## Supplementary Information

# Human coronaviruses activate and hijack the host transcription factor HSF1 to enhance viral replication

Silvia Pauciullo<sup>1</sup>, Anna Riccio<sup>1</sup>, Silvia Santopolo<sup>1</sup>, Anna Albecka<sup>2</sup>, Guido Papa<sup>2</sup>, Leo C. James<sup>2</sup>, Sara Piacentini<sup>1</sup>, Giulia Lanzilli<sup>3</sup>, Antonio Rossi<sup>3</sup> and M. Gabriella Santoro<sup>1,3</sup>

<sup>1</sup>Department of Biology, University of Rome Tor Vergata, Rome, Italy; <sup>2</sup>MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; <sup>3</sup>Institute of Translational Pharmacology, CNR, Rome, Italy.

| GENE    | Fold Change | <i>p</i> -value | • | GENE     | Fold Change | <i>p</i> -value |
|---------|-------------|-----------------|---|----------|-------------|-----------------|
| ATF6    | 2,24        | 0,004042        |   | DNAJC21  | 1,79        | 0,000057        |
| BAG1    | 2,86        | 0,002787        |   | DNAJC3   | 13,52       | 0,000123        |
| BAG2    | 2,95        | 0,000159        |   | DNAJC4   | 1,09        | 0,072608        |
| BAG3    | 8,75        | 0,000143        |   | DNAJC5   | 2,74        | 0,000118        |
| BAG4    | 2,26        | 0,003037        |   | DNAJC5B  | 1,94        | 0,433188        |
| BAG5    | 3,41        | 0,0003          |   | DNAJC5G  | 2,59        | 0,058501        |
| CCS     | 1,41        | 0,007209        |   | DNAJC6   | 1,24        | 0,550764        |
| CCT2    | 2,43        | 0,006482        |   | DNAJC7   | 2,49        | 0,004597        |
| CCT3    | 3           | 0,006755        |   | DNAJC8   | 1,37        | 0,023288        |
| CCT4    | 3,51        | 0,000201        |   | DNAJC9   | 1,03        | 0,802655        |
| CCT5    | 2,34        | 0,000076        |   | HSF1     | 1,68        | 0,009516        |
| CCT6A   | 1,79        | 0,000517        |   | HSF2     | 4,05        | 0,000862        |
| CCT6B   | 1,97        | 0,00996         |   | HSF4     | 1,39        | 0,145565        |
| CCT7    | 1,52        | 0,003472        |   | HSP90AA1 | 6,53        | 0,00124         |
| COQ8A   | 1,95        | 0,018829        |   | HSP90AB1 | 3,57        | 0,000081        |
| CRYAA   | 0,93        | 0,972409        |   | HSP90B1  | 5,5         | 0,000083        |
| CRYAB   | 7,64        | 0,000045        |   | HSPA14   | 2,58        | 0,000824        |
| DNAJA1  | 3,42        | 0,000447        |   | HSPA1A   | 26,45       | 0,005915        |
| DNAJA2  | 2,22        | 0,001657        |   | HSPA1B   | 54,66       | 0,000652        |
| DNAJA3  | 2,95        | 0,00021         |   | HSPA1L   | 1,49        | 0,423684        |
| DNAJA4  | 37,68       | 0,001242        |   | HSPA2    | 0,8         | 0,08965         |
| DNAJB1  | 21,92       | 0,003122        |   | HSPA4    | 2,61        | 0,001488        |
| DNAJB11 | 5,54        | 0,000045        |   | HSPA4L   | 10,03       | 0,000241        |
| DNAJB12 | 2,43        | 0,000333        |   | HSPA5    | 12,74       | 0,000184        |
| DNAJB13 | 1,21        | 0,266541        |   | HSPA6    | 1674,96     | 0,002617        |
| DNAJB14 | 3,36        | 0,000008        |   | HSPA8    | 2,05        | 0,001686        |
| DNAJB2  | 2,87        | 0,000061        |   | HSPA9    | 6,1         | 0,000005        |
| DNAJB5  | 3,41        | 0,000003        |   | HSPB1    | 1,62        | 0,181349        |
| DNAJB6  | 2,57        | 0,000329        |   | HSPB2    | 0,67        | 0,64913         |
| DNAJB7  | 1,35        | 0,13324         |   | HSPB3    | 0,88        | 0,584931        |
| DNAJB8  | 2,14        | 0,227409        |   | HSPB6    | 0,39        | 0,013922        |
| DNAJB9  | 15,16       | 0,00002         |   | HSPB7    | 0,64        | 0,160068        |
| DNAJC1  | 2,88        | 0,000067        |   | HSPB8    | 5,99        | 0,000064        |
| DNAJC10 | 3,28        | 0,000933        |   | HSPD1    | 4,46        | 0,000065        |
| DNAJC11 | 2,11        | 0,00018         |   | HSPE1    | 1,78        | 0,001644        |
| DNAJC12 | 12,54       | 0,000116        |   | HSPH1    | 13,63       | 0,000432        |
| DNAJC13 | 1,67        | 0,000871        |   | PFDN1    | 0,9         | 0,433629        |
| DNAJC14 | 2,2         | 0,000264        |   | PFDN2    | 1,36        | 0,002902        |
| DNAJC15 | 1,14        | 0,014643        |   | SERPINH1 | 3,74        | 0,00152         |
| DNAJC16 | 3,69        | 0,000304        |   | SIL1     | 2,49        | 0,001381        |
| DNAJC17 | 1,25        | 0,48577         |   | TCP1     | 3,14        | 0,000443        |
| DNAJC18 | 1,97        | 0,006605        |   | TOR1A    | 1,17        | 0,068212        |

