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Reviewer #1 (Remarks to the Author):

The paper introduces ST-GEARS, a computational method for recovering spatial profiles in 3D 

Spatial Transcriptomics. It focuses on optimizing 'anchors' for aligning sections based on gene 

expression and structural similarity, employing Distributive Constraints for precision. ST-GEARS 

aligns sections, corrects distortions through Elastic Fields, and uses Gaussian Denoising for 

improved accuracy. Tested across various datasets, it outperforms existing methods in spatial 

information recovery. The study suggests enhancements in data preprocessing and efficient 

clustering. The paper was poorly written, and the motivation for the proposed method was not well 

justified. My major concerns are:

1. The method part (including Figure 1) is a disaster. The notations are not consistent and are 

poorly defined. My suggestion is to use clearer, simpler language to define the data, parameters, 

and model. Also, the authors need to break down the framework into a step-by-step process, 

sometimes incorporating diagrams or flowcharts to represent the methodological process, which 

can be particularly helpful for understanding the method.

2. Lack of novelty. 3D reconstruction is a well-explored topic for spatially resolved transcriptomics 

data, with numerous existing methods available in top journals as well as bioRxiv. Although the 

manuscript has highlighted some distinctive features of the proposed method, including 

formulating the problem using fused Gromov-Wasserstein (FGW) Optimal Transport (OT), elastic 

registration, Gaussian smoothing, and so on, the authors did not justify why these features are 

essential for the accurate 3D reconstruction. Furthermore, the proposed method is an ensemble of 

components existing in existing methods. While we know that complexity does not necessarily lead 

to a better method, the authors should provide a clear justification for the proposed method and 

the necessity of every component added to the method compared to existing methods.

3. Beyond comparing with existing methods, include a broader range of datasets, particularly 

those with complex tissue types or pathological samples, to demonstrate the versatility and 

robustness of ST-GEARS. In addition, it provides a more in-depth comparison with existing 

methods, including detailed case studies where ST-GEARS offers significant advantages or 

addresses specific challenges not met by other approaches.

4. Many spatial transcriptomics tools integrate the paired histology images. However, this method 

ignores this very important information, which will definitely limit its applicability.

5. Scalability issue. Given the well-known scalability issue, the proposed method is no exception. If 

the scalability issue is not addressed, the method will not be a useful tool for spatial transcriptomic 

data analysis. Explore the potential for computational optimization to reduce processing time, 

especially for large datasets. No computational cost was reported.

6. Real data application. This manuscript has limited results from real data analysis and all the 

figures are in low-resolution and poorly generated. Additionaly, the authors should elaborate on 

the potential long-term implications of ST-GEARS for the fields of developmental biology, oncology, 

and tissue engineering, including how it might influence future research directions or clinical 

applications.

Reviewer #2 (Remarks to the Author):

In this article, the authors proposed a novel three-dimensional tissue recovery approach ST-GEARS 

for spatial transcriptomic data. This approach can use multiple tissue sections to reconstruct their 

original three-dimensional morphology. ST-GEARS adopts fused Gromov-Wasserstein optimal 

transport scheme with innovative distributive constraints to enhance the anchor retrieval, and it 

sequentially performs rigid and elastic registrations under the guidance of anchors to achieve the 

section alignment and deformation correction. The authors also proved the validity of bi-sectional 

fields in eliminating distortions of sections. Diverse real applications not only exhibit the 

effectiveness of introducing distributive constraints in the anchor retrieval and employing the 

elastic registration, but also highlight the overall satisfactory reconstruction performance of ST-



GEARS. In my opinion, this paper addresses an important biological question in the field of spatial 

transcriptomic 3D recovery, but I have some comments that require more explanations or 

discussions by the authors.

Major comments:

1. In the method part, the authors mention that each spot has its cell type. For example, on line 

653, "spots with same cell types". It is possible that one spot may have several cells from different 

types, so I am wondering how to determine the cell type annotation for such spots with 

heterogeneous cells?

2. The inputs of ST-GEARS include mRNA expression, spatial coordinates, and approximate 

grouping information, with the latter explicitly specified as rough clustering or annotation. For 

datasets lacking biological annotations, what degree of "roughness" is acceptable? Additionally, 

how significantly does the clustering result impacts the final 3D recovery performance? The 

authors may incorporate some numerical experiments to explain these aspects.

3. The distributive constraints are not applied to the mouse brain dataset due to the vast 

variations in cell types across sections. Does it imply that distributive constraints can only be 

employed when cell types across sections are almost identical? Please provide some guidance for 

users in which cases we should use the distributive constraints.

4. Excess zeros could be observed in next-generation-sequencing-based ST data, but the ST-

GEARS approach does not consider this explicitly. Do the zero proportions influence the 3D 

recovery result of ST-GEARS?

Minor comments:

1. Line 48: "Visum" should be corrected to "Visium".

2. Mathematical notations should be consistent throughout the manuscript. For example, Line 589 

introduces $X_A \in \mathbb{R}^{n_A,2}$, whereas Line 603 presents $X_{i,:}^{(A)}$.

3. Some notations are repeatedly used. For example, ``$W$" in Lines 597, 638, and 686 have 

distinct meanings. And in Lines 601 and 618, the authors use $C_A$ with different meanings.

4. In Figure 4 panel a, "S-GEARS (rigid result)" should be "ST-GEARS (rigid result)"?

Reviewer #3 (Remarks to the Author):

The manuscript titled "ST-GEARS: Advancing 3D Downstream Research through Accurate Spatial 

Information Recovery" tackles the challenge of accurately reconstructing the 3D morphology of 

tissue sections from their in situ spatial transcriptomics data. Current approaches to 3D spatial 

reconstruction suffer from significant inaccuracies due to their failure to account for experiment-

induced distortions or their sole reliance on gene expression data without incorporating structural 

information. This results in discrepancies between reconstructed and actual in vivo cell locations, 

affecting downstream analyses. ST-GEARS introduces an innovative approach that utilizes 

optimized anchors between sections based on both expression and structural similarities. It 

incorporates Distributive Constraints into the optimization process, enhancing the precision of 

anchor retrieval. The method employs elastic fields for distortion correction and Gaussian 

Denoising for data quality improvement, significantly advancing the accuracy of spatial information 

recovery. By providing a more accurate method for reconstructing the 3D spatial profiles of tissue 

sections, ST-GEARS enables a deeper understanding of biological processes at the tissue, cell, and 

gene levels. Its ability to precisely recover spatial information supports more reliable downstream 

analyses, potentially unlocking new insights in developmental biology, organogenesis, and disease 

pathology, and fueling biological discoveries.

The method employs elastic fields within the Fused Gromov-Wasserstein (FGW) framework to 



correct experimental distortions by mathematically modeling the deformation that tissue sections 

undergo during experimental procedures. Elastic fields are used to represent how each point in the 

tissue is displaced or transformed, allowing for the adjustment of the spatial coordinates of gene 

expression data. This process involves calculating the optimal transformation that minimizes the 

difference between the distorted experimental data and the expected undistorted state, effectively 

'undoing' the distortions and aligning the data more accurately with its original, undistorted 

configuration. This step is critical for ensuring that the reconstructed 3D spatial information 

accurately reflects the true morphology of the tissue.

I found the problem the authors tackle is very challenging and has a profound impact on our 

understanding of tissue 3D structure and cellular environment. The method discussed in this study 

presents a comprehensive strategy that aligns tissue slices by addressing limitations and gaps that 

were not resolved by existing approaches. Generally, I feel this is an important and useful 

methodology for the community. Yet, I have several major concerns that prevent me from 

recommending the paper in its current form (See below).

Major concerns:

1) The manuscript's benchmarking framework, while inclusive of comparisons with GPSA, PASTE, 

and PASTE2, can be significantly enhanced by integrating STAlign and SLAT into the comparative 

analysis. The addition of STAlign, renowned for its precision in slice-to-slice spatial alignments, 

would provide a critical evaluation of ST-GEARS in terms of alignment accuracy and efficiency. 

Furthermore, although SLAT does not directly offer 3D reconstruction solutions, its inclusion could 

provide valuable insights into pairwise slice alignment capabilities. This broader benchmarking 

spectrum is essential for a comprehensive assessment, offering a clearer picture of ST-GEARS's 

technological advancements and its comparative effectiveness within the rapidly evolving field of 

spatial transcriptomics. Expanding the benchmarking to include these methods would not only 

highlight ST-GEARS's unique contributions but also help identify areas for further methodological 

refinement and development, ensuring its competitive edge and utility in addressing complex 

biological questions. (Also why GPSA benchmarking is missing for several sets in the study).

