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1 Interpretation of Regularizations.

We followed geometric interpretation of the graph regularization Tr(HLHT ) given in [2].
Recall that S ∈ Rn×n refers to the adjacency matrix of the gene similarity network and
L ∈ Rn×n is the graph Laplacian matrix defined by L = diag(S ·1)−S. We then illustrate
that the regularization term Tr(HLHT ) enforces the coherence of gene similarity structure.

Denote hi ∈ Rp×1 as the i−th column vector of gene matrix H, which represents Gene
i’s expression in the latent space. Hence, ∥hi−hj∥2 characterizes the dissimilarity of Gene
i and Gene j in the latent space. Given the gene higher-order similarity Sij for Gene i and
Gene j, we obtained a weighted-sum of overall dissimilarity across gene pairs by R1 in Eq.
(1),

R1 =
1

2

∑
i,j

∥hi − hj∥2 · Sij

=
∑
i

hT
i hi ·

∑
j

Sij

−∑
i,j

hT
i hj · Sij

= Tr(H · diag(S · 1) ·HT )− Tr(HSHT )

= Tr(H · (diag(S · 1)− S) ·HT )

= Tr(HLHT ),

(1)

which demonstrates that minimizing Tr(HLHT ) is equivalent to minimizing the overall
dissimilarity of gene pairs in the latent space.

The cell regularization term ∥A−WW T ∥2F is highly related to the graph regularization
term, it can be proved that min

W≥0,WTW=I
∥A −WW T ∥2F can be transferred to the graph
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regularization form min tr(W T L̃W ) as follows:

min
W≥0,WTW=I

∥A−WW T ∥2F
= min

W≥0,WTW=I
tr[(A−WW T )(A−WW T )]

= min
W≥0,WTW=I

tr(I)− 2tr(W TAW ) + tr(ATA)

= min
W≥0,WTW=I

2(tr(I)− tr(W TAW )) + const

= min
W≥0,WTW=I

2(tr(W TW )− tr(W TAW )) + const

= min
W≥0,WTW=I

2tr(W T (I −A)W ) + const

= min
W≥0,WTW=I

2tr(W T (I −D−1/2ÃD−1/2)W ) + const

= min
W≥0,WTW=I

2tr(W T L̃W ) + const

(2)

In Eq. (2), “const” means a constant number, and in penultimate line, we replace A by

A = D−1/2ÃD−1/2, D = diag(Ã).

Moreover, Ding et.al [5] proved that the orthogonality of W can still be retained if the
constraint W TW = I is removed.

In other words, if the cell similarity matrix is normalized, and Euclidean distance is
utilized to measure similarities in the latent space, then min

W≥0
∥A−WW T ∥2F is equivalent to

the graph regularization term. However, in this work, we chose MST-based cell similarity
measurement, we directly used min

W≥0
∥A −WW T ∥2F to preserve the local structure of cell

similarity network.

2 Blocklization Procedures

In the distributed SGD, original data matrix was firstly divided into blocks. Let K be
the prescribed number of splits, we first divided X0 into K2 blocks of various sizes, and
then divided A, M , W , H and L into blocks accordingly. Specifically, let md = ⌊mK ⌋,mr =
m(mod K), nd = ⌊ nK ⌋, nr = n(mod K), so that m = md · K + mr, n = nd · K + nr. X0

and M would be divided into K2 blocks, (K − 1)2 among them are of size md × nd, K − 1
among them are of size mr × nd, K − 1 among them are of size md × nr, and the rest one
is of size mr × nr. A (or L) would be divided into K2 blocks, (K − 1)2 among them are
of size md ×md (or nd × nd), K − 1 among them would be of size md ×mr (or nd × nr),
K − 1 among them would be of mr ×md (or nr × nd), and the rest would be mr ×mr (or
nr × nr respectively). W (or H) would be divided into K blocks, K − 1 among them are
of size md × p (or p× nd), and the rest one is of size mr × p (or p× nr respectively). For
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example, as illustrated in Figure 1 (d) (pipeline figure) (d), if K = 5 and A is a 10 × 10
matrix, then we would have 25 blocks with size 2× 2.

3 Interchangeability

To ensure the independence of each process, interchangeability [10] of the index quadruple
set U t should be maintained so that the optimization of (W i,W j , Hr, Hs) won’t affect
another pairs.

