Supplementary Information

Stabilized Cu⁰-Cu¹⁺ Dual Sites in a Cyanamide Framework for Selective CO₂ Electroreduction to Ethylene

Kaihang Yue^{1,2,6}, Yanyang Qin^{3,6}, Honghao Huang¹, Zhuoran Lv^{1,4}, Mingzhi Cai^{4,5}, Yaqiong Su³*,

Fuqiang Huang ^{1,4,*}, and Ya Yan ^{1,2,*}

¹ State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.

²Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences,

Beijing 100049, China.

³ School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China

⁴ State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

⁵ State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

⁶ These authors contributed equally: Kaihang Yue, Yanyang Qin.

Corresponding author E-mail: <u>yqsu1989@xjtu.edu.cn</u> (YQS), <u>huangfq@sjtu.edu.cn</u> (FQH), <u>yanya@mail.sic.ac.cn</u> (YY)

Supplementary Figures

Supplementary Fig. 1. The structural model and electron microscopy images of CuNCN. (a) Crystal structure of CuNCN. (b) SEM, (c) TEM image of CuNCN. (d) EDS mapping of CuNCN.

Supplementary Fig. 2. The structural model and electron microscopy images of CuO. (a) Crystal structure of CuO. (b) SEM, (c) TEM image of CuO. (d) EDS mapping of CuO.

Supplementary Fig. 3. AFM image of (a) $Cu^{\delta^+}NCN$, (b) CuNCN and (c) CuO.

Supplementary Fig. 4. ABF image of $Cu^{\delta+}NCN$ in STEM.

Supplementary Fig. 5. XPS spectra of $Cu^{\delta+}NCN$, CuNCN and CuO. (a) XPS survey spectra. (b) Cu 2p, (c) C 1s high-resolution XPS of $Cu^{\delta+}NCN$, CuNCN and CuO. (d) N 1s high-resolution XPS of $Cu^{\delta+}NCN$ and CuNCN. (e) O 1s high-resolution XPS of CuO.

Supplementary Fig. 6. Representative data on gas products and liquid products distributions. (a) TCD

channel. (b) FID channel. (c) liquid products analysis.

Supplementary Fig. 7. Stability testing of CuNCN. Performance of CuNCN in a three-electrode flow cell to produce ethylene.

Supplementary Fig. 8. FE of various products of $Cu^{\delta+}NCN$ with different levels of reduction at different

potentials. (a) Add 3 ml of the reducing agent. (b) Add 7 ml of the reducing agent. (c) Add 9 ml of the reducing agent.

Supplementary Fig. 9. Contact angle measurements for (a) $Cu^{\delta^+}NCN$, (b) CuNCN and (c) CuO.

Supplementary Fig. 10. Evaluate the electrochemically active surface area. Cyclic voltammetry curves for (a) $Cu^{\delta+}NCN$, (b) CuNCN, and (c) CuO at varying scan rates, along with (d) the calculated slopes from the fitting of these three samples.

Supplementary Fig. 11. Derived normalized $\chi\mu(E)$ spectra of (a) Cu^{$\delta+$}NCN and (b) CuNCN in *operando*

XANES.

Supplementary Fig. 12. Fourier-transformed k^3 -weighted EXAFS signals of the Cu *K*-edge recorded at different potentials for the Cu^{$\delta+$}NCN.

Supplementary Fig. 13. Coordination number and bond length changes of CuNCN during the CO₂RR.

(a) Changes of coordination number for the Cu–N and Cu-Cu coordination shells. (b) Changes of bond length for the Cu–N and Cu-Cu coordination shells.

Supplementary Fig. 14. Comparison of the EXAFS WTs of the Cu *K*-edge recorded during *operando* testing of the CuNCN. (a) Initial state. (b) Under open-circuit voltage. (c) At -0.7 V vs. RHE. (d) At -1.0 V vs. RHE. (e) At -1.3 V vs. RHE. (f) At -1.6 V vs. RHE.

Supplementary Fig. 15. Structure of Cu^{δ+}NCN, CuNCN and CuO after the CO₂RR electrolysis. (a) XRD

pattern. (b) XRD pattern of the carbon paper used for the test.