#### Supplementary Table 1. Expression profile of 84 HSF1-target genes in HCoV-229E infected cells

MRC-5 cells infected with HCoV-229E (0.1 TCID<sub>50</sub>/cell) for 24h. For details see legend Fig. 3A.

| GENE    | Fold Change | <i>p-</i> value | GENE     | Fold Change | <i>p</i> -valu |
|---------|-------------|-----------------|----------|-------------|----------------|
| ATF6    | 1,47        | 0,036919        | DNAJC21  | 0,96        | 0,62938        |
| BAG1    | 2,36        | 0,000475        | DNAJC3   | 1,91        | 0,00046        |
| BAG2    | 0,82        | 0,279689        | DNAJC4   | 1,48        | 0,00206        |
| BAG3    | 7,34        | 0,000124        | DNAJC5   | 1,01        | 0,93160        |
| BAG4    | 0,85        | 0,315173        | DNAJC5B  | 1,39        | 0,1763         |
| BAG5    | 1,33        | 0,115042        | DNAJC5G  | 12,38       | 0,06399        |
| CCS     | 2,01        | 0,00668         | DNAJC6   | 2,29        | 0,0168         |
| CCT2    | 1,13        | 0,372228        | DNAJC7   | 0,97        | 0,73853        |
| CCT3    | 1,34        | 0,221978        | DNAJC8   | 1,05        | 0,7530         |
| CCT4    | 1,53        | 0,078246        | DNAJC9   | 1,4         | 0,06938        |
| CCT5    | 0,74        | 0,009083        | HSF1     | 1,14        | 0,17180        |
| CCT6A   | 1,61        | 0,005258        | HSF2     | 1,68        | 0,00403        |
| CCT6B   | 1,75        | 0,067021        | HSF4     | 5,05        | 0,00606        |
| CCT7    | 1,08        | 0,890066        | HSP90AA1 | 3,48        | 0,00001        |
| COQ8A   | 3,15        | 0,002652        | HSP90AB1 | 1,26        | 0,00501        |
| CRYAA   | 10,5        | 0,06443         | HSP90B1  | 1,9         | 0,00150        |
| CRYAB   | 7,65        | 0,000006        | HSPA14   | 0,67        | 0,02715        |
| DNAJA1  | 5,52        | 0,000065        | HSPA1A   | 95,02       | 0,0000         |
| DNAJA2  | 1,51        | 0,123754        | HSPA1B   | 155,67      | 0,00000        |
| DNAJA3  | 0,96        | 0,734253        | HSPA1L   | 8,16        | 0,01023        |
| DNAJA4  | 13,25       | 0,000001        | HSPA2    | 0           | 0,0596         |
| DNAJB1  | 40,42       | 0,000005        | HSPA4    | 1,48        | 0,0020         |
| DNAJB11 | 2,18        | 0,008582        | HSPA4L   | 23,25       | 0,00058        |
| DNAJB12 | 1,23        | 0,215473        | HSPA5    | 3,02        | 0,0001         |
| DNAJB13 | 7,36        | 0,025194        | HSPA6    | 312,55      | 0,0000         |
| DNAJB14 | 1,15        | 0,305747        | HSPA8    | 1,82        | 0,0026         |
| DNAJB2  | 2,18        | 0,000273        | HSPA9    | 0,65        | 0,00713        |
| DNAJB5  | 0,65        | 0,135038        | HSPB1    | 3,14        | 0,0000         |
| DNAJB6  | 1,65        | 0,009224        | HSPB2    | 1,56        | 0,15493        |
| DNAJB7  | 2,5         | 0,087585        | HSPB3    | 0,41        | 0,02025        |
| DNAJB8  | 0,92        | 0,489083        | HSPB6    | 1,04        | 0,6028         |
| DNAJB9  | 3,51        | 0,000137        | HSPB7    | 0,37        | 0,00001        |
| DNAJC1  | 1,14        | 0,30654         | HSPB8    | 1,36        | 0,21921        |
| DNAJC10 | 1,19        | 0,459702        | HSPD1    | 2,13        | 0,00016        |
| DNAJC11 | 0,7         | 0,068169        | HSPE1    | 2,36        | 0,0000         |
| DNAJC12 | 4,17        | 0,000144        | HSPH1    | 5,11        | 0,00004        |
| DNAJC13 | 1,05        | 0,9834          | PFDN1    | 1,13        | 0,35639        |
| DNAJC14 | 1,39        | 0,00831         | PFDN2    | 0,74        | 0,00589        |
| DNAJC15 | 1,24        | 0,071779        | SERPINH1 | 1,83        | 0,00002        |
| DNAJC16 | 1,12        | 0,672599        | SIL1     | 1,21        | 0,03945        |
| DNAJC17 | 1,38        | 0,008337        | TCP1     | 1,31        | 0,01954        |
| DNAJC18 | 0,97        | 0,741256        | TOR1A    | 0,79        | 0,16684        |

