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Figure S1. Relationship between FastANI and ProoMASH-ANI (a) and FastANI and
MASH-ANI (b) for closely related genomes. Spearman and Pearson correlations were
significant at p<0.001 in both (a) and (b). ProbMASH-ANI is transformed from
ProbMinHash distance according to the MASH distance equation (See Materials and
Methods, ProbMinHash section). Mean absolute error (MAE) were 0.023 and 0.021
respectively for (a) and (b) for data > 80% AN, slightly larger than FastANI (MAE=0.014)

for the same comparisons; see Figure S13.
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Figure S2. Relationship between AAI (entire proteome) and ProbMASH distance for (a)
all AAl values and (b) AAl values between 0.52 and 0.95 among 2000 genomes randomly
selected from the GTDB v207 database. Both Spearman and Pearson correlation

significance test showed p<0.01.
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Figure S3. Relationship between AAI (universal gene set, or uAAl) and prooMASH
distances for AAl values between 0.5 and 0.9 among 2000 genomes randomly selected

from the GTDB v207 database. Both Spearman and Pearson correlations were significant

at p<0.01.
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Figure S4. Performance of GSearch search step. (a) Search time (blue) and speed
(orange) for an increasing number of query genomes against a fixed database of 67503
genomes and, (b) search time (blue) and speed (orange) for an increasing number of
database genomes and a fixed number of 1059 query genomes. Search speed is defined
as the number of database genomes searched, on average, per query genome per
second. The orange line with squared data points represents Mash, whose speed was

constant for any database size for 1059 query genomes, for comparison.
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Figure S5. GSearch request speed comparison with BinDash software for (a) all bacterial

genomes (~318K, 2TB) and (b) all viral genomes (~3 million) as database. A total of 8,466

and 10,000 query genomes were used, respectively, for this analysis. Note that GSearch

and BinDash are plotted on different axes, primary y and secondary y axis, respectively.

A total of 24 threads were used. Sketch size m=107"5 was used to achieve similar

accuracy with ProbMinHash.
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Figure S6. Database build time for the IMGVR phage species database (935,122) at the
amino acid level (a), and total search (request) time for 10,000 query phages (b) against
this database. Database size was about 15.8 GB, and thus loading the database takes a

substantial fraction of the total searching time.
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Figure S7. Rooted Mean Squared Error (RMSE) of SetSektch LSH algorithm for

estimation of Jaccard index with respect to true Jaccard index for different values of
parameter b. Note that changing b requires changing m in SetSektch. Three b values
were used, 0.001, 0.0005, 0.0001 corresponding to m=4096, 6144 and 8192 respectively.
The red dashed line indicates J=0.015 with RMSE 0.81%, corresponding to ANI 77.99%,
with variation of ANI from 77.94% to 78.04% for the case that b=0.0005 and m=6144.
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Figure S8. Parallel and concurrent computing model of GSearch tohnsw (a) and request
or add (b) modules. Standard dispatcher and worker model was used with Reader and
Collector to handle file input, collecting results from sketching workers, and initializing
HNSW graph building/searching workers. Tohnsw/add module will dump sketching
results and graph to disk while searching module will load prebuilt sketching and graph
files and then dump answers for the query genomes to disk. Note that the number of
Workers for HNSW building/searching/adding is to use all available computing cores
while the number of Workers for sketching can be controlled to balance memory
consumption and sketch speed. The concurrent model was based on Rayon library, and

communication among threads was based on Crossbeam library.
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Figure S9. Parallel efficiency and memory consumption of GSearch tohnsw and request
modules (ProbMinHash) at the nucleotide level. (a) tohnsw build module real-time CPU
usage (left axis) and memory consumption (right axis) for the GTDB v207 (65,703
genomes) database using 24-thread node. (b) The same with (a) but on a 64-thread node.
(c) Real-time CPU usage and memory consumption for searching 8,466 genomes against
the GTDB prebuilt database in (a) on a 24-thread node. (d) Real-time CPU usage and
memory consumption for searching 8,466 genomes against entire NCBI/Ref_Seq
genomes (~318K). The two phases in all figures are sketching and graph

building/searching, respectively.
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Figure S10. Parallel efficiency and memory consumption of GSearch request modules
(SetSketch) at nucleotide level. (a) 8,466 query genomes against the GTDB v207
database (65,703 genomes) using 24 threads. (b) 8,466 query genomes against NCBI's
RefSeq database (~318K genomes) using 64 threads.
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Figure S11. Correlation between ANI estimates from our implementation of Densified
MinHash (optimal densification) and Mash bottom-m implementation. A sketch size

m=12,000 was used for improved accuracy in densified MinHash while 15,000 was
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used in Mash. Our implementation, as also reported in the BinDash paper, is at least 10

times faster than Mash.
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Figure S12. Root Mean Squared Error (RMSE) of Densified MinHash and Classic MinHash

theoretical RMSE (RMSE

= —V]i%_])) for Jaccard similarity, where m is the sketch size. We

use set size (number of elements in the set) n=300,000 for all cases, m is 10/5 for classic

MinHash.
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Figure S13. FastANI (y-axis) versus orthoANI (x-axis). Results are based on a testing dataset of
3000 genomes randomly subsampled from the large collection pf genome used in Figure S1.

MAE is 1.4%.
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Supplementary Tables

Table S1. Comparisons of MinHash-like and HyperLogLog algorithms. In bold face are results obtained as part of this
study (via gsearch --algo prob/super/hll option); remaining results shown are from the literature. Jp is closer to real
Jaccard index than Jw despite both algorithms considering k-mer weights.

Weighted Set Size bias Speed Space Mergeability1° Approximated Jaccard-like

element (More is better) (Less is better) index
Classic MinHash' X v Jokk K Yoot v J
Densifed MinHash (with X v Je 3Kk ek ke Yot X J
0D2,11)
SuperMinHash3 X v ookk Fodeke v J
ProbMinHash (default) v X S dedok ke Yotk v Jp
BagMinhashs v v * %k Yede e tek v Jw
DartMinHashé v v ok K Yefededede v Jw
HyperLoglLog” X X *kk ok v J
HyperLogLoglog8 X X *k ¥ v J
SetSketch? X (V)2 X Jokk Fok v J
UltraLogLog X X *k ¥ v J

1Broder (1997), 2Shrivastava (2017), 3Ertl (2017), 4Ertl (2020), SErtl (2018), éChristiani (2020), "Flajolet et al. (2007), 8Karppa and Pagh (2022), °Ertl (2021)

10 which means that adding an element or taking the union of multiple subsets can be performed in sketch space, important feature for large scale application
when new data need to be added to existing sketches or distributed environment.