2) The authors' efforts in demonstrating ST-GEARS' performance across multiple real datasets are 

commendable, showcasing its practical application and robustness. However, the inherent 

limitation of ground truth in these datasets poses a challenge for systematic benchmarking. To 

address this, a recommendation for further strengthening the manuscript is to include 

benchmarking against simulated datasets. By artificially manipulating slices through rotation, 

scaling, cropping, and adding noise, the authors could generate controlled conditions to rigorously 

test and quantitatively compare ST-GEARS' performance. This approach would allow for a more 

precise evaluation of its capabilities in handling various distortions and noise levels, providing a 

comprehensive benchmark that underscores its accuracy and efficiency in spatial reconstruction.

3) A critical weakness in ST-GEARS may lie in its computational complexity, particularly when 

processing large-scale datasets. The method's advanced features, such as optimized anchor 

alignment and elastic field application for distortion correction, could demand significant 

computational power and memory, impacting its efficiency. This aspect may limit its accessibility 

for researchers with limited computational resources or extend processing times for voluminous 

datasets. As the authors are undoubtedly aware, the volume of single-cell spatial transcriptomics 

data is ever-increasing, with datasets growing in scale and complexity. Therefore, it is imperative 

to ensure that the ST-GEARS algorithm can be efficiently applied to large-scale single-cell spatial 

datasets, as this is crucial for its broader adoption and practical utility in cutting-edge research. To 

address this concern and ensure the method's scalability, we kindly request that the authors 

provide a comprehensive analysis of both time and memory complexity in their manuscript. Such 

an analysis would not only serve as a testament to the method's computational efficiency but also 

provide valuable insights for researchers who may be considering its application on large-scale 

datasets. By presenting a detailed breakdown of time and memory requirements, the authors can 

demonstrate the method's ability to handle substantial datasets without compromising 

performance.

4) While the manuscript does provide evidence of ST-GEARS' application to various tissue types, 



another significant weakness that should be addressed relates to the potential for overfitting or 

hyperparameter sensitivity. The method incorporates multiple complex steps, including anchor 

selection, distributive constraints, Gaussian denoising, and elastic field modeling, each involving 

specific parameter choices. A potential weakness lies in the possibility that the performance of ST-

GEARS is highly dependent on the fine-tuning of these parameters. If the method is sensitive to 

the choice of parameters, it could lead to overfitting on certain datasets or challenges in 

reproducibility across different research groups. To mitigate this concern, it would be beneficial for 

the authors to provide a comprehensive sensitivity analysis that explores how variations in 

parameter settings impact the results. Additionally, recommendations or guidelines for parameter 

selection, based on the authors' extensive experience with the method, would aid users in 

achieving optimal outcomes. By addressing this weakness and offering insights into the robustness 

of ST-GEARS with respect to parameter choices, the authors can enhance the method's usability 

and reliability, ensuring that it can be successfully applied by a wider range of researchers without 

the risk of unintended biases or overfitting issues.

Reviewer #3 (Remarks on code availability):

pros: easy installation and comes with an example jupyte note with test datasets.

cons: no detailed description of APIs (functions and modules, what are the functions of each 

method and their parameters)



Reviewer 1

The paper introduces ST-GEARS, a computational method for recovering spatial profiles in 3D 

Spatial Transcriptomics. It focuses on optimizing 'anchors' for aligning sections based on gene 

expression and structural similarity, employing Distributive Constraints for precision. ST-GEARS 

aligns sections, corrects distortions through Elastic Fields, and uses Gaussian Denoising for 

improved accuracy. Tested across various datasets, it outperforms existing methods in spatial 

information recovery. The study suggests enhancements in data preprocessing and efficient 

clustering. The paper was poorly written, and the motivation for the proposed method was not well 

justified. My major concerns are:

We thank the reviewer for the careful observation and insightful suggestions. We have conducted 

thorough studies based on your questions and have revised corresponding sessions of our 

manuscript such as methods and innovation studies in red color. We hope this edition and the reply 

below will address your concerns.

1. The method part (including Figure 1) is a disaster. The notations are not consistent and are poorly 

defined. My suggestion is to use clearer, simpler language to define the data, parameters, and model. 

Also, the authors need to break down the framework into a step-by-step process, sometimes 

incorporating diagrams or flowcharts to represent the methodological process, which can be 

particularly helpful for understanding the method. 

Thanks for your careful reading and insightful comments. We noticed the consistency problem of 

notations and have revised the notations to be consistent and clearly defined. We have also modified 

our languages on definition of data, parameters, and model to be simpler and clearer. We appreciate 

your advice of breaking down the framework into step-by-step process and have revised our Figure 

1 based on incorporating a diagram to represent the process. 





similarity of annotation types or clusters. (c) FGW OT problem formulating, whose setting aims to solve 

probabilistic anchors joining spots with highest in situ proximity, through optimizing the combination of 

gene expression and structural similarityError! Reference source not found.. FGW OT problem solving, 

which is implemented based on Conditional Gradient (CG) method, leading to retrieved probabilistic 

anchors. (d) Elastic registration, which utilizes the anchors again to compute and denoise distortion fields 

which guides the elimination of distortions, then applies the fields bi-sectionally to positionally aligned 

sections, leading to the recovered 3D in vivo spatial information. 

2. Lack of novelty. 3D reconstruction is a well-explored topic for spatially resolved transcriptomics 

data, with numerous existing methods available in top journals as well as bioRxiv. Although the 

manuscript has highlighted some distinctive features of the proposed method, including formulating 

the problem using fused Gromov-Wasserstein (FGW) Optimal Transport (OT), elastic registration, 

Gaussian smoothing, and so on, the authors did not justify why these features are essential for the 

accurate 3D reconstruction. Furthermore, the proposed method is an ensemble of components 

existing in existing methods. While we know that complexity does not necessarily lead to a better 

method, the authors should provide a clear justification for the proposed method and the necessity 

of every component added to the method compared to existing methods.

Thanks for your observations and your comments on our method. We dissemble 3D spatial profile 

recovery into multiple missions that are connected head to tail, hence ST-GEARS is an ensemble of 

multiple method components. In some mission such as anchors computing, we have referred to 

current approaches such as PASTE in the optimization solver; however, to largely enhance anchors 

accuracy, we introduced Distributive Constraints for the first time. This innovation utilizes cell type 

component information to assign different weight to cells in anchors computation, hence increases 

mapping accuracy and the final registration accuracy. 

Besides the above components, some modules are completely innovated by ST-GEARS such as 

elastic registration module. We apologize for not explaining this relationship in a clear enough 

manner. Elastic registration minimizes differences between distorted experimental data and the 

expected undistorted state, hence ‘undo’ the distortions. It is implemented based on the innovative 

design and combination of three operations including elastic field inference, 2D Gaussian denoising 

and bi-sectionally fields application. The module enables ST-GEARS to be the first fully automatic 

registration method that can correct distortion.

In the section of Enhancement of anchor retrieval accuracy through Distributive Constraints, and 

section of Recovery of in situ shape profile through elastic registration, we respectively provide the 

necessity justification of Distributive Constraints and Elastic registration. Large improvements can 

be witnessed by comparing results of ST-GEARS to the same method with either component dis-

included while other operations unchanged (Fig. 2, Fig. 3, Supplementary Fig. 1, Supplementary 

Fig. 6). 

In application cases, the comparison between including and dis-including Elastic Registration is 

conducted as well. Obvious improvements can be seen by results of ST-GEARS adopting Elastic 





Figure R3: Individual sections of Drosophila embryo generated by ST-GEARS with Distributive 

Constraints excluded. The blue arrow points to section area where experimental flaw remains unfixed 

by the method.

We have included the above studies as modifications of our manuscript to clarify the novelty of our 

method, specifically in section of Application to sagittal sections of Mouse hippocampus, and 

section of Application to 3D reconstruction of Drosophila embryo. We hope the above reply and 

modifications can address your comments and questions.

3. Beyond comparing with existing methods, include a broader range of datasets, particularly those 

with complex tissue types or pathological samples, to demonstrate the versatility and robustness of 

ST-GEARS. In addition, it provides a more in-depth comparison with existing methods, including 

detailed case studies where ST-GEARS offers significant advantages or addresses specific 

challenges not met by other approaches.

