne])]
F
Now, to further simplify Eq. (9), we use the fact that
E[VniB(2)Vni'P(z)] = 6;; where §;; = 1if i = j and
d;; = 0if ¢ # j. A direct computation already gives the
second term of Eq. (10) from the main text, i.e.,

E[ﬁfer;dICON] ~F [€2< HVnAB((I)BA)Vq)BA
[iwoe 7))

In order to obtain the first term of Eq. (10) from Eq. (9)
in the main text, one needs to use a change of variables
y = ®4B(2) in space, which results in the appearance of the
determinant of the Jacobian matrix, denoted by Det(VtIDAB)s
and then similarly use the white noise assumption. The first

F

term of Eq. (10) has a square root since it is put inside the
squared Frobenius norm. Overall, we arrive at Eq. (10) from
the main text, i.e.,

2

reg

[£CradICON] o 2 (H [vqy“B]fl Det(V®AB)
F

(32)

2
+ [[vera] ™|) .

F
GradICON and preconditioning. Recall that in our notation
P(x) = ®AB(®BA(x)) — Id. The ICON formulation uses
[|4[|3 2, whereas the GradICON formulation uses |[V¢||7..
Our goal is to understand the effect of this change on the
optimization scheme. The parameters of the neural net-
works encoding the map from A, B to ®47 are optimized
to minimize the overall loss but let us focus on the inverse
consistency loss. For each pair A, B, automatic differenti-
ation computes the gradient of the loss with respect to v,
which is then backpropagated. Computing the gradient of
the GradICON loss can be done by rewriting

IVeIZe = = (%, Ad)ra (33)
where A is the Laplacian. Hence, the gradient is —2Axq),
which is also called change of metric or preconditioning.
This gradient has a particularly clear formulation in Fourier
space (denoting by f(w) the Fourier transform of f () since
it reads as

Ap(w) = —w]*P(w) (34)
and has to be compared with the gradient of the ICON loss
which is . Low frequencies are thus damped in comparison

to high frequencies. For instance, the gradient flows (steepest
descent in cont. time) of the two regularizers are

Duth(x) = —h(x) and
Opp(x) = Ap(x)
Please note ¢(z) on the top is the 1) in ICON loss while the

one on the bottom corresponds to the 1) in GradICON loss. In
Fourier space, these flows become

D) = —(w) and
() = —|wPd(w) .

Here, the main difference is exponential convergence of
the first gradient flow while for the second one (related to
GradICON), the rate of exponential convergence depends
on |w|?, i.e., faster convergence occurring for high spatial
frequencies w. We now still need to understand why such
a preconditioning is beneficial for the overall goal of the
diffeomorphic registration problem. From the discussion
above, it is clear that low-frequency perturbations are less
penalized than high-frequency perturbations. The simplest
example is the case of constant perturbations which are not
penalized at all by the penalty on the gradient.

(35)

(36)

The purpose of inverse consistency is to encourage each

one of the transformations ®4Z and ®54 to be a bijective
map. However, a relaxation of this loss (in the sense of a
relaxation of a constraint) which still encourages invertible
maps can be beneficial in the context of diffeomorphic reg-
istration. A possible idea consists in relaxing the constraint
of 1) to be a deformation close to identity, while still being
diffeomorphic. As a consequence, if both @45 (®54) and
®BA(DAB) are invertible, then both transformation are also
invertible. In fact, constraining these two compositions to be
any diffeomorphism also leads to the same conclusion.

Further, it is well-known that perturbation of identity
by a map with a small Lipschitz constant remains a diffeo-
morphism. It is the result of the inverse function theorem,
explained in more detail below. Small variations around
identity by a Lipschitz map can be written as Id +v with
v : RY — R Lipschitz. We want these perturbations of
identity to remain diffeomorphic and, in particular, injective
(equivalent to asking for no foldings). A sufficient condition
to satisfy injectivity is that ||v(z) — v(y)| < |z — y| G.e.,
v is e-Lipschitz) with e < 1. When v is C'!, the Lipschitz in-
equality reduces to saying that || Vv(z)|| < e for every point
z in the domain. In fact, as shown by the inverse function
theorem, this condition is also sufficient for Id +cv to be a
diffeomorphism. Recall in our case, the deviation to identity
is denoted by 1. In view of this sufficient condition, one
would ideally penalize the maximum value of ||V (x)||.