#### Supplementary Table 2. Expression profile of 84 HSF1-target genes in heat-shocked cells

MRC-5 cells exposed to heat-shock (43°C, 40 min, 1.5 h recovery). For details see Fig. S2 legend.

| Antibody                         | Source                   | Catalogue Number |
|----------------------------------|--------------------------|------------------|
| HCoV-229E Spike (P)              | LGC NAC Company          | PAB21477-100     |
| HCoV-229E Nucleocapsid (P)       | Sino Biological          | 40640-T62        |
| HCoV-OC43 Nucleocapsid (P)       | Sino Biological          | 40643-T62        |
| KDEL (M)                         | Enzo Life Sciences       | ADI-SPA-827      |
| HCoV-NL63 Nucleocapsid (P)       | Sino Biological          | 40641-T62        |
| VSV-G protein (M)                | Sigma-Aldrich            | V5507            |
| SARS-CoV-2 spike (M)             | LGC NAC Company          | MAB12444         |
| Puromycin (M)                    | Sigma-Aldrich            | MABE343          |
| dsRNA (M)                        | SCICONS                  | 10010200         |
| α-Tubulin (M)                    | Sigma-Aldrich            | T5168            |
| HSF1 (P)                         | Enzo Life Sciences       | ADI-SPA-901      |
| HSF1 (phospho-S121) (P)          | Tebubio                  | A8041            |
| HSF1 (phospho-S303) (P)          | abcam                    | ab47369          |
| HSF1 (phospho-S326) (P)          | abcam                    | ab76076          |
| β-Actin (P)                      | Sigma-Aldrich            | A2066            |
| ZFAND2A (P)                      | Sigma-Aldrich            | HPA019469        |
| GAPDH (P)                        | Cusabio                  | CSB-PA00025A0Rb  |
| HSP70 (M)                        | Enzo Life Sciences       | ADI-SPA-810      |
| Histone H3 (P)                   | abcam                    | ab1791           |
| HSP90β (P)                       | Santa Cruz Biotechnology | sc-1057          |
| HSP90 (P)                        | Cell Signaling           | 4877             |
| HSP60 (P)                        | StressMarq               | SPC-105          |
| GFP (M)                          | CUSABIO                  | CSB-MA000051M0m  |
| ACE2 (M)                         | Santa Cruz Biotechnology | sc-73668         |
| Alexa Fluor 488 goat anti-mouse  | Invitrogen               | A11001           |
| Alexa Fluor 555 goat anti-rabbit | Invitrogen               | A21428           |
| Goat Anti-Mouse IgG (H+L), HRP   | Jackson ImmunoResearch   | 115-035-003      |
| Goat Anti-Rabbit IgG (H+L), HRP  | Jackson ImmunoResearch   | 111-035-003      |
| Mouse Anti-Goat IgG (H+L), HRP   | Santa Cruz Biotechnology | sc-2354          |