We appreciate your observations and the suggestion, and have included pathological datasets to 

understand ST-GEARS’ effect on pathological datasets. 

We applied PASTE, PASTE2, GPSA, STalign and ST-GEARS onto the registration of Squamous 

cell carcinoma (SCC) sections (Fig. R4). By GPSA, various spots on different locations share 

exactly same coordinates, characterizing a failed registration. Across the other 4 methods, the edge 

of sections corresponds best by ST-GEARS (Fig. R5), indicating that our method addresses the 

distortion correction challenge best across all methods. In quantification of the comparison, across 

all methods generating anchors, ST-GEARS achieved significantly higher mapping accuracy than 

PASTE and PASTE2 (Fig. R6). Above results complement the applicability and advantages of ST-

GEARS through diverse sample types using pathological data.

(1st to 4th)

(5th to 8th)

(9th to 12th)
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representing bin spots of the 1st section, and orange spots representing the 2nd section. Edge of the 1st 

section indicated by spots positions was highlighted by blue line, while edge of the 2nd was highlighted 

by line of orange. The 2nd and the 3rd column visualize registered results of the 1st and the 2nd section, 

respectively. Various spots share the exact same position by registration result of GPSA. Among all 

methods except from GPSA with obvious error, edge of sections corresponds best by ST-GEARS.

Figure R6: Mapping accuracy of PASTE, PASTE2, GPSA, STalign, and ST-GEARS on registration 

of Squamous cell carcinoma (SCC) data. The index is not applicable on GPSA and STalign due to their 

lack of mapping information in results. Among methods with mapping results, 

ST-GEARS achieves the highest accuracy.

4. Many spatial transcriptomics tools integrate the paired histology images. However, this method 

ignores this very important information, which will definitely limit its applicability.

Thanks for the observation and comments on histology image integration. When designing ST-

GEARS, we did consider the possibility of enhancing registration through incorporating histology 

images. Hence, to explicitly study if integrating histology image into the method can enhance our 

registration precision, we compared ST-GEARS with an attempt of involving the image information 

into the method. Specifically, we first manually registered ST data of human dorsolateral prefrontal 

cortex (DLPFC) to its Hematoxylin (HE) histology image (Fig. R7), then integrated similarity term 

between histology images into registration of ST-GEARS, as the same approach adopted by 

PASTE2. By integrating and not integrating histology information, the mapping accuracy remains 

the same up to the 3rd decimal place across all section pairs (Fig. R8). Based on the in-variance of 

accuracy by integrating histology image or not, the image information has not been involved by 

method of ST-GEARS. The result is probably because context information of images introduced by 

cell variance such as cell size variance and cell shape variance are already embedded in gene 

expression. 
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Figure R7:  Spatial Transcriptomics spots of Dorsolateral Prefrontal Cortex (DLPFC) mapped to 

corresponding Hematoxylin (HE) histology image. The 1st row shows the mapped data of 1st and 2nd

sections, and the 2nd row shows the 3rd and 4th sections. 

Figure R8: Mapping accuracy of ST-GEARS with and without histology information integrated 

when registering Dorsolateral Prefrontal Cortex (DLPFC) data. Up to the third decimal place, the 

accuracy index remains the same between options on each pair of sections.

In the practical perspective, different types of histology images are adopted across different types 

of tissues in ST studies, hence a universal registration framework across different histology types 
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remains a challenge to be established. For example, Single-Stranded DNA (ssDNA) images are the 

usually adopted histology modality in brain ST experiments involving histology while Hematoxylin 

(HE) images are usually preferred in study of tumors. Furthermore, the huge modality difference 

between histology images and ST dataset itself poses challenge for methods to automatically 

integrate and register without introducing manual labor. Hence, we would like to extend this part of 

research in our future work. 

5. Scalability issue. Given the well-known scalability issue, the proposed method is no exception. 

If the scalability issue is not addressed, the method will not be a useful tool for spatial transcriptomic 

data analysis. Explore the potential for computational optimization to reduce processing time, 

especially for large datasets. No computational cost was reported. 

Thanks for reminding and for your suggestions. We agree on the importance of scalability for 

methods to be adopted across diverse scenarios, especially across data sizes. Across different 

methods in the field of 3D spatial profile recovery, scalability has been an issue not well addressed. 

Confronting exceedingly large dataset, OT-based methods such as PASTE suffer from the 

exponential memory and time consumption in constructing adjacency matrix describing gene 

expression and structural similarity. PASTE2 exacerbates the consumption by attempting different 

regularization factors while saving all intermediate results in memory. STalign transforms ST 

registration to registering image with large number of iterative steps, which introduces challenges 

on both time and memory consumption. Adopting deep Gaussian process, GPSA also solves 

registration result iteratively which requires large amount of time and requires extensive memory in 

its network construction. 

To deal with scenario with large data size, we introduce Granularity adjusting as a computational 

optimization to assist ST-GEARS. And we recommend users to turn on this option when over 3000 

spots are present in each section. In granularity adjusting, section area is first binned, with spots 

squared by each pixel summarized into one single spot, leading to a ST data with coarser resolution 

than original data. When summarizing within each grid, Unique molecular identifier (UMI) counts 

of spots is summed to, and the most frequent annotation type or cluster is labelled to the generated 

one spot. Then ST-GEARS is applied onto the coarser version of data, outputting a registered dataset 

with coarse resolution. Finally, to recover the original resolution as registration result, the original 

resolution data can be interpolated into the pre-registered and registered coarse dataset, leading to 

registration result in original resolution (Fig. R9). The conduction code of binning and interpolation 

method has been updated to GitHub repository of ST-GEARS. 









Figure R13: Time and peak memory consumption of PASTE, PASTE2, GPSA, STalign and ST-

GEARS, respectively on Mouse hippocampus, Drosophila embryo and Mouse brain datasets.

We have included above explanations and studies of granularity adjusting as modification to section 

of Granularity Adjusting in our Supplementary materials. We have also added the scalability study 

of time and memory to application sections of our manuscript. We hope above explanations and 

studies address your questions and comments.

6. Real data application. This manuscript has limited results from real data analysis and all the 

figures are in low-resolution and poorly generated. Additionaly, the authors should elaborate on the 

potential long-term implications of ST-GEARS for the fields of developmental biology, oncology, 

and tissue engineering, including how it might influence future research directions or clinical 

applications.

Thanks for your comments on applications. 

In terms of the resolution problem, we apologize for the inadequate resolution and have uploaded 

high-resolution figures along with our revised version.

With respect to real data analysis, we applied ST-GEARS on reconstruction of 3 datasets and 

analyzed gene and cells distribution by our method. On Mouse hippocampus, we found region-

specific cell types including DG, Neurogenesis, subiculum, CA1, CA2 and CA3 have almost 

identical distribution on both sections after registration (Fig. 4c), indicating those cell types are 

accurately registered. On Drosophila embryo dataset, we found ST-GEARS produced most accurate 

location of midgut, without any extruding regions as produced by other methods (Fig. 5d). Marker 

gene Cpr56F and Osi7 show closest approximation to hybridization evidence by ST-GEARS among 

all methods (Fig. 5e). On Mouse brain application, 7 cell types within cortex layers including L2/3 
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IT, L4/5 IT, L5 ET, L5 IT, L6 CT, L6 IT, L6b are all correctly reconstructed (Fig. 6d).  

Above findings indicate ST-GEARS produces accurate reconstructions of cell and gene, which is 

essential for revealing key variational regions in fields including developmental biology, oncology, 

and tissue engineering. Located in small areas, the regions precisely regulate process of 

developments and disease. Hence, by above results, ST-GEARS is shown to provide fundamental 

tool basis for accurate analysis of 3D ST data. 

Reviewer 2

In this article, the authors proposed a novel three-dimensional tissue recovery approach ST-GEARS 

for spatial transcriptomic data. This approach can use multiple tissue sections to reconstruct their 

original three-dimensional morphology. ST-GEARS adopts fused Gromov-Wasserstein optimal 

transport scheme with innovative distributive constraints to enhance the anchor retrieval, and it 

sequentially performs rigid and elastic registrations under the guidance of anchors to achieve the 

section alignment and deformation correction. The authors also proved the validity of bi-sectional 

fields in eliminating distortions of sections. Diverse real applications not only exhibit the 

effectiveness of introducing distributive constraints in the anchor retrieval and employing the elastic 

registration, but also highlight the overall satisfactory reconstruction performance of ST-GEARS. 