110D indicates optimal densification. Since it is not mergeable, it is difficult to be applied in distributed environment.

12SetSketch can be applied in a weighted fashion but not in this paper
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Table S2. Theoretical comparison of estimator variance (relative mean standard error)
of MinHash-like algorithms for Jaccard index, where m is the number of registers
(sketch size). The same m was used for all tools expect for SetSketch, which requires a
smaller m to have similar accuracy. J or Jp represents Jaccard index or Jp, respectively.

RMSE

Classic MinHash Sqrt(J*(1-J)/m)
ProbMinHash sqrt(Jp*(1-dp)/m)
SuperMinHash' a-n M)+ - DY -2

sqrt(/ - a- m = Dem(u—1) ))
SetSketch? [sqrt(1/m), sqrt(1.08/m)]
Dashing (original&Improved)3 sqrt(1.079/m) + union/intersection error > sqrt(1.079/m)
Dashing (MLE)* sqrt(1.074/m)
Densifed MinHash5 sqrt(1/m)
17-GRA (1=0.8898)% sqrt(1.075/m)

The second long term in the variance is always smaller than 1, thus SuperMinHash RMSE is always smaller than classic MinHash, the smallest MinHash RMSE
known until today; 2As b is close to 1, RMSE is close to lower bound; 3Both the original and improved estimator need correction at small cardinality. Dashing2 has
the same variance with SetSketch because it reimplemented SetSketch; “MLE is Maximum Likelihood Estimator, theoretically optimal for HyperLogLog sketches
but much slower; One Permutation MinHash with Optimal Densification, variance goes to 0 much faster than classic MinHash/SuperMinHash/ProbMinHash as m
increases, see Shrivastava (2017). Note that the variance is larger than classic MinHash or ProbMinHash for any J because J(1-J) is always smaller than 0.25;
5Generalized Remaining Area with t=0.8898 has the lowest variance. Detailed analysis of RSME for Tau-GRA can be found in Pettie and Wang (2022)

Table S3. GSearch’s performance on major CPU platforms for searching 8,466 query
genomes against the RefSeq reference database (~318K genomes). ProbMinHash was
used as the genomic distance algorithm for this benchmark, with 50 neighbors
requested.

CPU Number Clock Request Gene Request hmmsear Request
of speed timefornt Prediction- time for chtime time for
threads (GHz) (min) FGSrs proteome (min)d USCG
(min)e (min) (min)d
Intel (R) Xeon 24 2.70 9.329 3.348 6.234 3.524 0.445
(R) Gold
62268
Intel (R) Core 16 2.30 13.654 6.764 7.91 6.214 0.613
i9-8950HK®>
AMD EPYC 32(24 2.60 10.245 4.452 6.021 3.345 0.402
7513a2
used)
Apple M1 Pro® 10 3.22 9.669 4.31 6.166 4.603 0.568

aRHEL v7.9, Linux v3.10.0-1160, all threads used. 512G RAM available.
bMacOS v12.3, Darwin 21.4.0 on MacBook Pro laptops, all threads used. Database was split into two pieces to have smaller
memory requirement on those 16GB RAM laptops since database size was ~15GB for entire NCBI/RefSeq.
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cParallel package was used to run multiprocess at the same time. FGSrs stands for FragGeneScanRs (comparisons with Prodigal
can be found in Table S11). Note that in practice only those genomes failing in the request step at the nucleotide (nt) level (best
match found was less than 78% ANI) will be used in this amino-acid step.

dOnly 1000 genomes were used for testing hmmsearch and USCG request in GSearch because this step was for assessing a few
genomes that were novel at the order level or above. Parallel Packages was used to run multiple processes of hmmsearch, one
thread per process for hmmsearch.

Table S4. GSearch 3-step classification pipeline accuracy using GTDB-tk as reference
for 1,000 test genomes of various degrees of novelty relative to the database genomes.

GSearch GTDB
Species level 0 0
(595% AN) 100% (699/699) 100% (reference)
Genus to family
level or above 87.1%(266/301) 100% (reference)

(<62% AAl)

Table S5. GSearch search (request) performance on major CPU platforms using the GTDB
v207 database for graph building and 1000 genome queries. Default ProbMinHash option was
used.

CPU Number Clock Request Gene Request hmmsear Request
of speed timefornt Prediction- time for chtime time for
threads (GHz) (min) FGSrs proteome (min)d USCG
(min)e (min) (min)
Intel (R) Xeon 24 2.70 2.329 1.348 1.334 0.524 0.117
(R) Gold
62268
Intel (R) Core 8 2.80 8.654 6.764 2.041 1.534 0.510
i7-7770HQP
AMD EPYC 32(24 2.60 1.937 1.120 1.021 0.345 0.102
7513a2 used)
Apple M1 Pro® 10 3.22 2.369 2.12 0.866 0.498 0.168

aRHEL v7.9, Linux v3.10.0-1160, all threads used.

bMacOS v12.3, Darwin 21.4.0, all threads used.

cParallel package was used to run multiprocess at the same time. FGSrs stands for FragGeneScanRs. Note that in practice only
those genomes failing at the Request step for nucleotide-level search (best match found is <78% ANI) will be used at this step.
dOnly 100 genomes were used for testing hmmsearch because this step is for very novel (deep-branching) genomes at order level
or above, which are not very common in real-world dataset. The Parallel Package was used to run multiple processes of
hmmsearch, one thread per process for hmmsearch.

14



Table S6. GSearch performance and accuracy for the viral database using the BLAST-
based AAl as the reference standard. MASH dist command was run using 24 threads
for this analysis.

GSearch (aa) Recall (top 5) MASH (aa)
1000 phage 4min24s 98.32% 2.12h
10,000 Phage 39 min 58 s 96.04% 17.4 h

Table S7. Benchmarking of hnswlib-rs library using the MNIST fashion (70,000)
dataset.

Ma ef_construct recall Build time (s)  Query timeb Speedc
(s) (queries/s)
Run #1 32 200 0.9849 4.88 0.27 36569.63
Run #2 64 400 0.9959 9.09 0.46 21699.18
Run #3 128 400 0.9981 9.66 0.78 12740.01
Run #4 128 800 0.9984 18.00 0.86 11574.46
Run #5 128 1600 0.9986 34.53 0.93 10747.78
Run #6 256 1200 0.9995 30.00 1.61 6209.15
Run #7 256 1600 0.9996 39.18 1.67 5972.75
Run #8 256 2400 0.99999 56.33 1.72 5804.61

aef_search=M, the width of search for querying equals to M

b| arge M and ef_construct take more time for both build and query search. In the MNIST fashion dataset, Euclidean distance is pre-
computed and not considered in this test. The distance used is the same for Table S8, Table S9 and table S10.