Definition of Interchangeability [10]
U1,U2 are interchangeable sets concerning a loss function L if any two instances u1 ∈ U1
and u2 ∈ U2 are interchangeable, where u1, u2 are interchangeable if

∇Lu1(θ) = ∇Lu1(θ − ϵ∇Lu2(θ)),
∇Lu2(θ) = ∇Lu2(θ − ϵ∇Lu1(θ)),

(3)

According to [10] , the interchangeability can be maintained while quadruples (i1, j1, r1, s1)
and (i2, j2, r2, s2) do not coincide, to be precise, we need i1 ̸= i2, j1 ̸= j2, r1 ̸= r2, s1 ̸=
s2, i1 ̸= j2, i2 ̸= j1, r1 ̸= s2 and r2 ̸= s1. For example, (1, 2, 1, 2) and (3, 4, 5, 6) do not
coincide, then we can update (W 1,W 2, H1, H2) and (W 3,W 4, H5, H6) in parallel. By
interchangeability, |U t|, the cardinality of the index quadruple set would not exceed the
number of blocks, which we prescribed as the number of parallelized processes.
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4 Algorithm 1

Algorithm 1 BANMF-S

Input: X0 ∈ Rm×n,M ∈ {0, 1}m×n, p≪ m, p≪ n, K ∈ N , γ1, γ2, α1, α2 > 0, ηt > 0
1: Register K processes
2: Calculate high-order gene similarity matrix Sg and the Laplacian L
3: Calculate cell similarity matrix A
4: Initialize W and H according to k-means
5: Partition L, A, M , X0 and the corresponding W and H into blocks
6: repeat
7: Randomly generate a set of interchangeable quadruples of indices U t =
{(it1, jt1, rt1, st1), (it2, jt2, rt2, st2), · · · }

8: For (i, j, r, s) ∈ U t, W i
t+1 = W i

t − ηt∇WiÕ,W j
t+1 = W j

t − ηt∇Wj Õ,Hr
t+1 = Hr

t −
ηt∇HiÕ,Hs

t+1 = Hs
t − ηt∇HsÕ

9: Ft+1 ← ||X0 −M ◦ (Wt+1Ht+1)||2F + γ1∥A −Wt+1W
T
t+1∥2F + γ2Tr(Ht+1LH

T
t+1) +

α1∥Wt+1∥2F + α2∥Ht+1∥2F
10: until |Ft+1 − Ft| < ϵ
Output: W,H

5 Supplementary Information for Data

5.1 Dataset Information

Details regarding the datasets are given in Table 1. The accession number, source download
Uniform Resource Locators (URLs), original data sizes, filtered data sizes and number of
clusters (time stamps) are provided in Table 1.

Short Name Accession Species # Genes (Raw) # Cells (Raw) # Genes (Filtered) # Cells (Filtered) # Clusters (Time Stamps)

Petropoulos E-MTAB-3929 human 21749 1529 16202 1529 5
Scialdone https://gastrulation.stemcells.cam.ac.uk mouse 41388 1205 16941 1205 4
Pollen https://github.com/gongx030/scDatasets human 21471 299 14194 299 11
Deng https://github.com/gongx030/scDatasets mouse 18884 286 14230 286 10

Baron-Hm GSE84133-GSM2230760 human 20125 1303 9189 1303 14
Baron-Ms GSE84133-GSM2230761 mouse 14878 822 7339 822 13
PBMC https://www.10xgenomics.com human 19867 42504 9189 1974 5

Table 1: Dataset Description

Remark: pbmc10k dataset was obtained from https://www.10xgenomics.com, and was
further devided into cell 1k, 3k, 5k, 7k, 10k and gene 1k, 3k, 5k, 7k, 10k datasets. The
bulk immune cell RNA-seq data was obtained from GSE74246.
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5.2 Methods Summary

We choose seven methods for comparison and provide the platform information, package
version and source in Table 2.

Methods Platform Version Source

ALRA R 0.0.0.9000 https://github.com/KlugerLab/ALRA

bayNorm R 1.5.14 https://github.com/WT215/bayNorm

DrImpute R 1.2 https://github.com/gongx030/DrImpute

MAGIC Python 3.0.0 https://magic.readthedocs.io/en/stable/

SAVER R 1.1.3 https://github.com/mohuangx/SAVER

scImpute R 0.0.9 https://github.com/Vivianstats/scImpute

scRMD R 0.99.0 https://github.com/XiDsLab/scRMD

monocle2 R 2.26.0 http://cole-trapnell-lab.github.io/monocle-release/

Table 2: Methods Description

5.3 Supplementary Tables for Simulation Study

Table 3 provides matrix density ratio for the downsampled matrix and the original PBMC
dataset. Table 4 records the downsampling rates for Simulation 2. Table 5 gives the RMSE
results for the simulation study.