To sum up, in order to control the invertibility of
OAB(PBA(x)), it is better to control V) rather than) itself.
Last, let us show on a concrete example that the ICON regular-
izer can be more constrained than the GradICON regularizer.
To this end, note that constant shifts around identity are still
invertible maps but ICON penalizes too large constant shifts,
while GradICON does not at all. Also, having small ICON
loss does not guarantee invertibility of the resulting maps.
Indeed, there are maps v with a small L2 norm for which
the magnitude of the gradient may be larger than 1, thereby
potentially leading to folds. Penalizing the maximum value
of the norm of the gradient of ¢ is better suited to guarantee
invertibility when the loss is less than 1. However, in prac-
tice, this loss has a lack of differentiability; using an L2 loss
is much simpler, more convenient, and retains some of the
nice properties mentioned above.

A.2. Affine data augmentation details

When we train using affine augmentation, first, we sample
a new pair of images from the dataset. Then, we randomly
choose whether the image is flipped along each axis: these
choices are shared between images in the pair. Finally, in-
dependently for each image in the pair, we sample a 3 x 4
matrix (with each entry i.i.d. from a standard Gaussian, de-
noted as V(34 (0, 1)) that represents an affine warp using
homogeneous coordinates. This produces an augmented

image I, i.e.,

) w 0 0 0 p
(@) =1 0 uy 0 Of+~-NCD0,1) H
0 0 wug O

where u; ~ Uniform{+1} and v = 0.05.

A.3. Comparison to other regularizers

In Sec. 5.3 of our main text, we conducted a comparison
between different regularizers using displacement vector
fields (DVF). However, Fig. 3 only shows aggregated results.
In Fig. 6 and Fig. 7, we present one registration example from
the Triangles and Circles and DRIVE data, respectively.
Fig. 8 and Fig. 9 show the image similarity measure, the
number of folds and the mean of the squared Ly-norm on
the displacement vector field plotted over training iterations
and with varying regularization weight.

A 4. Convergence of Gradient Inverse Consistency

We conduct the experiment in Sec. 5.4 based on our exper-
imental result of Fig. 3. In particular, we draw a horizontal
line in Fig. 3 at %|J| = 1072 and find the closest point to
the line on the GradICON and ICON curve. We then plot the
loss curves associated with these points in Fig. 4.

As can be seen from Fig. 4, there is a clear convergence
speed difference between GradICON and ICON on the two
2D datasets. While a similar study on actual 3D data would
be interesting, training 13 models with varying X is compu-
tationally challenging. Nevertheless, to obtain some intu-
ition about convergence speed differences on 3D data, we
present in Fig. 10 the training loss curve, as well as the trans-
form magnitude and the (log) number of folds, of GradICON
and ICON corresponding to the OAI dataset in Tab. 2. Fig-
ure 10 clearly supports our claim of faster convergence of
models trained with GradICON regularization over models
trained with ICON regularization. Further, it can be seen that
GradICON exhibits lower similarity loss and shows larger
transform magnitudes because it better captures the large
deformations in the OAI dataset.

A.S. Details for comparisons in Table 2

In this section, we 1) present Table 3, which is a complete
version of Table 2, and 2) describe the experimental details
for comparisons in Table 2.

sm-shapes and sm-brains. We evaluate the Synth-
Morph [31] model with pre-trained weights from its official
repository'> on the same HCP test set we use for GradICON
and follow the suggested testing protocol from the repository.
We first run FreeSurfer-Affine (see the following Freesurfer-
Affine paragraph) to align the source and target image to the
reference image provided in the repository. Then, we run

Shttps://github.com/voxelmorph/voxelmorph

SynthMorph-shapes (sm-shapes) and SynthMorph-brains
(sm-brains) models to obtain the deformation between the
pre-aligned source and target images. To compute the final
transformation field used to warp the original source label
map to the target label map, we first generate an identity map
in the target image space and transform it via the target-to-
reference affine matrix. Then, we compose the transformed
map with the deformation field computed by SynthMorph.
Lastly, we transform the composed deformation field via
the reference-to-source affine matrix (obtained by inverting
the source-to-reference affine matrix). Eventually, we use
the final computed deformation field to warp the original
source label map and then compute the DICE between the
warped label map and the target label map in the original
target space.