¢ Tests were run on a 24 threads Intel (R) Xeon (R) Gold 6226 CPU@2.70 Ghz. Speed is tested using 10,000 queries.

Table S8. Benchmarking of hnswlib-rs library using the SIFT1M (1,000,000) dataset.
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M ef_construct recall Build time Query time Speed

(min) (s) a(queries/s)
Run #1 128 1600 0.9980 21.18 1.81 5528.93
Run #2 256 3200 0.9986 40.83 3.82 2618.20

aTests were run on a 24 threads Intel (R) Xeon (R) Gold 6226 CPU@2.70 Ghz. Speed is tested using 10,000 queries.

Table S9. Benchmarking of hnswlib-rs library for scalability using the SIFT1M dataset.

Number of M ef_construct Build time Query time Speeda

threads (min) (s) (queries/s)
Run #1 8 256 3200 87.97 7.90 1265.27
Run #2 12 256 3200 67.02 6.26 1596.35
Run #3 24 256 3200 40.83 3.82 2618.20

2 Tests were run on an Intel (R) Xeon (R) Gold 6226 CPU@2.70 Ghz. For each run, the number of threads shown in column #2
were requested. Speed is tested using 10,000 queries.

Table S10. Comparison of hnswlib-rs with C++ hnswlib using the MNIST fashion
(70,000) dataset. For this test, 60,000 genomes were used for building as database and
10,000 as query, requesting 50 best neighbors.

Number of M ef_construc Build time (s)  Query time Speeda
threads t (s) (queries/s)
Run #1 (hnswlib-rs) 24 128 1600 34.53 0.93 11225
Run #2 (hnswlib-c++1) 24 128 1600 31.02 1.05 10204
Run #3 (hnswlib-rs) 24 256 3200 92.83 2.32 4250
Run #4 (hnswlib-c++) 24 256 3200 51.83 1.85 5235

1 https://github.com/nmslib/hnswlib

Table S11. The table shows benchmark results of FGSrs against truth (full version v0.0.1)
and comparison with other tools. True positives were denoted as the number of base pair
in a prediction on the correct strand, false positives the number of base pair in a prediction
outside gene annotations or on the wrong strand, true negatives the number of bp outside
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gene annotations that weren't in any prediction, and false negatives the number of bp
inside gene annotations that weren't in any prediction. Prec denotes precision, Sens
denotes sensitivity, Spec denotes specificity. Negative Predictive Value and Matthew's

Correlation Coefficient are provided as percentages.

tool TP FP TN FN prec sens F1 spec NPV MCC
score

FGS 2494195 231257 656879 283010 91.51 89.81 0.90 73.96 69.89 62.58

prodigal 2488137 117535 745673 313996 95.49 88.79 0.92 86.38 70.37 70.36

FGSrs 2494195 231257 656879 283010 91.51 89.81 0.90 73.96 69.89 62.58

Table S12. Effect of genome completeness on GSearch recall. Genomes of different
degrees of completeness were obtained by randomly sampling the gene sequences

from the predicted gene collection of the complete genome. Hydrogenimonas
urashimensis, an Hz2 dependent chemolithoautotrophic bacteria isolated from deep sea
hydrothermal vent (Mino et al., 2021), was used as query. There is no identical genome

to H. urashimensis in the GTDB database.

Completeness Top Hits found/10 Top 5 hits Recall (top 10)  Recall (top 10)
found/5

0.95 10/10 5/5 100% 100%
0.90 10/10 5/5 100% 100%
0.85 9/10 5/5 90% 100%
0.80 8/10 5/5 80% 100%
0.75 8/10 5/5 80% 100%
0.70 8/10 5/5 80% 100%
0.65 8/10 5/5 80% 100%
0.60 8/10 5/5 80% 100%
0.55 8/10 5/5 80% 100%
0.50 7110 5/5 70% 100%
0.45 510 5/5 50% 100%
0.40 4/10 4/5 40% 80%
0.35 4/10 4/5 40% 80%
0.30 4/10 4/5 40% 80%
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Table S13. GSearch, Sourmash,Dashing and BinDash benchmark against blastn-ANI
at nucleotide level. Query genomes is “OceanDNA-b42278.fa” from (Nishimura and
Yoshizawa, 2022). Database genomes were all NCBI/RefSeq genomes. Mash, FastANI
and Blastn-based ANI give the same top 10 for this query genomes. For each column,
matches are ranked by the respective distance, taken directly from the software output.
Top 10 found by blastn-ANI were about 80% to 97% ANI.

Blastn-ANI (top10), ground truth

GSearch (top10, ProbMinHash),
recall 100%, 2s

Sourmash (top10), recall 90%,
13min

Dashing (top10), recall 90%, 26s

BinDash (top 10), recall 100%,
3.7s

GCA_902591925.1_genomic.fna
GCA_902617045.1_genomic.fna
GCA_902541175.1_genomic.fna
GCA_902612915.1_genomic.fna
GCA_004212975.1_genomic.fna
GCA_902547295.1_genomic.fna
GCA_902630885.1_genomic.fna
GCA_902586925.1_genomic.fna
GCA_902631785.1_genomic.fna
GCA_000252525.1_genomic.fna

GCA_902591925.1_genomic.fna
GCA_902617045.1_genomic.fna
GCA_902547295.1_genomic.fna
GCA_902612915.1_genomic.fna
GCA_004212975.1_genomic.fna
GCA_902541175.1_genomic.fna
GCA_902586925.1_genomic.fna
GCA_902630885.1_genomic.fna
GCA_902631785.1_genomic.fna
GCA_000252525.1_genomic.fna

GCA_902591925.1_genomic.fna
GCA_902617045.1_genomic.fna
GCA_902541175.1_genomic.fna
GCA_902612915.1_genomic.fna
GCA_902547295.1_genomic.fna
GCA_004212975.1_genomic.fna
GCA_902586925.1_genomic.fna
GCA_902631785.1_genomic.fna
GCA_000252525.1_genomic.fna
GCA_902582355.1_genomic.fna

GCA_902591925.1_genomic.fna
GCA_902617045.1_genomic.fna
GCA_902612915.1_genomic.fna
GCA_902541175.1_genomic.fna
GCA_902547295.1_genomic.fna
GCA_004212975.1_genomic.fna
GCA_000252525.1_genomic.fna
GCA_902630885.1_genomic.fna
GCA_902631785.1_genomic.fna
GCA_902582355.1_genomic.fna