downrate 30 downrate 35 downrate 40 downrate 45 downrate 50 downrate 55 downrate 60

Matrix Density Ratio 1.31 1.22 1.12 1.03 0.94 0.84 0.75

Table 3: Matrix Density Ratio for the Downsampled Matrix and Original PBMC

B cell CD4+ T cell CD8+ T cell Monocyte NK cell

pi 0.45 0.35 0.45 0.45 0.35

Table 4: Down-sampling Rates for Simulation 2
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method downrate 30 downrate 35 downrate 40 downrate 45 downrate 50 downrate 55 downrate 60 B cell CD4+ T cell CD8+ T cell Monocyte NK cell

BANMF-S 1.3646 1.3553 1.3553 1.3223 1.3469 1.3616 1.4072 1.1385 1.2651 1.1974 1.0603 1.2508
ALRA 0.9758 1.1765 1.1213 1.2454 1.4202 1.3805 1.5288 1.1614 1.0096 1.2137 1.0940 1.0942
bayNorm 2.4843 2.6724 2.8844 2.9594 2.9593 2.9592 2.9598 2.2686 1.9292 2.2258 2.1552 1.9213
DrImpute 1.6919 1.7383 1.7911 1.8501 1.9118 1.9814 2.0574 1.5979 1.6476 1.6583 1.4350 1.7497
MAGIC 1.7172 1.7677 1.8224 1.8830 1.9479 2.0209 2.0980 1.6151 1.6494 1.6661 1.4255 1.7671
SAVER 2.4912 2.5329 2.5722 2.6116 2.6483 2.6846 2.7197 2.1897 2.2294 2.2205 1.9874 2.3425
scImpute 1.9196 1.9269 1.9231 1.9297 1.9444 1.9382 1.9668 1.6802 1.8312 1.7479 1.4903 1.9433
scRMD 1.7069 1.7229 1.7456 1.7743 1.8101 1.8532 1.9070 1.5037 1.6201 1.5745 1.3939 1.6955

Table 5: RMSE

6 ARI and NMI Results for Clustering

Table 6 and 7 provides ARI and NMI results for clustering study.

dataname ALRA bayNorm DrImpute MAGIC noimp SAVER scImpute scRMD BANMF-S BANMF-S-latent

Baron Hm 0.4317 0.3093 0.5464 0.4390 0.4329 0.4537 0.4242 0.3976 0.4473 0.5339
Baron Ms 0.3776 0.3208 0.4643 0.3747 0.3904 0.3959 0.3941 0.3900 0.4774 0.5806
Deng 0.4806 0.3851 0.4559 0.4837 0.4015 0.4147 0.4339 0.3895 0.4908 0.4773
PBMC 0.6380 0.4418 0.6372 0.8014 0.4315 0.4671 0.4657 0.4308 0.8896 0.8991
Petropoulos 0.2332 0.2959 0.3374 0.3822 0.3039 0.3459 0.3459 0.2894 0.4942 0.4965
Pollen 0.6089 0.5351 0.6195 0.6483 0.6679 0.6253 0.6164 0.7252 0.6318 0.7473
Scialdone 0.5765 0.6012 0.6115 0.5801 0.5686 0.5768 0.5768 0.5713 0.5725 0.5688

Table 6: ARI

dataname ALRA bayNorm DrImpute MAGIC noimp SAVER scImpute scRMD BANMF-S BANMF-S-latent

Baron Hm 0.5965 0.4580 0.6390 0.6023 0.5693 0.6021 0.5649 0.5466 0.5885 0.6180
Baron Ms 0.5643 0.4683 0.6195 0.5475 0.5594 0.5699 0.5563 0.5627 0.6145 0.6406
Deng 0.7008 0.5748 0.6729 0.6619 0.5747 0.6131 0.6472 0.5796 0.6678 0.6956
PBMC 0.7156 0.4019 0.7147 0.7259 0.5401 0.5799 0.5733 0.5388 0.8141 0.8236
Petropoulos 0.3656 0.4279 0.4815 0.5180 0.4366 0.4843 0.4840 0.4284 0.5727 0.5734
Pollen 0.8031 0.7643 0.8031 0.8130 0.8234 0.8031 0.7969 0.8478 0.8031 0.8669
Scialdone 0.4990 0.5123 0.5179 0.5004 0.4884 0.4934 0.4986 0.4766 0.4807 0.4749