Supplementary Fig. 16. Morphology of $Cu^{\delta+}NCN$, CuNCN and CuO before and after the CO₂RR electrolysis. (a) SEM images of the CuO. (b) SEM images of the CuO after CO₂RR process. (c) SEM images of the CuNCN. (d) SEM images of the CuNCN after CO₂RR process. (e) SEM images of the Cu^{$\delta+$}NCN. (f) SEM images of the Cu^{$\delta+$}NCN after CO₂RR process.

Supplementary Fig. 17. Elemental mapping images and EDX spectra for (a) $Cu^{\delta^+}NCN$ and (b) CuNCN after CO₂RR process.

Supplementary Fig. 18. XPS spectra of Cu^{δ+}NCN, and CuNCN after undergoing CO₂RR for 1h and 15h, respectively. (a) C 1s high-resolution XPS. (b) N 1s high-resolution XPS. (c) O 1s high-resolution XPS.
(d) Cu 2p high-resolution XPS. (e) Cu LMM spectra. (f) XPS survey spectra.

Supplementary Fig. 19. Equipment for operando ATR-SEIRA spectra test equipment. The electrolyte

used is CO₂-saturated KHCO₃.

Supplementary Fig. 20. The 2D operando ATR-SEIRA spectra of CO2RR of (a-b) CuO, (c-d) CuNCN,

and (e-f) $Cu^{\delta^+}NCN$.

Supplementary Fig. 21. Models of $Cu^{\delta+}NCN$ structure. Cu_2NCN coordinated Cu^0-Cu^0 dual atoms model

was used to represent the catalytic site

Supplementary Fig. 22. Energy calculations under different magnetic moments. The total energies of the $Cu^{\delta^+}NCN$ calculated with different magnetic moments of the Cu^0 atoms ($M_{Cu} = 0, 1, 2, \text{ and } 3 \mu B$).

Supplementary Fig. 23. Charge density difference plots. The side views of the three-dimensional charge density difference plots of $Cu^{\delta+}NCN$.

Supplementary Fig. 24. Density of states from DFT calculations. The calculated projected density of states results for $Cu^{\delta+}NCN$.

Supplementary Fig. 25. Operando k^3 -weighted Cu K-edge EXAFS spectra for Cu^{$\delta+$}NCN under at representative potentials. (a) Initial state. (b) Under open-circuit voltage. (c) At -0.7 V vs. RHE. (d) At -1.0 V vs. RHE. (e) At -1.3 V vs. RHE. (f) At -1.6 V vs. RHE.

Supplementary Fig. 26. Fourier-transformed magnitudes for $Cu^{\delta+}NCN$ under at representative potentials. (a) Initial state. (b) Under open-circuit voltage. (c) At -0.7 V vs. RHE. (d) At -1.0 V vs. RHE. (e) At -1.3 V vs. RHE. (f) At -1.6 V vs. RHE.

Supplementary Fig. 27. Operando k³-weighted Cu K-edge EXAFS spectra for CuNCN under at representative potentials. (a) Initial state. (b) Under open-circuit voltage. (c) At -0.7 V vs. RHE. (d) At -1.0 V vs. RHE. (e) At -1.3 V vs. RHE. (f) At -1.6 V vs. RHE.

Supplementary Fig. 28. Fourier-transformed magnitudes for CuNCN under at representative potentials. (a) Initial state. (b) Under open-circuit voltage. (c) At -0.7 V vs. RHE. (d) At -1.0 V vs. RHE. (e) At -1.3 V vs. RHE. (f) At -1.6 V vs. RHE.

Supplementary Fig. 29. $Cu^{\delta+}NCN$ and CuNCN in the *operando* XAFS testing environment for Cu K-

edge spectra of catalysis (test beamline station is the SSRF BL17B1).

Supplementary Table 1. ICP-OES of the atom ratio in CuNCN and $Cu^{\delta^+}NCN$.