GCA_902591925.1_genomic.fna
GCA_902617045.1_genomic.fna
GCA_902541175.1_genomic.fna
GCA_902612915.1_genomic.fna
GCA_902547295.1_genomic.fna
GCA_004212975.1_genomic.fna
GCA_902630885.1_genomic.fna
GCA_902586925.1_genomic.fna
GCA_902631785.1_genomic.fna
GCA_000252525.1_genomic.fna

Table S14. GSearch (ProbMinHash), Sourmash, Dashing and Sourmash benchmark
against Blastn-ANI at nucleotide level. Query genome is “OceanDNA-b42278.fa” from
(Nishimura and Yoshizawa, 2022). Database genomes are all NCBI/RefSeq genomes
(318k) after removing the top 10 ground truth genomes found in Table S13 above. For
each column, matches are ranked by the respective distance provided in the output of
each tool. Top 10 matches found by blastn-ANI showed between 75% to 80% to the
query genome, corresponding to Jaccard index 0.009 to 0.015 respectively. Boldface
denotes the genomes found by each method compared to the ground truth in column 1.

Blastn-ANI (top10), ground truth

GSearch (Prob) (top10), recall
50%, 2s

Sourmash (top10), recall 60%,
14min

Dashing (default Ertl-MLE estimator)
(top10), recall 10%, 26s

BinDash recall (90%). 3.7s

GCA_902582355.1_genomic.fna (79.24%)
GCA_002690725.1_genomic.fna (78.79%)
GCA_902560315.1_genomic.fna (77.92%)
GCA_902517505.1_genomic.fna (77.57%)
GCA_002169625.2_genomic.fna (76.41%)
GCA_902556105.1_genomic.fna (76.37%)
GCA_902583575.1_genomic.fna (75.30%)
GCA_003213495.1_genomic.fna (75.24%)
GCA_902579825.1_genomic.fna (75.15%)
GCA_902563835.1_genomic.fna (75.00%)

GCA_002690725.1_genomic.fna

GCA_002690725.1_ ic.fna

GCA _¢ 1 ic.fna

GCA ¢ 15.1 ic.fna

GCA ¢ 15.1_ ic.fna

GCA_00: 45.1:genomic.fna

GCA_902556105.1_genomic.fna
GCA_902558095.1_genomic.fna
GCA_902517505.1_genomic.fna
GCF_017873235.1_genomic.fna
GCA_002169625.2_genomic.fna
GCA_002704625.1_genomic.fna
GCA_902559345.1_genomic.fna
GCA_902557965.1_genomic.fna

GCA_902556105.1_genomic.fna
GCA_902582355.1_genomic.fna
GCA_902558095.1_genomic.fna
GCA_003213495.1_genomic.fna
GCA_002721465.1_genomic.fna
GCA_902517505.1_genomic.fna
GCA_902557965.1_genomic.fna
GCA_902559345.1_genomic.fna

GCA_012735275.1_genomic.fna
GCF_000165465.1_genomic.fna
GCF_003111605.1_genomic.fna
GCA_017532025.1_genomic.fna
GCA_902592715.1_genomic.fna
GCA_014653355.1_genomic.fna
GCA_902626385.1_genomic.fna
GCA_016288795.1_genomic.fna

GCA_902582355.1_genomic.fna
GCA_902560315.1_genomic.fna
GCA_002690725.1_genomic.fna
GCA_902517505.1_genomic.fna
GCA_902583575.1_genomic.fna
GCA_902579825.1_genomic.fna
GCA_003213495.1_genomic.fna
GCA_902556105.1_genomic.fna
GCA_902558095.1_genomic.fna

GCA_902563835.1_genomic.fna

Table S15. GSearch (SetSketch) and Dashing (Ertl’s Joint MLE) benchmarking against
blastn-ANI. The table is similar to Table S14 above but using the SetSketch algorithm.

Blastn-ANI (top10), ground truth

GSearch with SetSketch HLL
(top10), recall 60%, 2s

GSearch with SuperMinHash
(top10), recall 60%, 2s

Dashing (JMLE methods, ~10x
slower) (top 10), recall 10%, 17.4
min

GCA_902582355.1_genomic.fna
(79.24%)
GCA_002690725.1_genomic.fna
(78.79%)
GCA_902560315.1_genomic.fna
(77.92%)
GCA_902517505.1_genomic.fna
(77.57%)
GCA_002169625.2_genomic.fna
(76.41%)
GCA_902556105.1_genomic.fna
(76.37%)

GCA_002690725.1_genomic.fna
GCA_902560315.1_genomic.fna
GCA_902517505.1_genomic.fna
GCA_902583575.1_genomic.fna
GCA_902579825.1_genomic.fna

GCA_902559345.1_genomic.fna

GCA_902560315.1_genomic.fna
GCA_002690725.1_genomic.fna
GCA_902583575.1_genomic.fna
GCA_902517505.1_genomic.fna
GCA_902559345.1_genomic.fna

GCA_902579825.1_genomic.fna

GCA_902582355.1_genomic.fna
GCA_902586925.1_genomic.fna
GCA_902626385.1_genomic.fna
GCA_003282945.1_genomic.fna
GCA_012735275.1_genomic.fna

GCF_000165465.1_genomic.fna
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GCA_902583575.1_genomic.fna GCA_902558095.1_genomic.fna GCA_902556105.1_genomic.fna ~ GCF_003111605.1_genomic.fna
(75.30%)

GCA_003213495.1_genomic.fna GCA_902556105.1_genomic.fna GCA_902592715.1_genomic.fna GCA_017532025.1_genomic.fna
(75.24%)
GCA_902579825.1_genomic.fna GCA_902528875.1_genomic.fna GCA_014653355.1_genomic.fna GCA_902592715.1_genomic.fna
(75.15%)
GCA_902563835.1_genomic.fna GCA_902551185.1_genomic.fna GCF_000165465.1_genomic.fna GCA_014653355.1_genomic.fna
(75.00%)

Table S16. Recall (top 10) of ProbMinHash, Densified MinHash, SetSketch and
SuperMinHash against the BLAST-ANI results. Same query genome as Table S13 was
used.