Table 7: NMI
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Figure 1: Clustering Results Summary

7 Experiments

7.1 Datasets

We adopted eight published real scRNA-seq datasets to validate BANMF-S’s performance,
they were named as Baron (including Baron Hm and Baron Ms), PBMC, Deng, Pollen,
Petropoulous, Scialdone and pbmc10k. These datasets would be used to evaluate whether
the imputed expression profiles could enhance the performance of downstream tasks. Spe-
cially, Petropoulos and Scialdone have time stamps, they were used for pseudotime trajec-
tory inference; the other five datasets have cell type labels, they were used for clustering.
Petropoulous and Scialdone have also been used for testing clustering performance, where
we used the time stamps as reference labels. Detailed information on the eight data sets are
listed as follow, and they were processed in accordance with Section Data Preprocessing.

• Baron [1]: We used Baron Hm (Baron Ms) for the human (mouse) cell dataset,
which are obtained by inDrop-seq, a droplet-based sequence technique. The filtered
Baron Hm (Baron Ms) dataset contains 1303 (822) cells and 9189 (7339) genes, an-
notated as 14 (13) cell types by known markers through hierarchical clustering in the
source paper. We regarded the given cell labels as gold standard.

• Deng [4]: The Deng dataset contains 10 cell types sampled from mouse preimplan-
tation embryos. The filtered matrix contained 14230 genes and 286 cells.

• PBMC: The raw PBMC (peripheral blood mononuclear cells) dataset was down-
loaded from 10x Genomics website, consisting of 42504 human peripheral blood
mononuclear cells from five cell types (B cell, CD4+ T cell, CD8+ T cell, NK cell
and Monocyte). The cell labels were annotated through FACS technique based on
surface markers. The filtered matrix includes 1974 cells and 9189 genes.

• Pollen [12]: The raw Pollen dataset involves 299 cells from human cerebral cortex,
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which can be further classified into 11 groups at the cell line level, where the K562,
HL60, CRL-2339 cell lines come from blood cell tissue, the Kera, BJ and CRL-2338
cell lines are from dermal cell tissue, the NPC (Neural Progenitor Cells), GW16,
GW21 and GW21+3 cell lines are nerve cells, and iPS cells are human-induced stem
cells. We used the given cell line labels as cluster labels in clustering analysis and
14194 genes were remained after the filtering.

• Petropoulos[11]: The Petropoulos dataset characterizes the transcriptomic profiles
of human preimplantation development, which includes 1529 cells from five (E3, E4,
E5, E6 and E7). We used the time stamps as reference labels in clustering analysis.

• Scialdone [14]: The Scialdone dataset records single cell transcriptomics from mouse
mesodermal development covering timecourse samples from early gastrulation at em-
bryonic day E6.5 to primitive red blood cells generation at E7.75 (HF), also including
E7 (PS) and NP (E7.5).

• pbmc10k: The pbmc10k dataset was obtained from 10x Genomics website that con-
tains 11571 cells and 13570 genes after filtering and was used to assess computational
efficiency.

We curated another 12 simulated data sets in two ways, namely, simulation 1 and
simulation 2. In simulation 1, we retained high quality genes and cells from PBMC dataset,
and then randomly removed non-zero reads following a Binomial distribution with varying
dropout rates, and obtained 7 datasets. In simulation 2, we generated 5 single cell data
sets by Multinomial distribution using gene proportions of bulk immune cell profilings and
library lengths in the PBMC single cell data set. Details of simulation procedures are
provided in Section Results.

7.2 Data Preprocessing

For those real datasets, we first removed ERCC spike-ins and mitochondrial genes if nec-
essary. Then performed Quality Control (QC) by removing genes that are recorded in less
than 5% of total cells and cells whose capture rates are less than 1%. Since the original
PBMC dataset is highly sparse with 2.95% non-zero entries, we applied a lenient QC pol-
icy there. Within each cell types of PBMC, genes with less than 0.1% expressions were
removed while cell expressed in more than 5% genes were retained. The accession num-
ber, source Uniform Resource Locators (URLs), original data sizes, filtered data sizes and
number of clusters (time stamps) are provided in Supplementary Table 1.