### Supplementary Table 3. Antibodies used

(M): Monoclonal; (P): Polyclonal

#### Supplementary Table 4. Primers and siRNAs used

| Primers used for mRNA gene expression |                  |                                 |  |  |
|---------------------------------------|------------------|---------------------------------|--|--|
| Gene                                  | Primer direction | Primer sequence                 |  |  |
|                                       | Forward          | 5'-TCATTTTCCATACGCTGCAC-3'      |  |  |
| AIKAP                                 | Reverse          | 5'-CTGTGGTCCAAAGGGTGTCT-3'      |  |  |
| COX 2                                 | Forward          | 5'-TTGCTGGCAGGGTTGCTGGTGGTA-3'  |  |  |
| 00-2                                  | Reverse          | 5'-CATCTGCCTGCTCTGGTCAATGGAA-3' |  |  |
| 11007014                              | Forward          | 5'-CTACAAGGGGGGAGACCAAGG-3'     |  |  |
| nSr/01A                               | Reverse          | 5'-TTCACCAGCCTGTTGTCAAA-3'      |  |  |
| NVDE                                  | Forward          | 5'-CCAAACCTTCCAAAGGTCAA-3'      |  |  |
| INKKI                                 | Reverse          | 5'-CAGGGTTCCCACTGTCAAAA-3'      |  |  |
| UCoV 220E                             | Forward          | 5'- TTCCGACGTGCTCGAACTTT-3'     |  |  |
| 20V-229E                              | Reverse          | 5'- CCAACACGGTTGTGACAGTGA-3'    |  |  |
| 1.24                                  | Forward          | 5'-GGCCCTGCTGACATGTTTCTT-3'     |  |  |
| L54                                   | Reverse          | 5'-GTCCCGAACCCCTGGTAATAGA-3'    |  |  |
| siRNAs sequences                      |                  |                                 |  |  |
| siRNA Target sequence                 |                  |                                 |  |  |

| siRNA   | Target sequence             |
|---------|-----------------------------|
| siHSF11 | 5'-TACCCAAGTACTTCAAGCACA-3' |
| siHSF12 | 5'-CAGTGACCACTTGGATGCTAT-3' |

#### DNA D...:. d fo •

#### SUPPLEMENTARY FIGURE LEGENDS

Figure S1. HCoV-induced HSF1 phosphorylation and expression of HSF1-target genes is time- and m.o.i.-dependent, and is not mimicked by VSV infection. (A) Schematic representation of the experimental protocol (top panel). Whole-cell extracts (WCE) from samples mock-infected (Mock) or infected with HCoV-229E (0.1 TCID<sub>50</sub>/cell) were analyzed for pHSF1 (Ser326), viral nucleocapsid (N) and  $\alpha$ -tubulin protein levels at different times post infection (p.i.) by IB (bottom panels). (B) Immunoblot analysis of pHSF1 (Ser326), VSV-G glycoprotein and βactin levels in HeLa cells mock-infected (0) or infected with VSV at different m.o.i. (0.1, 0.5 or 1 PFU/cell) or exposed to heat-stress (HS, 43°C, 40 min) (top panels). pHSF1-Ser326 protein levels were determined by densitometric analysis using ImageJ software (bottom panel). (C) MRC-5 cells were mock-infected or infected with HCoV-229E (1 TCID<sub>50</sub>/cell) and levels of viral membrane (M-229E), HSP70 and AIRAP mRNA were analyzed at different times p.i. by qRT-PCR. (D) Total mRNA was extracted from MRC-5 cells mock-infected or infected with HCoV-229E (0.1 or 1 TCID<sub>50</sub>/cell) for 24h and analyzed for M-229E, HSP70 and AIRAP gene expression by qRT-PCR. The fold increase was calculated by comparing the induction of M-229E, HSP70 and AIRAP in each sample to the relative control at 0h p.i. (C) or to the mock-infected control (D), which were arbitrarily set to 1. Error bars indicate means  $\pm$  S.D. (n=3). \* = p < 0.05; Student's *t*-test (B, C); ANOVA test (D).