Blastn-ANI (top10), ground truth GSearch ProbMinHash GSearch GSearch setsketch recall 100%, GSearch SuperMinHash recall
(top10), recall 100%, 2s Densified 5s 100%, 8s
Minhash
recall 100%,
2s
GCA_902591925.1_genomic.fna GCA_902591925.1_genomic.f ~ GCA_9025919  GCA_902591925.1_genomic.fna GCA_902591925.1_genomic.fna
25.1_genomic.
na
fna
GCA_902617045.1_genomic.fna GCA_902617045.1_genomic.f =~ GCA_9026170  GCA_902617045.1_genomic.fna GCA_902617045.1_genomic.fna
45.1_genomic.
na fna
GCA_902541175.1_genomic.fna GCA_902547295.1_genomic.f ~ GCA_9025411  GCA_902612915.1_genomic.fna GCA_902541175.1_genomic.fna
75.1_genomic.
na
fna
GCA_902612915.1_genomic.fna GCA_902612915.1_genomic.f =~ GCA_9026129  GCA_902541175.1_genomic.fna GCA_902612915.1_genomic.fna
15.1_genomic.
na fna
GCA_004212975.1_genomic.fna GCA_004212975.1_genomic.f =~ GCA_9025472  GCA_004212975.1_genomic.fna GCA_004212975.1_genomic.fna
95.1_genomic.
na
fna
GCA_902547295.1_genomic.fna GCA_902541175.1_genomic.f =~ GCA_0042129  GCA_902547295.1_genomic.fna GCA_902547295.1_genomic.fna
75.1_genomic.
na
fna
GCA_902630885.1_genomic.fna GCA_902586925.1_genomic.f ~ GCA_9026308  GCA_902630885.1_genomic.fna GCA_902630885.1_genomic.fna
85.1_genomic.
na fna
GCA_902586925.1_genomic.fna GCA_902630885.1_genomic.f ~ GCA_9025869  GCA_902586925.1_genomic.fna GCA_902586925.1_genomic.fna
25.1_genomic.
na
fna
GCA_902631785.1_genomic.fna GCA_902631785.1_genomic.f =~ GCA_9026317  GCA_902631785.1_genomic.fna GCA_902631785.1_genomic.fna
85.1_genomic.
na fna
GCA_000252525.1_genomic.fna GCA_000252525.1_genomic.f ~ GCA_0002525  GCA_902582355.1_genomic.fna GCA_000252525.1_genomic.fna
25.1_genomic.
na
fna

Table S17. Recall (top 10) of GSearch (ProbMinHash option), Mash and Sourmash
against the BLAST-AAI results. The same query genome as shown in Table S14 was
used but at the proteome level after gene prediction. Dashing and BinDash were not
included because these tools do not provide an amino acid level search option. Same
query genome as Table S13.

Blastp-AAl (top10), ground truth, AAI GSearch ProbMinHash (top10), recall 90%, Mash, recall 90%, 13 min Sourmash, recall 80%, 3 min
2s

GCA_902591925.1_genomic.fna (83.2%) GCA_902591925.1_genomic.fna GCA_902591925.1_genomic.fna GCA_902591925.1_genomic.fna
GCA_902617045.1_genomic.fna (83.16%) GCA_902617045.1_genomic.fna GCA_902617045.1_genomic.fna GCA_902617045.1_genomic.fna
GCA_902541175.1_genomic.fna (82.57%) GCA_004212975.1_genomic.fna GCA_902612915.1_genomic.fna GCA_902541175.1_genomic.fna
GCA_902612915.1_genomic.fna (82.15%) GCA_902612915.1_genomic.fna GCA_902541175.1_genomic.fna GCA_902612915.1_genomic.fna
GCA_004212975.1_genomic.fna (81.86%) GCA_902547295.1_genomic.fna GCA_902547295.1_genomic.fna GCA_902558095.1_genomic.fna
GCA_902630885.1_genomic.fna (80.99%) GCA_902541175.1_genomic.fna GCA_004212975.1_genomic.fna GCA_902547295.1_genomic.fna
GCA_902547295.1_genomic.fna (80.73%) GCA_902586925.1_genomic.fna GCA_902559345.1_genomic.fna GCA_902630885.1_genomic.fna
GCA_902586925.1_genomic.fna (80.50%) GCA_902558095.1_genomic.fna GCA_902586925.1_genomic.fna GCA_902586925.1_genomic.fna
GCA_000252525.1_genomic.fna (79.96%) GCA_902630885.1_genomic.fna GCA_902631785.1_genomic.fna GCA_902631785.1_genomic.fna
GCA_902631785.1_genomic.fna (79.48%) GCA_000252525.1_genomic.fna GCA_902582355.1_genomic.fna GCA_902559345.1_genomic.fna
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Table S18. Database build time, maximum memory and database size for GSearch
(ProbMinHash option), Densified MinHash, SuperMinHash and SetSketch. GTDB v207
was used (65,703 genomes). 24 threads are used.

Build time Max Memory Database size
ProbMinHash
(default) 1.3h 15.3G 3.0G
Densified MinHash 0.74h 9.4G 1.9G
SuperMinHash 4.7h 13.2G 3.0G
SetSketch 2.4h 3.7G 0.6G

Table S19. Database build time, maximum memory and database size for GSearch
(ProbMinHash option), Densified MinHash, SuperMinHash and SetSketch.
NCBI/RefSeq genomes (~318K) were used. 24 threads are used.

Build time Max Memory Database size
ProbMinHash
(default) 4.1h 21G 15G
Densified MinHash 1.4h 14G 11G
SuperMinHash 27h 16G 15G
SetSketch 13h 3.7G 3.0G

Table S20. GSearch accuracy benchmark using orthoANI as an additional ground truth. Query
genomes is “OceanDNA-b42278.fa” from (Nishimura and Yoshizawa, 2022). Database genomes were
all NCBI/RefSeq genomes. Showing top 10 nearest genomes, ANI from ~94% to ~81% for the top 10.