FreeSurfer-Affine. We report the affine pre-alignment result
from our SynthMorph experiment and label it as FreeSurfer-
Affine [48] in Table 2. FreeSurfer is run with the config-
uration recommended in the SynthMorph repository. For
evaluation purposes, we compose the target-to-reference
affine matrix and reference-to-source affine matrix the same
way as we did in the SynthMorph experiment except that
we skip the step to compose the deformation field computed
by SynthMorph. Essentially, we simply assume that the
non-parametric part that would have been obtained by Syn-
thMorph is set to the identity transform thereby only leaving
the affine registrations. This experiment differs from di-
rectly obtaining an affine transformation between the source
and the target spaces as instead we go through the template
space and compute two affine transformations. However, this
choice of affine transform composition allows a more direct
assessment of the improvements obtained by SynthMorph.

ICON. We follow a similar design as described in [23] and, in
particular, adopt the tallUNet2 architecture as the backbone
network. Specifically, a composition of two such UNet’s
is initially trained on half-resolution image pairs. This net-
work is then composed with a third UNet, trained on full-
resolution image pairs.

VoxelMorph. We use the official code from the VoxelMorph
repository!® and train on COPDGene. As VoxelMorph re-
quires pre-registration, we train another neural network for
affine pre-registration. Table 4 shows the registration accu-
racy of this affine registration network. For VoxelMorph,
we use NCC as the similarity measure, set the learning rate
to le-3, and the regularizer weight to 5. We keep all other
settings at the provided default values. Since the official
code provides the inverse transformation, the bi-directional
registration result is obtained with the forward map and its
inverse map is computed by the official code.

LapIRN. We obtain the network from the official reposi-

https://github.com/voxelmorph/voxelmorph

tory'® of LapIRN and train it on COPDGene. In particular,
we train using the training script provided by the official
repository with hyperparameter tuning for COPDGene data.
We switched from LNCC to NCC because we observed
unstable training with the LNCC implementation provided
in the official LapIRN repository. For each resolution, we
adjust the learning rate and) to assure that the training con-
verges. Table 5 provides the hyperparameters we used to
obtain the results in Table 2. We randomly swap the source
and target images during training so that the trained network
can work for bi-directional registration.

A.6. Model statistics

We compute model statistics regarding the number of
parameters, peak memory use, FLOPs, and inference time
using built-in PyTorch!” functions and the thop'® package.
This experiment is conducted using an NVIDIA GeForce
RTX 3090 GPU with a batch size of 1 and randomly gen-
erated image pairs of size 175 x 175 x 175. We run the
model 10 times and take the average of the elapsed time as
the final measurement. In addition, the peak GPU memory
usage is reported for each model. Table 6 and Table 7 list
the statistics of models evaluated in Table 2 and the UNet
used in our ablation study of Sec. 5.2. Working on 2-D
convolutional networks builds a strong intuition that if, in
a downsampling step, we double the number of channels
and cut in half the resolution, the amount of computation
stays roughly constant. This intuition is not correct for 3-D
networks. In fact, for 3-D networks, doubling the number
of channels and halving the resolution cuts the amount of
computation by 1/2. As a result, large channel counts deep
in the network are, from a computation time and VRAM
perspective, free. The UNet from ICON approach [23] takes
advantage of this effect to boost performance using a large
parameter count while reducing runtime and VRAM usage
compared to the standard VoxelMorph channel counts. We
used the same approach for our registration networks us-
ing GradICON. Note that Table 6 illustrates that even though
ICON and GradICON use about 50 times more parameters
than LapIRN and roughly 150 times more parameters than
VoxelMorph, memory consumption and inference times are
in fact lower.