After quality control, all data were normalized to 104 counts per cell, followed by adding
one pseudocount, and then the sum was log-2 transformed. That is, if the raw count matrix
is denoted by X̃, then the normalized matrix X̃norm is computed by

[X̃norm]ij =
X̃ij∑
j X̃ij

× 104
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and then the log-transformed matrix X0 is given by

[X0]ij = log2([X̃norm]ij + 1).

While we used X0 as the input expression matrix for BANMF-S, , various processed
expression matrices were used for the other seven state-of-the-art algorithms as the algo-
rithms required. For example, if any method requires original counts , then take X̃ as an
input. Since evaluations were compared in log-transformed matrices, post-processing were
added in accordance with pre-processing after imputation if outputs were normalized data
or count data.

7.3 State-of-the-art Algorithms

To validate the effectiveness of BANMF-S, we chose seven state-of-the-art algorithms for
comparison, they are SAVER [7], MAGIC [16], scImpute [8], DrImpute [6], bayNorm [15],
scRMD [3] and ALRA[9]. SAVER employs a penalized regression method to estimate
gene-gene correlations and a Poisson-Gamma model is built for imputation. MAGIC uti-
lizes the powered Markov transition matrix, created by normalizing cell-to-cell affinity
matrix, to compute the “overall” similarity across cells and then “smooth” across the
whole sample. After identifying similar cells from different clustering methods, within each
cell sub-populations, DrImpute uses the averaged expression to estimate missing values
while scImpute builds a Gamma-Normal mixture model to make further inference. ALRA
adopts matrix factorization for recovery and designs an adaptive thresholding strategy for
non-negative constraint.

7.4 Evaluation

In the simulation studies, we employed the Rooted Mean Squared Error (RMSE), the
average squared difference between the imputed values and the actual values, to check
whether the imputation method is able to handle the technical noises,

RMSE =

√√√√√
∑

(i,j)∈D

([Ximp]ij − [X0]ij)
2

|D|
(4)

Here Ximp denotes the imputed expression matrix, D refers to the collection of dropout
positions inX0, and |D| represents the number of dropouts. Moreover, we used the cell-wise
correlation between the imputed scRNA-seq profile and the reference profile to evaluate
an imputation method’s capability to recover sample-level biological expression, which is
given by,

Cell-wise Correlation = [corr(Ximp[i, :], X0[j, :])],
i, j ∈ {1, 2, · · · ,m}, i, j ∈ C
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Here Ximp[i, :] (or X0[j, :]) means i−th row of Ximp (or X0) respectively. Moreover, cell i
and cell j belonged to a same cluster C.

In the real data studies, the accuracy of cell type clustering was evaluated from two met-
rics, namely Adjust Rand index (ARI) and Normalized Mutual Information (NMI). ARI is
a popular matching coefficient in evaluating classification accuracy. Let A = {A1, · · · , Ar}
and B = {B1, · · · , Bs} be two clusterings of a collection of N cells. For r ∈ {1, · · · , R}
and s ∈ {1, · · · , S}, let nrs be the number of cells which are assigned to the label Ar and
the label Bs.

If ar =
∑

s nrs and bs =
∑

r nrs are respectively the number of cells in the labels Ar

and Bs, then the ARI is calculated by

ARI(A,B) =

∑
rs

(
nrs

2

)
−
[∑

r

(
ar
2

)∑
s

(
bs
2

)]/(
N
2

)
1
2

[∑
r

(
ar
2

)
+
∑

s

(
bs
2

)]
−
[∑

r

(
ar
2

)∑
s

(
bs
2

)]/(
N
2

)
On the other hand, NMI is a measure that quantifies the similarity between two sets of
data by assessing their mutual information,

NMI(A,B) =
2× I(A,B)

H(A) +H(B)

where I(A,B) stands for the mutual information between the partition A and B and H(·)
represents the entropy. The ranges of these two metrics are from 0 to 1, the larger the
better. We use the function adjustedRandIndex in R package mclust (version 6.0.0) and
function NMI in R package aricode (version 1.0.2) to compute these two metrics.

Monocle2 [13] is a computational method that infers lineage relationships of individual
cells by constructing a principal tree, which represents the progression trajectory of the
given samples. Subsequently, cells are ordered along the learned graph, and their relative
geodesic distances to the initial cell state are computed as the corresponding “pseudotime”
of the cellular transition along the dynamic progress. The accuracy of trajectory inference
was assessed through the correlation between the given time stamp t1 and the computed
pseudotime orders t2, i.e., |corr(t1, t2)|. In this paper, we considered Pearson correlation
and Kendall’s correlation.