Ortho-ANI (top10), ground truth Blastn-ANI (ANI calculator), top 10 GSearch (top10, ProbMinHash), recall 100%, 2s
GCA_902591925.1_genomic.fna (95.33%) GCA_902591925.1_genomic.fna (95.27%) GCA_902591925.1_genomic.fna (95.38%)

GCA_902617045.1_genomic.fna (94.12%)
GCA_902541175.1_genomic.fna (93.35%)
GCA_902612915.1_genomic.fna (92.43%)
GCA_004212975.1_genomic.fna (92.06%)
GCA_902547295.1_genomic.fna (90.15%)
GCA_902630885.1_genomic.fna (88.56%)
GCA_902586925.1_genomic.fna (85.23%)
GCA_902631785.1_genomic.fna (83.91%)
GCA_000252525.1_genomic.fna (81.08%)

GCA_902617045.1_genomic.fna (94.18%)
GCA_902541175.1_genomic.fna (93.22%)
GCA_902612915.1_genomic.fna (92.46%)
GCA_004212975.1_genomic.fna (92.10%)
GCA_902547295.1_genomic.fna (90.09%)
GCA_902630885.1_genomic.fna (88.51%)
GCA_902586925.1_genomic.fna (85.49%)
GCA_902631785.1_genomic.fna (83.88%)
GCA_000252525.1_genomic.fna (81.32%)

GCA_902617045.1_genomic.fna (94.29%)
GCA_902547295.1_genomic.fna (93.31%)
GCA_902612915.1_genomic.fna (92.83%)
GCA_004212975.1_genomic.fna (91.91%)
GCA_902541175.1_genomic.fna (90.35%)
GCA_902586925.1_genomic.fna (88.12%)
GCA_902630885.1_genomic.fna (85.37%)
GCA_902631785.1_genomic.fna (83.48%)
GCA_000252525.1_genomic.fna (81.51%)
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Supplementary Methods & Materials

ProbMinHash vs. traditional MinHash

Mash is a hashing-based algorithm based on MinHash ', which is very efficient for comparing
genome/metagenome overall similarity 2. Mash distances represent a k-mer-based overall
overlap between sequences according to a minimal evolutionary model. Essentially, Mash
distance is the Jaccard similarity value of kmer shared between k-mer sets A and B extracted
from genome A and B. However, Mash, and similar MinHash-based tools, have several
limitations; most notably, the loss of k-mer frequency information (only presence/absence of kmer
is counted) and the impact of relative set size (e.g., completeness level of a genome or genome
size) on the Jaccard similarity estimates (for example, Mash distance, where MinHash based
estimation of Jaccard index is biased by different set size, or total k-mer count of the genome due
to bottom-k sketches; HyperLoglLog is not affected by different set size) 2 3 Although some recent
MinHash implementations address the relative set size limitation, e.g., the over-sketching and
track-abundance methods of the MinHash-based tools ‘finch , ‘sourmash’ or FracMinHash
(sketching a subset of k-mers according to size of set) and HyperLogLog 47, they do not utilize
the frequencies of all observed k-mers in generating the k-mer-profile (sketch) for a given
sequence set. More recently, in the HULK software, consistent weighted sampling (D?histosketch
which is the same with P-MinHash algorithm and it was proposed for Jp, we called it P-MinHash
because it was invented before D?histosketch and is equivalent to P-MinHashg) ° was utilized to
incorporate k-mer frequency information when estimating weighted and standard Jaccard
similarity, which effectively addresses these limitations mentioned above '°. Notably, the hash
algorithm (P-MinHash) used in D2histosketch could be further optimized to achieve a time
complexity below O(nm) (where m denotes the signature size and n is the number of elements

with nonzero weight in two sequence sets), further improving the performance of applications

22



25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

such as HULK. Motivated by the SuperMinHash for conventional Jaccard similarity estimation !
and BagMinHash algorithm for weighted Jaccard similarity estimation 2, ProbMinHash
(probminhash 3(a) and 4 algorithm) is orders of magnitude faster than the original algorithm P-
MinHash proposed in D?histosketch 4. Probminhash estimates the Jaccard probability J,
similarity, and 1- Jp is indeed a metric on the probability distributions and is Pareto optimal
(Supplementary Note 1) & 4. Densified MinHash, or One Permutation MinHash with Optimal/faster
Densification, is the fastest MinHash algorithm due to theoretical breakthrough (average case
O(n+m)) despite large variance than classic MinHash (Table S2). It uses only one hash function
but copy values from empty bins to non-empty bins (“densified”) in the sketch vector either
mapping forward or backward or both 13.15. 16, We choose Sourmash, Mash, Dashing 1/2 and
BinDash for benchmark because all provide estimation of Jaccard index, which correlates very
well with ANI after transformation, and had been all previously benchmarked against BLAST-

based ANI and fastANI 2 19,

Comparison with other genome/sequence search algorithm

There are many other data structures designed for general purposes sequence search problems
such as Sequence Bloom Tree (SBT) and its variants 2022, COBS/BIGSI 23 24, Layered LSH
(approximating ungapped alignment, not applicable to ANI like distance, which is gapped
alignment) 25 and RAMBO (Repeated and Merged Bloom Filter) 26 that can achieve linear or
sometimes even sub-linear genomic database search performance alone. However, those tools
have never been benchmarked against BLAST-based ANI/AAI in the context of microbial genomic
search (that is, whether the best hits/genomes found by the mentioned tools are the same with
ANI/AAI comparison best hits/genomes), which is a popular reference standard for measuring
microbial genomic distance/identity, and thus infer microbial taxonomy 27-28. MinHash-based tool

such as Mash and FastANI have been benchmarked against BLAST-based ANI, and were shown

23



50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

to be the most accurate k-mer-based sub-linear algorithms for ANI comparisons and/or searching

2,19

HNSW in Rust benchmark against testing dataset

To benchmark our reimplementation of hnswlib, we followed standard ANN benchmark
procedures using two popular testing datasets (MINST and SIFT1M) based on their Euclidean
distance?. Our results showed that, for the MINST fashion dataset (784 dimensions, 60,000
vectors), recall for top 100 neighbors of 10,000 query vectors is greater than 98% for a smaller
number of M and ef_construct, and even higher recall rate (99.86%) for a medium M and
ef_construct while query speed is not compromised (Supplemental Table S7). For the SIFT1M
dataset (128 dimensions, 1,000,000 vectors), recall for top 100 neighbors of 10,000 query vectors
was 99.77% for a medium M and ef_construct (Supplemental Table S7 and S8). In terms of
speed, we compare it with hnswlib using the MINST-fashion dataset and it is as fast as hnswilib:
it took 18.06s and 0.89s for database building and searching for hnswlib-rs while it took 18.47s
and 1.07s for database building and searching for the C++ hnswlib) (Supplementary Table S9).

The Rust package hnswlib-rs can be found at: hitps://github.com/jean-pierreBoth/hnswlib-rs. For

each genomic database, we chose M and ef_construct experimentally, by gradually increasing M
and ef_construct while monitoring query speed and recall, similar to what is shown in
Supplementary Table S2 for MNIST dataset. We stopped the assessment when there was only a
marginal increase in accuracy but decent decrease in speed. To leverage between recall and
speed, we use M=128 and ef_search=1600 for graph building for GTDB database fungal

database while M=128, ef_search=3200 for phage database.