B. Visualizations

In Fig. 11 and Fig. 12, we show two example registration
cases from OAI, Fig. 13 and Fig. 14 show two example
registration cases on DirLab, and Fig. 15 and Fig. 16 show
two example registration cases on HCP.

In Fig. 17 we show a block diagram of the network struc-
ture described in Sec. 4, that is more detailed.

6https://github.com/cwmok/LapIRN
Thttps://pytorch.org/
8https://github.com/Lyken17/pytorch-OpCounter

C. Potential negative societal impacts

Image registration results might not be accurate or might
even fail for certain image pairs in practice. Hence, careful
quality control of the results should be performed when reg-
istrations are used for decision-support systems in a medical
context.

https://github.com/cwmok/LapIRN
https://pytorch.org/
https://github.com/Lyken17/pytorch-OpCounter

@
&0
<

E
@
<
-
=
S

w2

27(3 27-’1 272 2[] 22 24 2()'

)
o0
=
<
=
<
en
£
=
=
7]
=
S
z
g
=
o
o
~
%)
ey \
>

o

g

=z

o

o

=

el
©
C

(&)
[
o0
]

E

-
)
&0
]

=

Figure 6. Illustration of one warped source image and the corresponding transformation maps for different regularizers across varying
regularization strengths on Triangles and Circles. Best-viewed in color.

20 21 26

Bending energy

ICON

M\!{ /

GradICON (Ours)

Tl 1 7

= .

LN

T FIY R

— [-LNCC — Magnitude — Folds

Figure 7. Illustration of image (dis)similarity (i.e., 1 — LNCC), the number of folds (Folds), and the mean of the squared L? norm of
the displacement vector field (Magnitude) for different regularizers and across varying regularization strengths on Triangles and Circles.
Best-viewed in color:

Source image

Bending energy

Diffusion

ICON

GradICON (Ours)

(5, SR
\ % \ o 3
. E ==
y) %,“ i)

Target image

Figure 8. Illustration of the residual error and the corresponding transformation maps between the warped source image and the target
image for different regularizers across varying regularization strengths on DRIVE. Best-viewed in color.

276 272 22 21 26

Bending energy

% VSNV
¥ Wiy

1194

ICON

™

VAL /
f

\4|val"4|\"4

GradICON (Ours)

bl iy I

— 1-LNCC — Magnitude — Folds

Figure 9. Illustration of image (dis)similarity (i.e., 1 — LNCC), the number of folds (Folds), and the mean of the squared L? norm of the
displacement vector field (Magnitude) for different regularizers and across varying regularization strengths on DRIVE. Best-viewed in color.

~—— GradICON (Ours)
—— ICON

s o o 2
(=3 f=3 [=3

2 & 8 g

1 1 1 1

Similarity (MSE)

0 25000 50,000 75,000 100,000 125,000 150,000 175000 200,000

~—— GradICON (Ours)
—— ICON

600

400

Number of folds

2004

0 25,000 50,000 75000 100,000 125000 150,000 175,000 200,000

Figure 10. Image similarity and the number of folds, plotted over training iterations for the ICON and GradICON (MSE, A = 0.2) entries in
the OAI section of Tab. 3. ICON’s parity in similarity loss early in training is illusory, as unlike our approach it is trained progressively, and
so during these iterations, it is still being trained at low resolution. This leads to a lower MSE during this phase, as the MSE demands more
precise alignment on higher resolution (and hence not low-pass filtered) input images. Once both networks are training at the final resolution,
the values are directly comparable. These results demonstrate the faster convergence rate, regularity, and final performance of GradICON.