Samples	Cu (%)
CuNCN	60.45%
$Cu^{\delta^+}NCN$	67.23%

	shell	CN	R(Å)	σ^2	ΔE_0	R factor
Cu foil	Cu-Cu	12*	2.54±0.01	0.0086	4.2±0.5	0.0040
ex-situ	Cu-N/C/O	1.6±0.1	1.89±0.01	0.0043	8.7±0.9	0.0113
Cueen	Cu-N/C/O	1.4±0.1	1.88±0.01	0.0028	- 9 2 1 0	0.0000
Cu-ocp	Cu-C	0.7±0.3	2.65±0.04	0.0032	- 8.2±1.0	0.0009
-0.7 V	Cu-N/C/O	1.4±0.1	1.88±0.01	0.0030	80100	0.0067
	Cu-C	0.9±0.3	2.63±0.04	0.0088	- 8.0±0.9	
	Cu-N/C/O	1.7±0.1	1.90±0.01	0.0065	- 9.9±1.2	0.0098
-1.0 V	Cu-Cu	0.5±0.1 2.58	2.58±0.02	0.0056		
1237	Cu-N/C/O	1.6±0.1	1.87±0.02	0.0054	7.0+1.7	0.0177
-1.3 V	Cu-Cu	0.9±0.2	2.58±0.02	0.0071	- 7.9±1.7	
-1.6 V	Cu-N/C/O	1.1±0.1	1.88±0.01	0.0010		
	Cu-Cu	1.6±0.2	2.57±0.01	0.0085	8.2±1.5	0.0131
	Cu-N/C/O	1.4±0.3	2.52±0.03	0.0037	_	

Supplementary	Table 2. EXAFS	fitting parameters for	or the Cu K-edge of the Cu^{δ}	$^{+}$ NCN (S $_{0}^{2}$ =0.83)
---------------	-----------------------	------------------------	---------------------------------------	---------------------------------

^{*a*}*N*: coordination numbers; ^{*b*}*R*: bond distance; ^{*c*} σ^2 : Debye-Waller factors; ^{*d*} ΔE_0 : the inner potential correction. *R* factor: goodness of fit.

	shell	CN	R(Å)	σ^2	ΔE_0	R factor
Cu foil	Cu-Cu	12*	2.54±0.01	0.0086	4.2±0.5	0.0040
ex-situ	Cu-N/C/O	4.2±0.2	1.97±0.01	0.0001	5000	0.0102
	Cu-Cu1	1.7±0.3	2.96±0.01	0.0033	- 3.9±0.8	0.0105
	Cu-N/C/O	3.7±0.2	2.00±0.01	0.0031		0.0081
Cu-ocp	Cu-Cu1	1.5±0.2	2.96±0.01	0.0045	5.2±0.9	
	Cu-Cu2	2.1±0.5	3.42±0.02	0.0085		
	Cu-N/C/O	3.7±0.1	1.99±0.01	0.0023		0.0055
-0.7 V	Cu-Cu1	1.5±0.1	2.95±0.01	0.0001	3.9±0.6	
	Cu-Cu2	2.1±0.5	3.43±0.02	0.0081		
	Cu-N/C/O	3.5±0.2	1.98±0.01	0.0035		0.0171
-1.0 V	Cu-Cu1	0.9±0.3	2.95±0.03	0.0083	3.0±1.0	
	Cu-Cu2	2.1±0.8	3.40±0.03	0.0081		
-1.3 V	Cu-N/C/O	3.5±0.2	1.98±0.01	0.0045		
	Cu-Cu1	0.7±0.3	2.93±0.03	0.0026	6.0±1.1	0.0171
	Cu-Cu2	1.2±0.5	3.39±0.03	0.0001		
-1.6 V	Cu-N/C/O	3.4±0.2	1.96±0.01	0.0055		
	Cu-Cu1	0.6±0.2	2.94±0.02	0.0001	5.4±1.2	0.0114
	Cu-Cu2	1.4±0.6	3.39±0.03	0.0070	_	

Supplementary Table 3. EXAFS fitting parameters for the Cu *K*-edge of the CuNCN ($S_0^2=0.83$)

^{*a*}*N*: coordination numbers; ^{*b*}*R*: bond distance; ^{*c*} σ^2 : Debye-Waller factors; ^{*d*} ΔE_0 : the inner potential correction. *R* factor: goodness of fit.

Supplementary Table 4. Performance comparison of state-of-the-art catalysts for CO₂RR to C₂H₄ reported in the literature.