Details of program implementation in Rust
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Tohnsw starts by reading database genomes and generating k-mer profile and sketches using
the ProbMinHash3a algorithm (or SuperMinHash, SetSketch, Densified MinHash) for distance
calculation (Figure 1a and c). Next, tohnsw selects, at random, the first batch of genomes to insert
into the graph (Figure 1a (1)), following HNSW constructing rules mentioned above and taking
into account the computed ProbMinHash distance or SetSketch approximated Jaccard distances
(1-J) between genomes to connect genomes based on their relatedness (Figure 1b) until all
genomes in database have been inserted (Figure 1a (2), (3) and (4)). Finding nearest genomes
for the genome to be inserted is essentially a search process but search in a partially built graph,
which is similar to the request/search module: whenever a genome is going to be searched
against the existing graph, each genome in the graph is associated with a list that stores the M
closest neighbors/genomes to the genome and the distance to these neighbors. Then, the
distances of this genome with the nearest neighbors (M) of entry genome in each layer will be
computed (ef_construct times) using the Probminhash3a algorithm or the SetSketch, and the
smallest distance of the neighbor genomes will be the new entry genome (Figure 1d and e). This
process will be repeated until the nearest genomes (<=M) in the layer are found and subsequently,
the program will go to the layer below, using the genome that was represented by the nearest
genome in the above layer as new entry genome in the new layer. The search layer algorithm is
repeated until the bottom layer is reached/analyzed (Figure 1c). In contrast to the default settings
in the original hnswlib, we allow the two parameters of neighbor selecting heuristics,
extendCandidates to be true and keepPrunedConnections to be false because our genomic data
is extremely clustered and there is no need to fix the number of connections per element
considering the maximum connection allowed. The “Add” module is to add new genomes to pre-
built HNSW database using default parameters loaded in the pre-built database files. Request

module will load the graph database and then search query genomes against it to return the best
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neighbors of each query, following exactly the same procedure with building step but without

updating the database.

Details of the SetSketch implementation

We implemented SetSketch algorithm 1 locality sensitivity section (LSH) according to lower and

Dg/m+1

_ Do/m_
upper bound of Jaccard (J;,,, = max(o’bszl = 1), Jup = o1

b-1

) where Do is the number of

registers in the sketch of genome A that are equal to those in the sketch of genome B. In practice,
Jiow is closer to true Jaccard for small J thus we use it. We use parameter m = 6144, b = 1.0005,
a =20, and q = 65534 instead of the default ones to have smaller RMSE (<0.8%) around J=0.015
(corresponding to ANI 77.99% according to Mash equation) and acceptable running time (Figure
S7), which is equivalent to HyperLogLog for estimating Jaccard index in terms of space but with
smaller variance (with b close to 2, SetSketch will then be equivalent to SuperMinHash). A
SetSketch using this configuration is suitable to represent any set with up to 1079 distinct

elements/k-mers (much larger than total-number of k-mers from microbial genomes). The

b+1

——log(b)—-1)) as b

expected error of cardinality estimates or LSH is very small (\/i(

approximates 1(\/%) 30, close to that of MinHash for large m, like 10°4 or above but use much

smaller space. We also implemented the Joint Maximum Likelihood Estimator (JMLE): the ML
estimate for Jaccard was found by standard univariate optimization algorithm called Brent’s
method, based on the argmin Rust package since the ML function is strictly concave for the
parameter mentioned above 3°. The RMSE of JMLE based on its Fisher information can be found
in Supplementary Note 7. Since RMSE of JMLE is smaller than LSH, it is much slower in practice,
but we only use it for filtering false positives after top k best neighbors were found for each query

by LSH and HNSW, thus it is not a problem for overall speed.
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Details of the Densified MinHash implementation

We reimplemented both the One Permutation MinHash with Optimal Densification 15 and also the
Faster Densification ¢ in Rust in the probminhash package. Specifically, one predefined hash
function is applied to all elements/k-mers in the set. Then, one-permutation MinHash
deterministically partitions the hash values into a predefined maximum number B of buckets,
extracts the smallest hash value in each bucket, and extracts the b lowest bits of each smallest
hash value. These B*b bits are used as the signature of the set. Usually, a hash value v is
assigned to the [ v/(M/B) | bucket, where M is the maximum possible value for v. Although fast at
both constructing and comparing sketches, one-permutation MinHash may produce a bucket that
contains hash values for one set but no hash values for another set. All buckets are totally ordered
in some way, each empty bucket uses the smallest hash value in the next non-empty bucket as
its own hash value (densified), and an additional bucket containing a special value is ordered after
all other buckets. We either map non-empty bins to empty bins (faster densification) or the other
way around to copy values (optimal densification). The densified sketch vectors for 2 sets were
then used for calculating collision probability/Jaccard index (See densminhash.rs in prominhash
package). We can use 2 times larger sketch size m for densified MinHash to achieve a smaller

variance compared to original MinHash without increasing running time.
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Supplementary Notes

. . . .. T . Ydepmin(w4(d),wp(d))
Note 1. Calculation of metric (Weight rd similarity indi . =
ote 1. Calculation of metric (Weighted) Jaccard similarity indices. J;, S ey g (@) 0@

(where w is the weight function of each element d) and total k-mer count in genomes in biasing
the Jaccard index estimation (or set size) . K-mer-weighted hashing approaches (taking into
account the abundance of k-mers, not just presence/absence) are more space-expensive (e.g.
higher memory requirement) for large dataset 2, but are advantageous for genomes with frequent
repeats. They have not been widely adopted yet 3 4. To consider multiplicity of k-mers in the k-
mer set of genomes, traditional MinHash algorithms will not be a good choice since they assume
unique set element (k-mer). New MinHash algorithms such as ICWS, BagMinHash and
DartMinHash were designed for weighted set to address this limitation, with DartMinHash being
the fastest 58. Still, those weighted MinHash algorithms do not solve the problem of different
genome size (set size) in biasing estimation of weighted Jaccard index °. A possible solution is to
normalize the abundance of k-mer by the total k-mer count of each dataset, thereby providing a

probability distribution of each k-mer. This then leads to the normalized weighted Jaccard index

Saepmin(z—2AD . __0p@
Zalep@Aa@)E g1 p@p(@) . .
In = , where wsand wp describe the weight of each k-mer. Also,
ZdEDmax( (‘)A(d) (‘)B(d)