In my opinion, this paper addresses an important biological question in the field of spatial 

transcriptomic 3D recovery, but I have some comments that require more explanations or 

discussions by the authors.

We thank the reviewer for the positive feedback and constructive critiques. We have significantly 

improved ST-GEARS based on your professional comments and suggestion. All significant 

modifications are marked in red color in the revised manuscript. We hope this edition will address 

your concerns.

1. In the method part, the authors mention that each spot has its cell type. For example, on 

line 653, "spots with same cell types". It is possible that one spot may have several cells from 

different types, so I am wondering how to determine the cell type annotation for such spots with 

heterogeneous cells?

Thank you for the careful observation and for bringing up the issue. 

We apologize for using the phrase ‘cell type’ incorrectly. In all related cases we were trying to 

express ‘annotation type or clustering result of the spot’. Since various resolutions are introduced 

by different ST techniques, spots consisting of heterogeneous cells are sometimes present in the 

datasets. When dealing with such datasets, it is still the clustering result or annotation type of each 

spot that is required by ST-GEARS. We have revised this phrase across our Manuscript and 

Supplementary materials.



The annotation type or clustering information are used in Distributive Constraints section of ST-

GEARS. Using the grouping information, ST-GEARS assigns different weight to spots or cells 

based on their similarity of gene expression hence identity. For Spatial Transcriptomics (ST) 

sections with annotation type or clustering information, once similarity information across spots or 

cells is embedded in the annotation type or clustering information, the dataset is acceptable input of 

ST-GEARS. For example, human dorsolateral prefrontal cortex (DLPFC) data with annotated tissue 

types (Fig. 2) and Mouse hippocampus data (Supplementary Fig. 11) with clustering information 

were both successfully registered by ST-GEARS. 

2. The inputs of ST-GEARS include mRNA expression, spatial coordinates, and approximate 

grouping information, with the latter explicitly specified as rough clustering or annotation. For 

datasets lacking biological annotations, what degree of "roughness" is acceptable? Additionally, 

how significantly does the clustering result impacts the final 3D recovery performance? The authors 

may incorporate some numerical experiments to explain these aspects.

Thanks for your insightful question and comments. For datasets with clustering information of each 

spot or cell, ST-GEARS has a relatively loose requirement of its roughness extent. As the cluster 

information assists Distributive Constraints module in assigning different weight to observations 

based on their similarity of gene expression and identity, once the similarity information is 

embedded in the clustering, the roughness level is acceptable.

To explicitly demonstrate the acceptance range of roughness and its impact on method performance, 

we applied ST-GEARS to register 3 different SCC sections with varying clustering numbers. We 

respectively applied 3, 6, 9, 15, 18 and 21 as number of clusters in K-means clustering (Fig. R14) 

and used the same published cluster labels to measure mapping accuracy. In the published version, 

the SCC sections have 12 clusters. We found ST-GEARS correctly registers all sections across 

different roughness level of clustering and the mapping accuracy remains almost constant (Fig. R15). 

This indicates that once the clustering information includes the similarity messages, the results are 

least impacted; and the clustering result almost doesn’t impact the final 3D recovery performance. 





Figure R15: Mapping accuracy of ST-GEARS on registering Squamous Cell Carcinoma (SCC) data 

with different number of clusters as inputs. The 1st row shows the mapping accuracy of anchors 

between the 1st and 2nd sections, while the 2nd row represents accuracy of anchors between the 2nd and 3rd

sections. The clustering was implemented by method of K-means. The mapping accuracy of data with 

different number of clusters is measured with the same published cluster labels.

3. The distributive constraints are not applied to the mouse brain dataset due to the vast 

variations in cell types across sections. Does it imply that distributive constraints can only be 

employed when cell types across sections are almost identical? Please provide some guidance for 

users in which cases we should use the distributive constraints.

We appreciate your observation and constructive suggestion. 

In its anchors computation where Distributive Constraints is involved, ST-GEARS resolves anchors 

between pair of closest sections. For each section pair, sections are not required to have almost 

identical gene expression, or almost identical annotation type or cluster distribution. Certain 

variance is accepted on both spot / cell level and grouping level. 

For guidance of using Distributive Constraints, we suggest users to calculate probabilistic 

distribution of number of spots on different clusters or annotations for each section (Fig. R16), then 

measure Kullback-Leibler (KL) divergence of the distribution between closest section pairs (Fig. 

R17). If the maximum KL divergence remains below 1, Distributive Constraints is suggested to be 

adopted, since the annotation type or cluster distribution is close between every section pair. 

However, if the maximum KL divergence exceeds 1, users are encouraged to try ST-GEARS without 

Distributive Constraints. 
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Figure R17: Histogram of Kullback-Leibler (KL) divergence of probabilistic distribution of no. of 

spots on different clusters or annotations between closest section pairs, respectively of Mouse 

hippocampus, Drosophila embryo and Mouse brain datasets. The position of average and maximum 

KL divergence was marked by red vertical lines and the respective values were labeled in black.

For example, in our application cases, the maximum KL divergence remains below 1 for both Mouse 

hippocampus and Drosophila embryo (Table R1), and Distributive Constraints was adopted in 

registration. While in Mouse brain dataset, the value reached 1.448 and the option was not adopted 

during registration. Annotation type distribution obviously varies across sections of Drosophila 

embryo (Fig. R16), yet Distributive Constraints is still adopted, leading to a successful registration. 

This indicates that ST-GEARS does not require identical grouping distribution to employ 

Distributive Constraints. The code for calculating maximum KL divergence has been uploaded to 

GitHub repository of ST-GEARS. 
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average= 0.159 max. = 1.448



Table R1: Maximum Kullback-Leibler (KL) divergence of Probabilistic distribution of no. of spots 

between closest section pairs and whether the Distributive Constraints was adopted in cases of 

Mouse hippocampus, Drosophila embryo and Mouse brain datasets.

We have modified our section of Reconstruct samples with different constraints settings in 

Supplementary material to include the above guidance for adopting Distributive Constraints. And 

we have included our setting on this option in the material as well. 

4. Excess zeros could be observed in next-generation-sequencing-based ST data, but the 

ST-GEARS approach does not consider this explicitly. Do the zero proportions influence the 3D 

recovery result of ST-GEARS?

Thanks for the insights on gene expression data sparsity and its influence. Through our study on 

applications of ST-GEARS on dataset with varying zero proportions, excess zeros have almost no 

influence on method performance. 

In our study, we applied ST-GEARS on datasets sequenced by different methods, including Mouse 

brain dataset sequenced by Barcoded Anatomy Resolved by Sequencing (BARseq) which belongs 

to In situ sequencing (ISS), Mouse hippocampus data sequenced by Slide-seq, Drosophila embryo 

and larva data sequenced by Stereo-seq, and DLPFC data sequenced by Visium technology. Slide-

seq, Stereo-seq and Visium all belong to Next-generation sequencing (NGS) technology, and excess 

zero proportion is observed on all 4 datasets (Fig. R17). On datasets both with and without excess 

zeros, ST-GEARS successfully reconstructed all sections (Fig. 2, Supplementary Fig. 8, Fig. 4, Fig. 

5, Fig. 6). We further studied the change of mapping accuracy with different sparsity, and did not 

observe clear correlation between zero proportion and the accuracy results (Fig. R18), with 

coefficient of determination (R2) being less than 0.2. Above results indicate the stability of ST-

GEARS across different sparsity levels.

Application cases Max. KL divergence Distributive Constraints adopted

Mouse hippocampus 0.033 True

Drosophila embryo 0.499 True

Mouse brain 1.448 False



Figure R17: Histogram of proportion of zero in expression matrix of Mouse brain, Mouse 

hippocampus, Drosophila embryo, Drosophila larva and Dorsolateral Prefrontal Cortex (DLPFC) 

sections.

Figure R18: Mapping accuracy and zero proportion of Mouse brain, Mouse hippocampus, 

Drosophila embryo, Drosophila larva and Dorsolateral Prefrontal Cortex (DLPFC) sections. the 

coefficient of determination (R2) was labeled in black.

Minor comments:

1. Line 48: "Visum" should be corrected to "Visium".

Thanks for pointing out. We have revised the corresponding spelling. 