8 BANMF-S is an Efficient Algorithm

The blocklization strategy improves the computational efficiency in two ways. On the one
hand, it enables BANMF-S to solve the traditional NMF problem by SGD in paralleliza-
tion, saving wallclock time for large-scale datasets. On the other hand, it allows BANMF-S
to improve computational memory cost by circumventing direct large-scale matrix compu-
tations, and therefore, avoids the storage of numerous large-scale intermediate matrices. As

11



is shown in the memory plots in Figures 4 (b-c), the slopes for the matrix-based methods,
scRMD and ALRA, are larger than BANMF-S. To explain this, scRMD utilized ADMM
to solve the robust matrix decomposition problem in Eq (5),

min
L,S

1

2
∥Y − L+ S∥2F + λ∥L∥∗ + τ∥S∥1

subject to PΩ(S) ≥ 0, PΩc(S) = 0, and L ≥ 0,

(5)

where Y ∈ Rm×n refers to the observed matrix, Ω ∈ Rm×n represents the projection matrix,
and L, S ∈ Rm×n are low-rank and sparsity restrictions (see [3] for details). Apart from
tracing five large-scale matrices, Y,Ω, L, S and the recovered expression matrix exprs,
scRMD introduces latent varible Z ∈ Rm×n and the Lagrange multiplier Λ ∈ Rm×n in
the ADMM algorithm and uses two extra m−by−n matrices Z hat and L old as inter-
mediate variables, which is computationally expensive. In real studies, manual garbage
collection plays an important role in improving memory performance, by which unused
variables needs deallocation as soon as possible. Diving into the source codes, we found
that scRMD failed to manually remove m−by−n initialization variables such as initL,
initS and initLambda, which would be consequently tracked as part of the peak memory
usage of the entire job by the Slurm workload manager. Similar to scRMD, ALRA needs to
store severalm−by−nmatrices, the observed matrix, the mask matrix, theK−SVD factor-
ized low-rank matrix, and five other intermediate matrices, named by A norm rank k mins,
A norm rank k cor, A norm rank k temp, A norm rank k cor sc and lt0. With those in-
termediate matrix variables, scRMD and ALRA may be resource-acceptable for small-
scale datasets, but resource-intensive, even detrimental when confronted with large-scale
datasets. Back to BANMF-S, our method first restores X0,M ∈ Rm×n, A ∈ Rm×m and
L ∈ Rn×n in the global environment. In our core computational module, rather than the
direct manipulation of the m−by−n matrix, we tackled matrices of O(mdnd). At each iter-
ation, we sampled block quadruples to K registered pipes (processes in the context of paral-
lelization), where each pipe contained variables of {Aij ∈ Rmd×md , Lrs ∈ Rnd×nd ,W i,W j ∈
Rmd×p, Hr, Hs ∈ Rp×nd , Xir

0 , Xis
0 , Xjr

0 , Xjs
0 ,M ir,M is,M jr,M js ∈ Rmd×nd} and the deriva-

tives {∇W iÕ,∇W j Õ ∈ Rmd×p,∇HrÕ,∇HsÕ ∈ RK×nd}. To sum up all processes, the max-
imum memory requirement of our computational module can be regarded as K ·mdnd+K ·
m2

d+K ·n2
d, which demonstrates considerable improvements in terms of memory compared

to the whole scale.

9 UMAP Plots of Real Dataset Results
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Figure 2: UMAP results for Baron Hm
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Figure 3: UMAP results for Baron Ms
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Figure 5: UMAP results for Petropoulos

14



MAGIC SAVER scImpute scRMD

Raw BANMF−S ALRA bayNorm DrImpute

UMAP 1

U
M

A
P

 2

Annotations

16−cell
4−cell
8−cell
early 2−cell
early blastocyst
late 2−cell
late blastocyst
mid 2−cell
mid blastocyst
zygote
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Figure 7: UMAP results for Scialdone
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10 Imputation Recovery Rate for Simulated Datasets