Figure S2. Heat-shock and HCoV-229E infection turn on distinct HSF1-driven transcriptional programs in human lung cells. (A-C) Expression profile of selected HSF1-target genes affected by heat-shock (HS: 43°C, 40 min, 1.5h recovery) in MRC-5 cells as determined by qRT-PCR array (PAHS-076ZD-2-Qiagen). Heat Map (A) and Volcano plot (B) of 84 human HSPs and chaperones/cochaperones gene expression. In (A) each row represents a single gene, each column represents the mean of triplicate samples. The gradual color ranging from blue to red represents the mRNA expression level (Z-score). In the Volcano plot (B) fold regulation threshold is set to 2 and *p*- value cut off is 0.05; each dot represents a gene: red and blue dots indicate genes respectively up- and down-regulated more than 2-fold. Selected HSPs and chaperones/cochaperones genes whose expression is highly induced by HS are shown in (C). (D,E) Venn diagram (D) and comparison (E) of significantly (p<0.05) deregulated genes in MRC-5 cells heat-stressed as in (A) or infected with HCoV-229E (0.1 TCID<sub>50</sub>/cell) for 24h.

Figure S3. HCoV infection selectively induces canonical and non-canonical HSP expression in human lung cells. (A) Levels of HSP90, GRP94, GRP78, HSP70, HSPA6, HSP60, AIRAP and viral spike protein shown in Fig. 3F were determined by densitometric analysis using ImageJ software, normalized to  $\beta$ -actin and expressed as arbitrary units (A.U.). (B) Levels of GRP94, GRP78, HSP70 and viral nucleocapsid (N-229E) protein shown in Fig. 3H were determined by densitometric analysis as in A. Error bars indicate means  $\pm$  S.D. (n=3). \* = p < 0.05; \*\* = p <0.01; Student's *t*-test.

Figure S4. HCoV-OC43 and HCoV-NL63 infection induces the expression of HSF1-target genes in human cells. (A, C) Schematic representation of the experimental protocol (top panels). Immunoblot analysis of HSPA6, HSP60, AIRAP, viral nucleocapsid (N),  $\alpha$ -tubulin and  $\beta$ -actin protein levels in MRC-5 (A) and Caco-2 hACE2 (C) cells mock-infected (-) or infected (+) with HCoV-OC43 (A) for 24h or HCoV-NL63 (C) for 72h at a m.o.i. of 0.1 TCID<sub>50</sub>/cell (bottom panels). (**B**, **D**) Relative amounts of HSPA6, HSP60 and AIRAP proteins, normalized to  $\alpha$ -tubulin (B) or to  $\beta$ -actin (D), were determined by densitometric analysis using ImageJ software. Error bars indicate means  $\pm$  S.D. (n=3). \* = p < 0.05; Student's *t*-test.

Figure S5. Effect of different SARS-CoV-2 variants on HSF1 phosphorylation in MRC5hACE2 cells. (A) Schematic representation of the experimental protocol. (B, C) MRC5-hACE2 cells were mock-infected or infected with the Wuhan, Alpha and Delta SARS-CoV-2 variants (0.1 PFU/cell) for 40h. Equal amounts of whole-cell extracts (10  $\mu$ l) were analyzed for levels of HSF1-Ser326, HSF1 and  $\beta$ -actin by IB (B). Levels of HSF1-Ser326 phosphorylation were determined after normalizing to  $\beta$ -actin and expressed as fold induction of the mock-infected control, which was arbitrarily set to 1 (C).

**Figure S6. DTHIB treatment inhibits HCoV-OC43 replication.** (A) MRC-5 cells mock-infected or infected with HCoV-OC43 (0.1 TCID<sub>50</sub>/cell) were treated with different concentrations of DTHIB immediately after the adsorption period. (**B**, **C**) MRC-5 cells were treated with 10  $\mu$ M DTHIB (filled bars) or control vehicle (C, empty bars) at 3h before infection (PRE), only during the adsorption period (ADS), immediately after the adsorption period (POST 0h) or at 10h after infection (POST 10h) with HCoV-OC43 at a m.o.i. of 0.1 TCID<sub>50</sub>/cell (B) or 1 TCID<sub>50</sub>/cell (C). (**A-C**) Virus yield was determined at 24h p.i. by TCID<sub>50</sub> infectivity assay. Data, expressed as TCID<sub>50</sub>/ml, represent the mean  $\pm$  S.D. (n=3). \* = p < 0.05, \*\* = p 0.01, \*\*\* = p < 0.001; ANOVA test.



Figure S1



Figure S2



Figure S3



Figure S4



Figure S5



Figure S6