2. Mathematical notations should be consistent throughout the manuscript. For example, Line 589 

introduces $X_A \in \mathbb{R}^{n_A,2}$, whereas Line 603 presents $X_{i,:}^{(A)}$.
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Thanks for your careful observation. /F ( -MP#D introduced in line 589 (634 in revised version) 

and /K#$
WFX

  in line 603 (650 in revised version) are actually consistent. The subscript 6  of /K#$
WFX

represents spot or cell index, and it is specifically labelled in /K#$
WFX

, to show projection of sectional 

spatial information of each spot /K#$
WFX

 , to spot-wise distance measure +K#L
WFX

 , where +K#L
WFX

=

26<W/K#$
WFX

# /L#$
WFX

). In /F ( -MP#D, the subscript 6 is not labelled due to the absence of need to show 

any projection. )  is labelled as superscript of /K#$
WFX

  yet subscript of /F ( -MP#D , because the 

subscript of /K#$
WFX

 is already used to label spot index 6. Hence ) is moved to the superscript and 

added parentheses, to represent it is the same matrix as /F. 

3. Some notations are repeatedly used. For example, ̀ `$W$" in Lines 597, 638, and 686 have distinct 

meanings. And in Lines 601 and 618, the authors use $C_A$ with different meanings.

Thanks for your careful observation and the very constructive suggestion. we apologize that same 

notation . was used to indicate distinct meaning in line 686 (671 in revised version) compared to 

line 597 (645 in revised version) and 638 (701 in revised version). We have revised the notation 

from . to .62=5 to represent size of the column dimension of elastic fields in all corresponding 

lines. 

We also apologize for using +F repeatedly for different meaning in line 601 (649 in revised version) 

and 618 (678 in revised version) and have changed the notations to differentiate them two.

Exceptionally, in line 597 (645 in revised version) and 638 (701 in revised version), .  was 

actually differentiated by superscript to indicate their difference in meaning. In line 597 (645 in 

revised version), .  appeared in .K
WFX

  and .L
WGX

 . Subscript are taken by 6  and 7 , for us to 

specify projection between spot index with adjacency matrix @ in V @K#L
L

U .K
WFX

. And hence 

section code ) and * are moved to superscript and added parentheses to show that the matrices 

are actually .F  and .G . .K
WFX

  and .L
WGX

  indicate constraints values of section A and B 

calculated by Distributive Constraints. In 638 (701 in revised version) and 639 (702 in revised 

version), .
YK%HR

WPX
EJR}

WF&NIOX
  and .

YK%HR
WQX

EJR}

WG&NIOX
 have the subscript occupied with the same reason, hence 

)NIO and *NIO appear as superscripts. .
YK%HR

WPX
EJR}

WF&NIOX
 and .

YK%HR
WQX

EJR}

WG&NIOX
 indicate constraints values 

of section A and B before normalization. As letter W is used in both .K
WFX

  and .
YK%HR

WPX
EJR}

WF&NIOX
  to 

represent constraint values, )  and )NIO  are used to specify their difference in respect to 



normalization. 

4. In Figure 4 panel a, "S-GEARS (rigid result)" should be "ST-GEARS (rigid result)"?

We appreciate for pointing this out and have revised the corresponding figure. 

Reviewer 3

The manuscript titled "ST-GEARS: Advancing 3D Downstream Research through Accurate Spatial 

Information Recovery" tackles the challenge of accurately reconstructing the 3D morphology of 

tissue sections from their in situ spatial transcriptomics data. Current approaches to 3D spatial 

reconstruction suffer from significant inaccuracies due to their failure to account for experiment-

induced distortions or their sole reliance on gene expression data without incorporating structural 

information. This results in discrepancies between reconstructed and actual in vivo cell locations, 

affecting downstream analyses. ST-GEARS introduces an innovative approach that utilizes 

optimized anchors between sections based on both expression and structural similarities. It 

incorporates Distributive Constraints into the optimization process, enhancing the precision of 

anchor retrieval. The method employs elastic fields for distortion correction and Gaussian Denoising 

for data quality improvement, significantly advancing the accuracy of spatial information recovery. 

By providing a more accurate method for reconstructing the 3D spatial profiles of tissue sections, 

ST-GEARS enables a deeper understanding of biological processes at the tissue, cell, and gene 

levels. Its ability to precisely recover spatial information supports more reliable downstream 

analyses, potentially unlocking new insights in developmental biology, organogenesis, and disease 

pathology, and fueling biological discoveries.

The method employs elastic fields within the Fused Gromov-Wasserstein (FGW) framework to 

correct experimental distortions by mathematically modeling the deformation that tissue sections 

undergo during experimental procedures. Elastic fields are used to represent how each point in the 

tissue is displaced or transformed, allowing for the adjustment of the spatial coordinates of gene 

expression data. This process involves calculating the optimal transformation that minimizes the 

difference between the distorted experimental data and the expected undistorted state, effectively 

'undoing' the distortions and aligning the data more accurately with its original, undistorted 

configuration. This step is critical for ensuring that the reconstructed 3D spatial information 

accurately reflects the true morphology of the tissue.

I found the problem the authors tackle is very challenging and has a profound impact on our 

understanding of tissue 3D structure and cellular environment. The method discussed in this study 

presents a comprehensive strategy that aligns tissue slices by addressing limitations and gaps that 

were not resolved by existing approaches. Generally, I feel this is an important and useful 

methodology for the community. Yet, I have several major concerns that prevent me from 

recommending the paper in its current form (See below).



Thanks for the positive feedback of the overall method and its tackling of problems not solved by 

current approaches. And we appreciate the reviewer for insightful summary of each module of ST-

GEARS including their designs and biological meanings. We have significantly improved ST-

GEARS based on all your suggestions and questions. All significant modifications are marked in 

red in the revised manuscript. We hope this edition will address your concerns.

1. The manuscript's benchmarking framework, while inclusive of comparisons with GPSA, 

PASTE, and PASTE2, can be significantly enhanced by integrating STAlign and SLAT into the 

comparative analysis. The addition of STAlign, renowned for its precision in slice-to-slice spatial 

alignments, would provide a critical evaluation of ST-GEARS in terms of alignment accuracy and 

efficiency. Furthermore, although SLAT does not directly offer 3D reconstruction solutions, its 

inclusion could provide valuable insights into pairwise slice alignment capabilities. This broader 

benchmarking spectrum is essential for a comprehensive assessment, offering a clearer picture of 

ST-GEARS's technological advancements and its comparative effectiveness within the rapidly 

evolving field of spatial transcriptomics. Expanding the benchmarking to include these methods 

would not only highlight ST-GEARS's unique contributions but also help identify areas for further 

methodological refinement and development, ensuring its competitive edge and utility in addressing 

complex biological questions. (Also why GPSA benchmarking is missing for several sets in the 

study). 

Thanks for your suggestion towards broader benchmarking spectrum. We have conducted 

registration of current application datasets with further inclusion of STalign and SLAT.

Since SLAT is a method generating mappings across spots or cells between sections, we focused on 

comparing its mapping accuracy with other mapping-involved methods including PASTE, PASTE2 

and ST-GEARS, to understand its potential in pairwise slice alignment. Identical to the analysis we 

have conducted on anchors of other methods, we tagged each spot of human dorsolateral prefrontal 

cortex (DLPFC) section with the annotation of its mapping spot by SLAT with highest probability. 

We then compared this result to the tagged spot’s original annotation (Fig. 2a, Supplementary Fig. 

1). SLAT generated similar annotation with ST-GEARS, excepts that it mapped multiple spots to 

spots from different tissue layers, particularly of spots located on layer 2, 4 and 6. The slightly 

inferior mapping is probably because of SLAT’s optimization framework: though it embeds spatial 

information in its graph neural network to propagate expression features, structural consistency term 

is not involved in its loss function in alignment solving, causing random spots on separate layers to 

be mis-aligned. Consequently, SLAT resulted in mapping accuracy that is higher than PASTE (Fig. 

2b), yet slightly lower than PASTE2 and ST-GEARS. Similar results were witnessed on other 2 

section pairs of DLPFC (Supplementary Fig. 1). ST-GEARS remains the method with highest 

mapping accuracy in the comparison. 