Catalyst	Potential	FE	Current density	Stability	Reference
	(V vs. RHE)	(%)	(mA cm ⁻²)	(h)	
Cu ^{δ+} NCN	-1.4	77.7	400	15	
	3.6*	66.8	180	78	This work
Cu	4.2*	25	1200	12	Science 2021, 372, 1074
Cu-Al	~-1.7	75±4	400	100	Nature 2020, 581, 178
Cu-P1	-0.99	72	400	/	Nat Catal., 2021, 4, 20
A-CuNWs	-1.0±0.01	~77.4	17.3	200	Nat. Catal., 2020, 3, 804
F-Cu	~-0.6	80	320	40	Nat. Catal. 2020, 3, 478–487
cAA-CuNW	-1.27	60.7	539	/	Nat Commun. 2024, 15, 192
CuPO	~-1.7	~48	300	18	Nat.Commun.,2023, 14, 7681
Ni SAC+Cu-R	-1.4	60	500	14	J. Am. Chem. Soc. 2024, 146, 468
PcCu-Cu-O	~-1.2	50	7.3	4	J. Am. Chem. Soc. 2021, 143, 7242
GB-Cu	-1.2	40	~52	3	J. Am. Chem. Soc. 2020, 142, 6878
Cu-S motifs	~-1.2	~50	150	8	Angew. Chem. Int. Ed. 2022, 61, e202111700
Cu3-x	-0.7	55.01	129.58	9	Angew. Chem. Int. Ed.2021, 60, 26210
TA-Cu	3.35*	50	500 _{total}	10	Angew. Chem. 2023, 135, e202315621
Mg-Cu	~-0.75	70	455	48	Angew. Chem. Int. Ed. 2022, 61, e202213423

* Represents the electrolyser voltage in the MEA system.

Supplementary Table 5. Reaction paths of the intermediates involved in the reaction at U = -0.8 V and reaction energies, with the corresponding kinetic potentials for the key reaction steps in parentheses

Reactive species	Reaction process	Reaction products	Free energy change
*(sub)	+CO ₂	*CO ₂	0.23
*CO ₂	$+2(H^++e^-)-H_2O$	*CO	-1.68
*CO	$+CO_2+2(H^++e^-)-H_2O$	2*CO	-0.96
2*CO	*CO dimerization	*COCO	-0.01 (0.86)
*COCO	$+ H^{+} + e^{-}$	*СОСОН	-1.28
		*СОСНО	-1.45
*СОСНО	$+3(H^++e^-)-H_2O$	*СНСОН	-3.80
*СНСОН	$+ H^{+} + e^{-}$	*СНСНОН	-0.68 (1.07)
	$+ H^{+} + e^{-} - H_2O$	*CHC	-1.02 (0.64)

Supplementary Table 6. The crystallographic information file (.CIF) for $Cu^{\delta^+}NCN$ sample.

data $Cu^{\delta^+}NCN$ -surface: _cell_length_a 11.2339 _cell_length_b 11.4027 _cell_length_c 25 _cell_angle_alpha 90.002 _cell_angle_beta 90.0007 _cell_angle_gamma 80.2593 loop _symmetry_equiv_pos_as_xyz +x,+y,+zloop_ _atom_site_type_symbol _atom_site_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z С С 0.76270308 0.81000504 0.28933427 С С 0.47667171 0.76270308 0.28933427 С С 0.76270308 0.14333838 0.28933427 С С 0.25208284 0.19003512 0.28933615 С С 0.25208284 0.85670178 0.28933615 С С 0.25208284 0.52336845 0.28933615 С С 0.25193203 0.89587968 0.41066943 С С 0.25193203 0.22921301 0.41066943 С С 0.25193203 0.56254635 0.41066943 С С 0.76285392 0.10416404 0.41067166 С С 0.76285392 0.77083071 0.41067166 С С 0.76285392 0.43749737 0.41067166 С С 0.76497885 0.48019893 0.53580721 С С 0.81348673 0.76497887 0.53580606 С С 0.76498147 0.14685214 0.53581973 С С 0.24981291 0.18657136 0.53580292 С С 0.24980690 0.85322201 0.53581669 С С 0.24982101 0.51983759 0.53580815 Ν Ν 0.66038462 0.88101430 0.28933399 Ν Ν 0.66038462 0.54768097 0.28933399 Ν Ν 0.66038462 0.21434764 0.28933399 Ν Ν 0.85619565 0.41099891 0.28933497 Ν Ν 0.28933497 0.85619565 0.74433224 Ν Ν 0.85619565 0.07766557 0.28933497 Ν Ν 0.15858489 0.25569938 0.28933546 Ν Ν 0.15858489 0.58903272 0.28933546 Ν Ν 0.15858489 0.92236605 0.28933546 Ν Ν 0.35440207 0.11902761 0.28933643