method Original sparsity Imputed sparsity Recovery rate Dataset

ALRA 0.1541 0.9462 0.9847 Downrate 30
BANMF-S 0.1541 1.0000 1.0000 Downrate 30
bayNorm 0.1541 0.1791 0.2465 Downrate 30
DrImpute 0.1541 0.9960 0.9992 Downrate 30
MAGIC 0.1541 1.0000 1.0000 Downrate 30
SAVER 0.1541 1.0000 1.0000 Downrate 30
scImpute 0.1541 0.5450 0.7766 Downrate 30
scRMD 0.1541 0.2682 0.5353 Downrate 30
ALRA 0.1432 0.8670 0.9527 Downrate 35
BANMF-S 0.1432 1.0000 1.0000 Downrate 35
bayNorm 0.1432 0.1551 0.1438 Downrate 35
DrImpute 0.1432 0.9978 0.9998 Downrate 35
MAGIC 0.1432 1.0000 1.0000 Downrate 35
SAVER 0.1432 1.0000 1.0000 Downrate 35
scImpute 0.1432 0.5312 0.7668 Downrate 35
scRMD 0.1432 0.2578 0.5249 Downrate 35
ALRA 0.1322 0.9340 0.9796 Downrate 40
BANMF-S 0.1322 1.0000 1.0000 Downrate 40
bayNorm 0.1322 0.1373 0.0576 Downrate 40
DrImpute 0.1322 0.9980 0.9998 Downrate 40
MAGIC 0.1322 1.0000 1.0000 Downrate 40
SAVER 0.1322 1.0000 1.0000 Downrate 40
scImpute 0.1322 0.5193 0.7639 Downrate 40
scRMD 0.1322 0.2450 0.5096 Downrate 40
ALRA 0.1212 0.9076 0.9689 Downrate 45
BANMF-S 0.1212 1.0000 1.0000 Downrate 45
bayNorm 0.1212 0.1212 0.0000 Downrate 45
DrImpute 0.1212 0.9980 0.9998 Downrate 45
MAGIC 0.1212 1.0000 1.0000 Downrate 45
SAVER 0.1212 1.0000 1.0000 Downrate 45
scImpute 0.1212 0.5049 0.7528 Downrate 45
scRMD 0.1212 0.2304 0.4901 Downrate 45
ALRA 0.1102 0.8605 0.9464 Downrate 50
BANMF-S 0.1102 1.0000 1.0000 Downrate 50
bayNorm 0.1102 0.1102 0.0000 Downrate 50
DrImpute 0.1102 0.9977 0.9997 Downrate 50
MAGIC 0.1102 1.0000 1.0000 Downrate 50
SAVER 0.1102 1.0000 1.0000 Downrate 50
scImpute 0.1102 0.4853 0.7370 Downrate 50
scRMD 0.1102 0.2139 0.4668 Downrate 50
ALRA 0.0989 0.9469 0.9833 Downrate 55
BANMF-S 0.0989 1.0000 1.0000 Downrate 55
bayNorm 0.0989 0.0989 0.0000 Downrate 55
DrImpute 0.0989 0.9975 0.9997 Downrate 55
MAGIC 0.0989 1.0000 1.0000 Downrate 55
SAVER 0.0989 1.0000 1.0000 Downrate 55
scImpute 0.0989 0.4796 0.7367 Downrate 55
scRMD 0.0989 0.1965 0.4410 Downrate 55
ALRA 0.0879 0.9452 0.9812 Downrate 60
BANMF-S 0.0879 1.0000 1.0000 Downrate 60
bayNorm 0.0879 0.0879 0.0000 Downrate 60
DrImpute 0.0879 0.9973 0.9996 Downrate 60
MAGIC 0.0879 1.0000 1.0000 Downrate 60
SAVER 0.0879 1.0000 1.0000 Downrate 60
scImpute 0.0879 0.4521 0.7107 Downrate 60
scRMD 0.0879 0.1764 0.4072 Downrate 60

Table 8: Recovery rate for Simulation 1
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method Original sparsity Imputed sparsity Recovery rate Dataset