Supplementary Fig. 1: Distributive emphasis of different cell types of the 2nd to 4th section of 

DLPFC causes the advanced anchor accuracy. From the 1st to the 4th column are presented 

probabilistic constraints settings in problem formulating, no. of anchors computed on each spot, 

max. anchor probability value computed of each spot, and annotated cell types on the next 

sections mapped back to its previous sections through computed anchors, with mapping accuracy 

marked. The distinction of different cell types on the sections are marked by dotted lines. 1st and 

2nd row show analysis results of PASTE, 3rd and 4th show results of PASTE2, 5th and 6th row show 

results of SLAT, 7th and 8th row show results of ST-GEARS without distributive constraints 

settings, and 9th and 10th rows show results of ST-GEARS with distributive constraints settings. In 

the results of each method, the upper row presents result of the 2nd and the 3rd sections, while the 

lower row presents results of the 3rd and 4th sections. As ST-GEARS adopts distributive 

constraints, it generates relatively more and higher probabilistic anchors on cell types with higher 

expression consistency across sections, and hence it produces anchors with higher mapping 

accuracy.   

Considering its registration function, we applied STalign on all registration application cases 

including Mouse hippocampus, Drosophila embryo and Mouse brain. 

On Mouse hippocampus dataset, though fixing rotational misalignment to some degree, STalign left 

an angle between two slices in registration result (Fig. 4). This may be due to the method’s 

processing of ST data into images which completely relies on gene expression abundance to decide 

pixel intensities. On the sagittal section of Mouse hippocampus, the abundance difference between 

regions may not provide sufficient structural information required by registration. By quantification, 

its MSSIM is lower than ST-GEARS, which remains more accurate registration method then PASTE, 

PASTE2, GPSA and STalign.







GEARS, and their comparison with hybridization result from Berkeley Drosophila Genome 

Project (BDGP) database. The gathering expression regions were highlighted by dotted lines. 

On Mouse brain dataset, though most sections were correctly aligned, 7 rotational misalignments 

were generated by STalign (Supplementary Fig. 19e). As ST-GEARS correctly aligned all 40 

sections (Supplementary Fig. 19f), and reached highest median MSSIM score with the smallest 

variation (Fig. 6b), it remains the method with highest registration accuracy on the dataset. 





scores; the lower whisker is at the lowest datum above Q1 – 0.5*(Q3-Q1), and the upper whisker is at 

the highest datum below Q3 + 0.5*(Q3-Q1); scores out of whiskers range are marked by circles. (c) 

Perspective, Lateral and Anterior view of reconstructed mouse brain hemisphere. (d) Anterior view of 

layer cell types distribution of reconstructed mouse brain hemisphere.

GPSA is not included in either mapping accuracy or elastic registration part of study, though studied 

in all 3 reconstruction application cases. Since GPSA directly adjusts spatial information of distinct 

sections onto Common Coordinate System (CCS), it doesn’t involve intermediate or final result of 

mapping. Hence it was not included in mapping accuracy part of study (Fig. 1). In elastic registration 

session (Fig. 2), we focused on analyzing the effect of Elastic Registration component of ST-

GEARS by comparing the result of our method with result when elastic operation is dis-included. 

Since GPSA generates final registration result in a concrete step, elastic operation cannot be taken 

away from the method, leaving a rigid result to be compared like ST-GEARS. Hence, we did not 

include GPSA in this part of study. In all application cases including Mouse hippocampus, 

Drosophila embryo and Mouse brain, we included GPSA, and measured its final registration 

accuracy using MSSIM and tissue area curve smoothness, equally with other methods.  

We have modified our manuscript in red to include above results of SLAT and STalign, specifically 

in sections of Application to sagittal sections of Mouse hippocampus, Application to 3D 

reconstruction of Drosophila embryo and Application to Mouse brain reconstruction. We hope the 

reply and respective modifications address your comments

2. The authors' efforts in demonstrating ST-GEARS' performance across multiple real 

datasets are commendable, showcasing its practical application and robustness. However, the 

inherent limitation of ground truth in these datasets poses a challenge for systematic benchmarking. 

To address this, a recommendation for further strengthening the manuscript is to include 

benchmarking against simulated datasets. By artificially manipulating slices through rotation, 

scaling, cropping, and adding noise, the authors could generate controlled conditions to rigorously 

test and quantitatively compare ST-GEARS' performance. This approach would allow for a more 

precise evaluation of its capabilities in handling various distortions and noise levels, providing a 

comprehensive benchmark that underscores its accuracy and efficiency in spatial reconstruction.

Thanks for the insightful suggestion. We totally agree the ground truth provided by simulation 

dataset offers valuable perspective, of understanding our method’s capability, accuracy, and stability. 

Hence, we conducted the following experiment. We manipulated a Mouse primary motor cortex 

section through rotating, transforming, cropping and distorting it using different scales, then 

analyzed accuracy result of ST-GEARS in registering the synthetic section with the original one. 

Benefitting from the ground truth information of correspondence between cells, we adopted as 

accuracy index the correspondence fraction, which measures percentage of cells that are correctly 

connected by anchors. We also calculated mean distance error of cells over average cell distance to 

measure the error in scale of distance. Meanwhile, mapping accuracy adopted in other parts of the 

study is also included.     



Across different scales of rotation, and different scales and direction of translation, ST-GEARS 

reaches full score of 1 on both correspondence fraction and mapping accuracy (Fig. R19, Fig. R20). 

Its mean distance error over avg. cell distance remains less than 1×10-10, almost reaching error of 0. 

Upon different percentage of cropping, correspondence fraction and mapping accuracy of ST-

GEARS remain close to 1, indicating ST-GEARS’ high performance and stability to cropping 

operation. The distance error over avg. cell distance remains less than 0.6 which means cell level 

alignment is achieved. Correspondence fraction and mapping accuracy of ST-GEARS remains close 

to 1 across different scales of distorting noise, which was generated by incremental kernel variance 

of Gaussian Process (GP) warping. At the same time mean distance error over avg. cell distance 

remains less than 0.7 indicating cell level alignment. By different manipulations, ST-GEARS 

presented high performance and stability despite of operating scales. 





Figure R20: Accuracy of ST-GEARS on simulated datasets. From top to bottom presented are 

accuracy of ST-GEARS on simulated datasets with different levels of rotation, translation, cropping and 

distortion. From left to right presented are accuracy result based on index of correspondence fraction, 

mapping accuracy and mean distance error over average cell distance. 

To further understand our method’s performance in combined operation which often occurs in real 

world, we applied onto the section with operation including rotation of 30°, translation to right of 

100 µm and to top of 100 µm, cropping fraction of 3% on top, and GP warping with kernel variance 

of 10 (Fig. R19). By registering the simulated dataset, ST-GEARS reaches 0.999 in corresponding 

fraction and 1 in mapping accuracy (Table R2). The mean distance error over avg. cell distance is 

less than 0.5.

Rotation

Translation

Cropping

Distortion

Degree

Operation

Percentage

Kernel variance

Correspondence fraction Mapping accuracy
Mean distance error 

over avg. cell distance

10-12

10-12



Table R2: Accuracy of ST-GEARS on simulated datasets with one section generated based on 

combined operation of the other one, including rotation, translation, cropping and distortion.

Correspondence fraction Mapping accuracy
Mean distance error 

over avg. cell distance

0.999 1.000 0.463

3. A critical weakness in ST-GEARS may lie in its computational complexity, particularly when 

processing large-scale datasets. The method's advanced features, such as optimized anchor 

alignment and elastic field application for distortion correction, could demand significant 

computational power and memory, impacting its efficiency. This aspect may limit its accessibility 

for researchers with limited computational resources or extend processing times for voluminous 

datasets. As the authors are undoubtedly aware, the volume of single-cell spatial transcriptomics 

data is ever-increasing, with datasets growing in scale and complexity. Therefore, it is imperative to 

ensure that the ST-GEARS algorithm can be efficiently applied to large-scale single-cell spatial 

datasets, as this is crucial for its broader adoption and practical utility in cutting-edge research. To 

address this concern and ensure the method's scalability, we kindly request that the authors provide 

a comprehensive analysis of both time and memory complexity in their manuscript. Such an analysis 

would not only serve as a testament to the method's computational efficiency but also provide 

valuable insights for researchers who may be considering its application on large-scale datasets. By 

presenting a detailed breakdown of time and memory requirements, the authors can demonstrate the 

method's ability to handle substantial datasets without compromising performance.

We appreciate your reminding and for the kind requests. We agree on the importance of controlling 

computational complexity, for our method to be adopted across diverse scenarios, especially on 

large-scale datasets.

As a comprehensive analysis of both time and memory complexity, we compared time and memory 

consumption of PASTE, PASTE2, GPSA, STalign and ST-GEARS across all application datasets. 