Ν	Ν	0.35440207	0.78569428	0.28933643
Ν	Ν	0.35440207	0.45236095	0.28933643
Ν	Ν	0.35448101	0.59905507	0.41066942
Ν	Ν	0.35448101	0.93238840	0.41066942
Ν	Ν	0.35448101	0.26572173	0.41066942
Ν	Ν	0.15818609	0.19525018	0.41067028
Ν	Ν	0.15818609	0.86191685	0.41067028
Ν	Ν	0.15818609	0.52858352	0.41067028
Ν	Ν	0.85659371	0.47147126	0.41067080
Ν	Ν	0.85659371	0.80480460	0.41067080
Ν	Ν	0.85659371	0.13813793	0.41067080
Ν	Ν	0.66030559	0.06765255	0.41067165
Ν	Ν	0.66030559	0.40098588	0.41067165
Ν	Ν	0.66030559	0.73431922	0.41067165
Ν	Ν	0.66245762	0.55006573	0.53428640
Ν	Ν	0.66246356	0.21672361	0.53430415
Ν	Ν	0.66244320	0.88335102	0.53429992
Ν	Ν	0.85952235	0.41602107	0.53688867
Ν	Ν	0.85953037	0.74932662	0.53687600
Ν	Ν	0.85951572	0.08267098	0.53690924
Ν	Ν	0.15527001	0.25074205	0.53687522
Ν	Ν	0.15526686	0.91740098	0.53690136
Ν	Ν	0.15527240	0.58399987	0.53688752
Ν	Ν	0.35233251	0.11670304	0.53429238
Ν	Ν	0.35233858	0.44997149	0.53429210
Ν	Ν	0.35231279	0.78332450	0.53429964
Cu	Cu	0.50739408	0.83335250	0.28933520
Cu	Cu	0.50739408	0.50001917	0.28933520
Cu	Cu	0.50739408	0.16668584	0.28933520
Cu	Cu	0.00738963	0.00001698	0.28933523
Cu	Cu	0.00738963	0.66668364	0.28933523
Cu	Cu	0.00738963	0.33335031	0.28933523
Cu	Cu	0.38808049	0.68681159	0.35000834
Cu	Cu	0.38808049	0.35347826	0.35000834
Cu	Cu	0.38808049	0.02014493	0.35000834
Cu	Cu	0.62671314	0.31322903	0.35000836
Cu	Cu	0.62671314	0.64656237	0.35000836
Cu	Cu	0.62671314	0.97989570	0.35000836
Cu	Cu	0.00738948	0.50002605	0.41067052
Cu	Cu	0.00738948	0.83335938	0.41067052
Cu	Cu	0.00738948	0.16669272	0.41067052
Cu	Cu	0.50739414	0.50002200	0.41067055
Cu	Cu	0.50739414	0.16668867	0.41067055
Cu	Cu	0.50739414	0.83335534	0.41067055
Cu	Cu	0.62643201	0.64631576	0.47194993
Cu	Cu	0.62645210	0.31299845	0.47195974
Cu	Cu	0.62646471	0.97963652	0.47195568

37 / 38

Cu	Cu	0.38834667	0.02041064	0.47195071
Cu	Cu	0.38833437	0.68703164	0.47195720
Cu	Cu	0.38836104	0.35373246	0.47194792
Cu	Cu	0.50736731	0.83333665	0.53412241
Cu	Cu	0.50739928	0.50001096	0.53410469
Cu	Cu	0.50740329	0.16669763	0.53411126
Cu	Cu	0.00738277	0.00003487	0.53189682
Cu	Cu	0.00741344	0.66665125	0.53188125
Cu	Cu	0.00741063	0.33340002	0.53187367
Cu	Cu	0.40212808	0.33627201	0.58972725
Cu	Cu	0.40206599	0.66955893	0.58969650
Cu	Cu	0.40207584	0.00292961	0.58968817
Cu	Cu	0.61272646	0.33048898	0.58972441
Cu	Cu	0.61270882	0.99711956	0.58969732
Cu	Cu	0.61268631	0.66375833	0.58970980