Method Trans. Lreg Lim DICE © %|J|] Reported by

OAI

Initial 7.6
Demons [62] A,DVF Gaussian MSE 63.5 0.0006 [52]
SyN [3] A,VF Gaussian LNCC 65.7 0.0000 [52]
NiftyReg [43] A,B-Spline BE NMI 59.7 0.0000 [52]
NiftyReg [43] A,B-Spline BE LNCC 67.9 0.0068 [52]
vSVF-opt [52] A,vSVF m-Gauss LNCC 67.4 0.0000 [52]
VM [4] SVF Diff. MSE 46.1 0.0028 [52]
VM [4] A,SVF Diff. MSE 66.1 0.0013 [52]
AVSM [52] A,vSVF m-Gauss LNCC 68.4 0.0005 [52]
ICON [23] DVF ICON MSE 65.1 0.0040 *
Ours (MSE, A\=0.2) DVF GradICON MSE 69.5 0.0000 *
Ours (MSE, A=0.2, Opt.) DVF GradICON MSE 70.5 0.0001 *
Ours (std. protocol) DVF GradICON LNCC 70.17 0.0261 *

DVF GradICON LNCC 71.2% 0.0042 *

HCP

Initial 53.4
FreeSurfer-Affine [48] A — TB 62.1 0.0000 *
SyN [3] A,VF Gaussian MI 75.8 0.0000 *
sm-shapes [31] A,SVF Diff. DICE 79.8 0.2981 *
sm-brains [31] A,SVF Diff. DICE 78.4 0.0364 *
Ours (std. protocol) DVF GradICON LNCC 78.7t 0.0012 *

DVF GradICON LNCC 80.5% 0.0004 *

DirLab
Method Trans. Lreg Lsim mTRE | %|J| |
[mm]

Initial 23.36
SyN [3] A,VF Gaussian LNCC 1.79 — [26]
Elastix [38] A,B-Spline BE MSE 1.32 — [26]
NiftyReg [43] A,B-Spline BE MI 2.19 — [26]
PTVReg [65] DVF TV LNCC 0.96 — [65]
RRN [28] DVF TV LNCC 0.83 — [28]
VM [4] A,SVF Diff. NCC 9.88 0 *
LapIRN [45] SVF Diff. NCC 2.92 0 *
LapIRN [45] DVF Diff. NCC 4.24 0.0105 *
Hering et al. [30] DVF Curv+VCC DICE+KP+NGF 2.00 0.0600 [30]
GraphRegNet [26] DV — MSE 1.34 — [26]
PLOSL [66] DVF Diff. TVD+VMD 3.84 0 [66]
PLOSL5([66] DVF Diff. TVD+VMD 1.53 0 [66]
ICON [23] DVF ICON LNCC 7.04 0.3792 *
Ours (std. protocol) DVF GradICON LNCC 1.267 0.0003 *

DVF GradICON LNCC 0.96% 0.0002 *

Table 3. Full comparison on OAI, HCP and DirLab. 1 and I indicate results from our standard training protocol, without (1) and with (f)
instance optimization (Sec. 4.2). Only when GradICON is trained with MSE, we set A = 0.2. Top and bottom table parts denote non-learning
and learning-based methods, resp. For DirLab, results are shown in the common inspiration—expiration direction. Results marked with *
are reported by us using code from the official repository. A: affine pre-registration, BE: bending energy, MI: mutual information, DV:
displacement vector of sparse key points, TV: total variation, Curv: curvature regularizer, VCC: volume change control, NGF: normalized
gradient flow, TVD: sum of squared tissue volume difference, VMD: sum of squared vesselness measure difference, Diff: diffusion, VF:
velocity field, SVFE: stationary VF, DVF: displacement vector field. PLOSLsq: 50 iterations of instance optimization with PLOSL.

mTRE | DICE 1
Affine 13.715 80.23

Table 4. Registration performance measures of the pre-registration affine network for our VoxelMorph comparison on DirLab.

Resolution LapIRN (disp) LapIRN (sVF)
LR reg weight LR reg. weight

1 le™? 0.1 le—? 0.1

12 5e° 0.1 le ™4 0.1

1/4 le ® 1 5675 1

Table S. Learning rate (LR) and regularization weight (reg. weight) hyperparameters of LapIRN per resolution.