We find ST-GEARS reached least peak memory when registering Mouse brain (Fig. R13), and used 

second least memory on Mouse hippocampus and Drosophila embryo, with the data almost the same 

as the least one. In terms of time consumption, ST-GEARS is within the top two efficient methods 

on two out of the three applications, saving over 10 times of time cost than PASTE2. 



Figure R13: Time and peak memory consumption of PASTE, PASTE2, GPSA, STalign and ST-

GEARS, respectively on Mouse hippocampus, Drosophila embryo and Mouse brain datasets.

To deal with the large data size problem, we introduce Granularity adjusting as a computational 

optimization to assist ST-GEARS. We recommend users to turn on this option upon over 3000 spots 

in each section. 

In granularity adjusting, section area is binned first, with spots squared by each pixel summarized 

into one single spot, leading to a ST data with coarser resolution than original data. When 

summarizing within each grid, Unique molecular identifier (UMI) counts of spots is added together 

then transferred to the generated one spot, and the most frequent annotation type or cluster 

information is labelled to the spot as well. Then ST-GEARS is applied onto the coarser version of 

data, outputting a registered dataset with the coarser resolution. Finally, to recover the original 

resolution in final registration result, the original resolution data is interpolated into the coarse 

dataset on both pre-registered and registered version, leading to registration result in original 

resolution (Fig. R9). The conduction code of binning and interpolation method has been updated to 

GitHub repository of ST-GEARS. 
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across different research groups. To mitigate this concern, it would be beneficial for the authors to 

provide a comprehensive sensitivity analysis that explores how variations in parameter settings 

impact the results. Additionally, recommendations or guidelines for parameter selection, based on 

the authors' extensive experience with the method, would aid users in achieving optimal outcomes. 

By addressing this weakness and offering insights into the robustness of ST-GEARS with respect to 

parameter choices, the authors can enhance the method's usability and reliability, ensuring that it 

can be successfully applied by a wider range of researchers without the risk of unintended biases or 

overfitting issues.

Thanks for the observation and for raising up your concern. To provide optimum flexibility for users, 

we indeed exposed many parameters of ST-GEARS method as being tunable, such as regularization 

factor list and the start and end index from section list on which section is to registered. However, 

most of them are exposed for users to conveniently conduct the process up to their own will, not to 

tune the process for a successful result. For example, users can assign a smaller number of 

regularization factors in the factor list to save more time, and to register only a part of sections from 

their dataset according to their own requirements. Except from the special circumstances such as 

above, most of the parameters are suggested not to be adjusted. We are sorry for the confusion! 

Meanwhile, default values have been provided for most parameters, and the values are sufficient for 

the registration to be successfully conducted. In the experiments of this study, the default values 

were adopted as well.

Only 3 parameters need to be specifically assigned values by users, including ‘uniform weight’, 

‘label_col’, and ‘pixel_size’, and required or suggested values are provided for each one of them. 

Thereinto, ‘uniform_weight’ is a parameter of anchors computing process, ‘label_col’ is adopted by 

anchors computing, rigid registration and elastic registration process, and ‘pixel_size’ belongs to 

elastic registration process. The value adopted in our experiments are listed as below (Table R3).

Table R3: ST-GEARS parameters that need to be specified and their value assigned across 

applications.

Dataset Uniform_weight label_col pixel_size

Mouse 

hippocampus
False ‘annotation’ 10

Drosophila 

embryo
False ‘annotation’ 1

Mouse brain True ‘annotation’ 200

‘uniform_weight’ specifies whether the Distributive Constraints will be adopted in the registration. 

Value of False indicates the adoption of the setting, and vice versa. To decide if Distributive 

Constraints shall be adopted, we suggest users to calculate probabilistic distribution of spot or cell 

numbers from each section, labelled with different clusters or annotations (Fig. R16), then to 

measure Kullback-Leibler (KL) divergence of the distribution between closest section pairs (Fig. 

R17) and to find the maximum divergence value. The code for calculating the maximum KL 

divergence has been uploaded to GitHub repository of ST-GEARS. If the maximum divergence is 





Figure R17: Histogram of Kullback-Leibler (KL) divergence of probabilistic distribution of no. of 

spots on different clusters or annotations between closest section pairs, respectively of Mouse 

hippocampus, Drosophila embryo and Mouse brain datasets. The position of average and maximum 

KL divergence was marked by red vertical lines and the respective values were labeled in black.

For example, in our application cases, the maximum KL divergence remains below 1 for both Mouse 

hippocampus and Drosophila embryo (Table R1), and Distributive Constraints was adopted in 

registration and hence ‘uniform_weight’ was set to False While in Mouse brain dataset, the value 

reached 1.448 and the option was not adopted during registration, hence ‘uniform_weight’ was set 

to True. 

Table R1: Maximum Kullback-Leibler (KL) divergence of Probabilistic distribution of no. of spots 

between closest section pairs and whether the Distributive Constraints was adopted in cases of 

Mouse hippocampus, Drosophila embryo and Mouse brain datasets.

Application cases Max. KL divergence Distributive Constraints adopted

Mouse hippocampus 0.033 True

Drosophila embryo 0.499 True

Mouse brain 1.448 False

Mouse hippocampus

Drosophila embryo

Mouse brain
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average, max. = 0.033

average= 0.107 max. = 0.499

average= 0.159 max. = 1.448



As input required by ST-GEARS is stored within anndata.AnnData, ‘label_col’ is required to be set 

to the name of column in .obs of AnnData, where clustering information or annotation type is stored. 

Hence, there is only one value to be adopted for this parameter for each dataset (Table R3). 

‘pixel_size’ indicates step length on width and height when generating elastic field based on spatial 

coordinates data. The suggested value is the average distance between closest spots or cells (Table 

R3). 

We have included above explanations, guidance of value assignments, and parameter values for 

applications in section of Parameter Settings in Supplementary materials. 

 (Remarks on code availability):

pros: easy installation and comes with an example jupyte note with test datasets. 

cons: no detailed description of APIs (functions and modules, what are the functions of each method 

and their parameters)

Thanks for the positive comments on our package installation and example. We apologize for lack 

of adequate description of APIs and have uploaded the description to our GitHub repository, in file 

FunctionAPI.txt. 



Reviewer #1 (Remarks to the Author):

I am very satisfied with the revised version of the paper. The authors have addressed all of my 

concerns, especially those arising from the model part. I only have two minor comments as 

follows.

1. Equation (1), I don’t understand why (1-alpha)M_{AB}^2 in the first line equals to (1-

alpha)<M_{AB}^2, pi> in the second line. Is this a typo?

2. My understanding is that the first term in Equation (1) measures the molecular similarity as KL 

doesn’t consider any spatial information, while the second term solely measures spatial 

information. Alpha is the tuning parameter that controls the weight of spatial information. If so, it 

is very interesting to investigate the model performance given a range of alpha. The result as 

shown in Figure S24 should be reported to all the real datasets analyzed in the paper, not just the 

mouse brain dataset.

Reviewer #2 (Remarks to the Author):

The authors' responses addressed my concerns very well.

Reviewer #3 (Remarks to the Author):

The authors have provided a comprehensive and thoughtful response to the comments and 

suggestions that I raised. The revisions and detailed explanations have significantly strengthened 

the manuscript. The authors have effectively addressed each major concern, including the 

expansion of the benchmarking framework to include STAlign and SLAT, the use of simulated 

datasets to validate the robustness and accuracy of ST-GEARS, the detailed analysis of time and 

memory complexity along with the introduction of the granularity adjusting strategy, the provision 

of guidelines and recommendations for parameter selection to mitigate concerns about 

hyperparameter sensitivity and potential overfitting, and the addition of detailed API descriptions 

in the GitHub repository to improve accessibility and usability.

I have some minor comments to help further improve the manuscript.

1)Ensure that all legends are clear and provide sufficient detail for readers to understand the 

context and results without referring back to the text. Specifically, revise the figure legends to be 

more descriptive and add annotations to key figures to highlight important points or differences 

observed in the comparisons.

2)Verify that all mathematical notations are consistent throughout the manuscript and address any 

remaining inconsistencies. For example, the notations \(X_A \in \mathbb{R}^{n_A,2}\) in Line 

589 (634 in revised version) and \(X_{i,:}^{(A)}\) in Line 603 (650 in revised version) should be 

clarified for consistency. Additionally, the notation \(W\) is used with distinct meanings in Lines 

597 (645 in revised version), 638 (701 in revised version), and 686 (671 in revised version).