ALRA 0.1193 0.7137 0.9573 B cell
BANMF-S 0.1193 1.0000 1.0000 B cell
bayNorm 0.1193 0.1439 0.1994 B cell
DrImpute 0.1193 0.9688 0.9996 B cell
MAGIC 0.1193 0.9990 1.0000 B cell
SAVER 0.1193 1.0000 1.0000 B cell
scImpute 0.1193 0.4822 0.8557 B cell
scRMD 0.1193 0.2596 0.6094 B cell
ALRA 0.1314 0.8129 0.9763 CD4+ T cell
BANMF-S 0.1314 0.9999 1.0000 CD4+ T cell
bayNorm 0.1314 0.2154 0.4741 CD4+ T cell
DrImpute 0.1314 0.9815 0.9995 CD4+ T cell
MAGIC 0.1314 0.9999 1.0000 CD4+ T cell
SAVER 0.1314 0.9999 1.0000 CD4+ T cell
scImpute 0.1314 0.4618 0.7871 CD4+ T cell
scRMD 0.1314 0.2558 0.5858 CD4+ T cell
ALRA 0.1176 0.6462 0.9174 CD8+ T cell
BANMF-S 0.1176 1.0000 1.0000 CD8+ T cell
bayNorm 0.1176 0.1467 0.2239 CD8+ T cell
DrImpute 0.1176 0.9881 0.9996 CD8+ T cell
MAGIC 0.1176 0.9996 1.0000 CD8+ T cell
SAVER 0.1176 0.9996 1.0000 CD8+ T cell
scImpute 0.1176 0.4767 0.8242 CD8+ T cell
scRMD 0.1176 0.2519 0.5797 CD8+ T cell
ALRA 0.1446 0.7977 0.9633 Monocyte
BANMF-S 0.1446 1.0000 1.0000 Monocyte
bayNorm 0.1446 0.1676 0.1656 Monocyte
DrImpute 0.1446 0.9773 0.9985 Monocyte
MAGIC 0.1446 0.9999 1.0000 Monocyte
SAVER 0.1446 0.9999 1.0000 Monocyte
scImpute 0.1446 0.5707 0.8865 Monocyte
scRMD 0.1446 0.2826 0.5781 Monocyte
ALRA 0.1193 0.7503 0.9690 NK cell
BANMF-S 0.1193 1.0000 1.0000 NK cell
bayNorm 0.1193 0.2212 0.5376 NK cell
DrImpute 0.1193 0.9825 0.9999 NK cell
MAGIC 0.1193 0.9952 1.0000 NK cell
SAVER 0.1193 1.0000 1.0000 NK cell
scImpute 0.1193 0.4203 0.8082 NK cell
scRMD 0.1193 0.2415 0.5976 NK cell

Table 9: Recovery rate for Simulation 2

11 Trajectory Visualizations
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12 Parameters

To evaluate the impact of hyper-parameters on the imputation results, we perform sensi-
tivity analyses on the simulated datasets and assess the imputed matrices under RMSE
measurement. To be specific, fixing α1 = α2 = 0.1, we conduct BANMF-S on Simulation
1 and Simulation 2 with the following suites of gammas,

• γ1 = 0, γ2 = 1

• γ1 = 1, γ2 = 0

• γ1 = 0, γ2 = 0

• γ1 = γ2 = 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000

We also study the impact of sparsity penalties by fixing γ1 = γ2 = 0.1 and conducting
BANMF-S over the following suites of alphas,

• α1 = α2 = 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000

Results of sensitivity analyses with respect to γ1(α1) and γ2(α2) are demonstrated in the
upper(lower) panel of Figure 10 and Figure 11. RMSE exhibits like a U-shape curve as
γ1 and γ2 jointly increase, which indicates that penalties improve the accuracy of recovered
matrices. As α1 and α2 increase, RMSE remains relatively stable.

The sensitivity analyses demonstrate that (i) graphical penalties improves the accuracy
of recovered matrices; (ii) as long as γ1, γ2 is relatively small, i.e., γ1, γ2 ≤ 5, there is
no significant differences under RMSE measurement. We suggest choosing parameters
according to the following criterion,

• For matrix of size greater than 104, we recommend using γ1, γ2 ∈ {1, 2, 3, 4, 5} and
α1, α2 ∈ {1, 2, 3, 4, 5}.

• For matrix of size less than 104, we recommend using γ1, γ2 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}
and α1, α2 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

Table 10 provides the recorded parameters in this paper.
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Figure 10: Sensitivity Analysis for Simulation 1
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Figure 11: Sensitivity Analysis for Simulation 2
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Dataname α1 α2 γ1 γ2 K

Simulation 1 0.1 0.1 0.1 0.1 15
Simulation 2 0.1 0.1 0.1 0.1 15

PBMC 5 1 5 1 5
Baron ms 5 1 5 1 15
Baron hm 5 1 5 1 15
Pollen 0.1 0.1 0.1 0.1 15
Deng 0.5 0.1 0.5 0.1 15

Petropoulos 0.5 0.1 0.5 0.1 15
Scialdone 0.5 0.1 0.5 0.1 15
cell 1k-10k 5 1 5 1 15
gene 1k-10k 5 1 5 1 15

Table 10: Parameters used for each dataset
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