Inference Train
#Params
Peak Mem. (MB) FLOPs Time (ms) Peak Mem. (MB) Time (ms)
VM (SVF) 327,331 4548 397.878G 190.10 — —
LapIRN (SVF) 923,748 5578 652.310G 253.87 — —
LapIRN (DV) 923.748 5576 652.310G 235.30 — —
ICON 53,010,687 2918 678.513G 96.36 8082 573.57
GradICON-Stage1l 53,010,687 2934 618.592G 88.24 9384 727.77
GradICON-Stagel1&Stage2 70,680,916 3122 1.159T 160.59 13482 1162.54

Table 6. Model statistics at inference (test) time. G denotes gigaFLOPS, T denotes teraFLOPS.

#Params Peak Mem. (MB) FLOPs

UNet from [4] 327,331 4182.0 397.878G
UNet from [23] 17,670,229 2244 540.084G

Table 7. Model statistics of the UNets used in our ablation study. G denotes gigaFLOPS.

Source Target Source (warped) Source (warped) + Grid

Figure 11. Example registration case A (from test set instances) performed using GradICON and our standard training protocol () w/o
instance optimization on the OAI dataset. Best-viewed in color.

Source Target Source (warped) Source (warped) + Grid

Figure 12. Example registration case B (from test set instances) performed using GradICON and our standard training protocol () w/o
instance optimization on the OAI dataset. Best-viewed in color.

Source Target Source (warped) Source (warped) + Grid

Figure 13. Example registrations case A performed using GradICON and our standard training protocol (1) w/o instance optimization on the
Dirlab dataset. Best-viewed in color.

Source Target Source (warped) Source (warped) + Grid
‘\

Figure 14. Example registrations case B performed using GradICON and our standard training protocol (1) w/o instance optimization on the
Dirlab dataset. Best-viewed in color.

Source Target Source (warped) Source (warped) + Grid

Figure 15. Example registration case A (from test set instances) performed using GradICON and our standard training protocol () w/o
instance optimization on the HCP dataset. Best-viewed in color.

Source (warped) Source (warped) + Grid

Figure 16. Example registration case B (from test set instances) performed using GradICON and our standard training protocol (1) w/o
instance optimization on the HCP dataset. Best-viewed in color.

a)
Coordinates
®
> DAB
o] [=}
7 o =
L 5 S S
8 3 oy 8
‘ED = > (an Interpolate
- 2 |2 w g
hul =h
| (3 =i
a a
3
]
<
®
@
Warped Coordinates
b) []
TwoStep[®, V] o Down[®]
3 [] 3
) =) —]
K 4B H S z 9
> 3 @ > e 2
3 = s 8 5
3 S = 3 EX
S 3 & b K=y
8 =3 5 3 @ =
- 5 s g <l Y| E 5
= o)
. i] e
3
! > 3 3 > >
@ 2 > o} El
S 3 & &
E} & E} h i
2 ja 2 g 2
® =z © = —l
@ L @
c) Staget Stage2
TwoStep TwoStep
Down Stage1 W4
s Dq
Down
w, v, Wy

> || B B

d —
) GradICON Regularizer Sampled Coords
?T +Ax +Ay +Az
Q V]
®
>
m | AB |

] o]
El m
D
a
©
[

scaled scaled scaled

squared squared squared
difference difference difference

Figure 17. Our approach is most succinctly described using equations, as done in Sec. 4 , but we also desire to respect the convention that
neural network papers include a representation of the network as a block diagram. Our "atomic," or simplest component registration network
is a U-Net outputting a deformation (a). ®4E _ the output of this component, is a python function that may be called on a tensor of coordinates.
Components can be combined using the TwoStep and Down operators (b). The *function composition’ block in this row is implemented by
the python code lambda coords: phi_AB(psi_AB(coords)) , which is pleasing enough to justify our decision to represent deformations
as functions. These parts are combined into the Stagel and Stage2 networks we use for our general purpose registration approach (c). Finally,
this network is regularized by a finite difference approximation of the gradient of the inverse consistency error (d)