3) While the manuscript does provide a section discussing limitations, it would benefit from an 

expanded discussion explicitly addressing the potential for overfitting and hyperparameter 

sensitivity, as well as the scalability issue due to computational complexity. These are critical 

aspects that may impact the practical applicability and robustness of ST-GEARS, especially for 

large-scale datasets.

Overall, the revisions have significantly improved the manuscript. The detailed responses and 

additional experiments provided have addressed the major concerns. The final version of the 

manuscript should incorporate the minor suggestions mentioned above to further enhance its 

clarity and comprehensiveness.

Reviewer #3 (Remarks on code availability):



no detailed review of the code is necessary this time, as I reviewed it in the previous round and it 

looks good. The authors also added details for their APIs in this update, which addresses the 

concern that I raised from the last round of the review.



Reviewer #1 (Remarks to the Author):

I am very satisfied with the revised version of the paper. The authors have addressed all of my 

concerns, especially those arising from the model part. I only have two minor comments as follows.

Thanks for your positive feedback of our revision, and we appreciate all your suggestions and 

requirements which largely help strengthen this manuscript, especially in methods part. We have 

structured our response to your comments as follows, which will hopefully address your concerns.

1. Equation (1), I don’t understand why (1-alpha)M_{AB}^2 in the first line equals to (1-

alpha)<M_{AB}^2, pi> in the second line. Is this a typo?

The second line of equation (1) is actually derived from its first line. In the first line, the term

)E$ C 8F/<=
: B 8.:E-<" -=F & 9" 9* denotes matrix multiplication between term E$ C 8F/<=

: +

8.:E-<" -=F & 9  and term 9 . Since the multiplied term E$ C 8F/<=
: B 8.:E-<" -=F & 9  is 

essentially the summation of E$ C 8F/<=
:  and 8.:E-<" -=F & 9, the multiplication operation can 

be derived into respective multiplication on each of the terms then summation of the multiplication 

results, whilst the constant variable E$ C 8F can be moved outside of multiplication operator as a 

constant variable, hence giving the second row: 273546A%;E>"?FEE$ C 8F)/<=
: " 9* B

8).:E-<" -=F & 9" 9*F.

To extract the structure of the above derivation and to further clarify the process, let + denote /<=
: ,

and , denote .:E-<" -=F & 9. The first row of equation (1) can be simplified as :

9 D 273546A%;(>"?))EE$ C 8F+ B 8," 9*

And it can be derived as 

9 D 273546A%;E>"?FE)E$ C 8F+" 9* B )8," 9*F

D 273546A%;E>"?FEE$ C 8F)+" 9* B 8)," 9*F

Replacing + and , with their original terms gives second row of equation (1).

2. My understanding is that the first term in Equation (1) measures the molecular similarity as KL 

doesn’t consider any spatial information, while the second term solely measures spatial information. 

Alpha is the tuning parameter that controls the weight of spatial information. If so, it is very 

interesting to investigate the model performance given a range of alpha. The result as shown in 

Figure S24 should be reported to all the real datasets analyzed in the paper, not just the mouse brain 

dataset.

Thanks for your suggestion of investigating model performance given range of alpha. It is indeed 

that the first term in Equation (1) measures only molecular similarity, while the second term 

measures purely spatial similarity. To understand how the regularization factor 8  influences 

accuracy, we ran our method on all real datasets in our manuscript, across 8  that changes 

exponentially, to account for higher changing scale than a linear range. 

We found that, ST-GEARS produces result with stable mapping accuracy across different 8, on 

most real-world datasets except Drosophila larva and Mouse brain (Fig. R1, Supplementary Fig. 







#2 (Remarks to the Author):

The authors' responses addressed my concerns very well.

We appreciate your positive feedback on our response. And thanks again for your constructive 

comments and suggestions during first round of revision, especially in terms of method’s 

robustness and usability. 

Reviewer #3 (Remarks to the Author):

The authors have provided a comprehensive and thoughtful response to the comments and 

suggestions that I raised. The revisions and detailed explanations have significantly strengthened 

the manuscript. The authors have effectively addressed each major concern, including the 

expansion of the benchmarking framework to include STAlign and SLAT, the use of simulated 

datasets to validate the robustness and accuracy of ST-GEARS, the detailed analysis of time and 

memory complexity along with the introduction of the granularity adjusting strategy, the provision 

of guidelines and recommendations for parameter selection to mitigate concerns about 

hyperparameter sensitivity and potential overfitting, and the addition of detailed API descriptions 

in the GitHub repository to improve accessibility and usability.

I have some minor comments to help further improve the manuscript. 

Thanks for your positive feedback, and again for your insightful suggestions in benchmarking, 

computational complexity, parameters selection and code usability, in last round of review. We 

have structured our response to your comments in below, which will hopefully address your 

concerns. All significant modifications are marked in red in our revised manuscript.

1) Ensure that all legends are clear and provide sufficient detail for readers to 

understand the context and results without referring back to the text. Specifically, 

revise the figure legends to be more descriptive and add annotations to key figures to 

highlight important points or differences observed in the comparisons.  

Thanks for your suggestions. We have ensured all legends provide sufficient details for readers to 

understand the context. We have revised the figure legends of Fig. 2, 3, 4, 5, 6 to be more 

descriptive, and have added annotation to Fig. 5b, which was missing in highlighting important 

differences. To further show sufficient details in Figure 6b, we added the n numbers of the 

boxplot, a clear definition of unit of study, and enough details about sample collection to 

distinguish between independent data points and technical replicates. Above revision are marked 

in red and we hope your concern has been addressed.

2)Verify that all mathematical notations are consistent throughout the manuscript and address any 

remaining inconsistencies. For example, the notations \(X_A \in \mathbb{R}^{n_A,2}\) in Line 589 

(634 in revised version) and \(X_{i,:}^{(A)}\) in Line 603 (650 in revised version) should be 



clarified for consistency. Additionally, the notation \(W\) is used with distinct meanings in Lines 

597 (645 in revised version), 638 (701 in revised version), and 686 (671 in revised version). 

Thanks for pointing out the notation problem. We have addressed all remaining inconsistencies in 

notation throughout the manuscript and have included explanations for clarity when necessary.

1@"#

E<F
 in line 652 (revised version) is actually the same notation as 1< in line 634 (revised version), 

and they both represent spatial location of spots on section A. To further clarify, when denoting 

1@"#

E<F
, section code + is moved to superscript, since subscript location is occupied by spot index 4. 

Without this adjustment, 1@"#

E<F
  would be denoted as 1<@"# , which largely confuses readers when 

comprehending this matrix. To remind readers that 1@"#

E<F
  and 1<  indicate same meanings, a 

parenthesis is added to section code +. We noticed multiple subscript denoting adjustment in the 

Methods part and have included the explanation on each occurrence of the adjustment, marked in 

red.

We apologize that notation 0  was used with distinct meanings, and have revised notations to 

differentiate their representations, respectively in line 645, 708 and 709 (revised version). We have 

also checked throughout the manuscript for similar problems, and revised sessions including 

Distributive Constraints, Elastic Field Establishment and Bi-sectional Fields Application. All 

revisions are highlighted with red color.

3) While the manuscript does provide a section discussing limitations, it would benefit from an 

expanded discussion explicitly addressing the potential for overfitting and hyperparameter 

sensitivity, as well as the scalability issue due to computational complexity. These are critical aspects 

that may impact the practical applicability and robustness of ST-GEARS, especially for large-scale 

datasets.

Thanks for the suggestion of potential problem addressing. We have expanded our Discussion part 

to include the problem clarification and expectation of further studies, in terms of overfitting and 

hyperparameter sensitivity, as well as the scalability issue. The expanded discussion is marked in 

red.

Overall, the revisions have significantly improved the manuscript. The detailed responses and 

additional experiments provided have addressed the major concerns. The final version of the 

manuscript should incorporate the minor suggestions mentioned above to further enhance its clarity 

and comprehensiveness.

Thanks again for your review and comments.

Reviewer #3 (Remarks on code availability):



no detailed review of the code is necessary this time, as I reviewed it in the previous round and it 

looks good. The authors also added details for their APIs in this update, which addresses the concern 

that I raised from the last round of the review.

We appreciate your careful observation on our code and again, your previous suggestions.