4/ ep@a@)E grepwp@)

those weighted MinHash algorithm could be further optimized computationally to be orders of
magnitude faster, like it was done in BagMinHash and DartMinHash 0, similar to the
computational optimizations implemented in MinHash in SuperMinHash 1. Recently,
ProbMinHash was proposed to take into account both weighted set (k-mer multiplicity) and total
set size (total k-mer count, or genome size) '2. Accordingly, new Locality Sensitive Hashing
algorithms (P-MinHash) considering weighted set and different set size was proposed to estimate

weighted and normalized (to account for set size difference) Jaccard-like index Jp, =
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1
wa(d) wp@@dh
wa(d)’ wp(d)

. P-MinHash is considered a more general case for Jaccard Index

deD ¥, jrepmax(

estimation and is more close to true Jaccard than Jw and Jn '3 4. More importantly, J, is Pareto
optimal and 1-J, is a proper metric 3. It has been shown that ANI estimated from J,, which was
computed by ProbMinHash (ProbMinHash2 algorithm) in Dashing 2, is slight better for bacterial
genomes than traditional MinHash like Mash 5. ProbMinHash was built upon the new MinHash
algorithm with further computational optimization for speed '2. Hence, ProbMinHash is the
currently the default option in GSearch. HyperLogLog can also be used to estimate Jaccard index:
distinct element count of k-mers in set/genome A and B via HyperLogLog sketch (memory

efficiency) and then use the inclusion-exclusion rule to have Jaccard index (Jaccard(A,B) =

|A|+|B|—|AUB|)

\AUE] as implemented in Dashing, despite being overall less accurate for small cardinalities

(e.g. virus genomes) 617, The Maximum Likelihood estimator (MLE) '8, in addition to the original
estimator in HyperLogLog and improved estimator in 6 for distinct element counting, was thought
to have the smallest variance, which met the Cramér-Rao lower bound, despite slower and difficult
to compute and update . This is the idea behind Dashing, which we benchmark against

GSearch.

Note 2. Kmer selecting rationale for nucleotide (nt) and amino-acid (aa) level searches for

MinHash/probminhash tools. Assume amino acid/nucleotide sequences evolve at a constant

rate and alphabets |X| for AA is 20 and 4 for nucleotide. Consider two sequences x, y € AN drawn

randomly over the alphabet of size #A = 20, N is the genome length, and let v,,vy € R20’k denote

the k-mer frequency profile (multiplicity of each k-mer divided by total number of k-mers) for each

sequence. For long sequences with N > 20k, k-mer frequencies will converge to their mean, that
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is 20k for all their components, which implies that llvx—vyll1 — 0. Therefore, any k-mer profile-

based method will severely underestimate distance between these two random sequences. In
order to avoid this, k has to be restricted to large values k' = log z(N). In practice, since
genomes sequences are not completely random, k can be slightly smaller than logs(N) without
underestimating genomic distance. Ondov et al., in the MASH paper, came up with a probability
term (1-g)/q to take into account the probability of having a random kmer: k' = log x| (N(1 — q)/q)
9. Assume a probability g=0.01, for a typical bacterial proteome, k>=log20(1000000*0.99/0.01)
=6.146, so at least a kmer of size 6 or above should be used. For a typical bacterial genome at
nucleotide level, N is about 4*1076, k >= l0g4(4*1076*0.99/0.01) =14.280, so at least a kmer of
size 14 or above should be used. For universal genes only, N is about 350 AA * 120=42000, so
k >=10g920(42000%0.99/0.01) = 5.087, so at least a kmer of size 5 or above should be used. Since
universal gene alphabets are not randomly evolving (e.g., some regions in genes that encode key
metabolic functions such as RNA processing units rarely mutate), k=5 should be appropriate. To
optimize between sensitivity and specificity for kmer, we followed the practice suggested by
Ondov et al., and Jain et al. ' 20; that is, use k=16 for bacterial nucleotide genome sequences
and a k=7 for bacterial proteome sequences. For fungal genomes, genome size is 10 to 20 times
larger than tht of bacteria but the same formula applies and so, we have k >=
l0g4(20*4*1016*0.99/0.01) =16.441, and accordingly we use kmer=21. For fungal proteome,
coding density is much smaller than that of bacteria (we use an empirical 0.5 coding density) thus,
we have k >= 10g20(10*1*1016*0.99/0.01) =6.914. We use k=11 for fungal proteome to increase
the specificity of the searches. For virus/bacteriophage genomes, we use k=11 for nt and k=7 for

aa, considering also the jumbo/giant phage genomes that were found recently.
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Note 3. Assessment of the time complexity of ProbMinHash and HNSW. The search time
complexity is estimated based on the equation (or big O annotation) 0(vdlog(n)), where n is the
dataset size while v and d are maximum out-degree of the graph to be built and the number of
dimensions (kmer features in a genome) of the dataset, respectively 2! 22, In nearest neighbor
search studies, L2 distance (Euclidean distance) is often used and is related to dataset dimension,
which is very large for k-mer features of genomes (~10"). In the case of ProbMinHash distance,
which is a MinHash-based method to sample the k-mer space of genomes and serve as a
dimensionality reduction in approximating genomic distance, the sampled number of k-mers (or
meanwise hashes) is always a constant and much smaller number (sketch size, normally around
10,000) than the total number of k-mers of a genome (number of dimensions of dataset).
Therefore, d can be ignored (MinHash samples only a small fraction of k-mer space/dimension).
Also, v is a small constant considering the graph structure to be built (normally smaller than 100).
Therefore, the time complexity, as it was also explained in the main text, can be safely written as
0(log(n)) for low dimension datasets 22. Similar rules applied for the time complexity of the graph
build step, which is 0(dnlog(n)) and thus, 0(nlog(n)) in our case, where d is dataset dimension.
Time complexity 0(n + mlog(m)) of the Probminhash3a algorithm, where n is the set size (total
sampled k-mer number) while m is the number of weighted elements (k-mers), is also a constant
in the context of high-quality genomes given also that m is very small for prokaryotic and
bacteriophage genomes (normally about 5% genomic sequences are multi-copy). Therefore,
ProbMinHash time complexity is very close to 0(n) in practice. For a given genome, for example,
bacterial genome or viral genome, n is the sampled k-mer number of the genome, and thus also

a constant number.

Note 4. Kmer-based genomic distance estimation is less accurate for distantly related

genomes. For a random mutation rate r € (0,1), the probability that a k-mer (k Is length of the k-
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mer) belonging to sequence X and Y is not mutated is 1 — (1 — )* =~ 1 — exp(— %) , indicating

that k < r~1, so k must be small enough to capture the mutation and also big enough to avoid
underestimation (Note 2). This means that for close related bacterial genomes (r<0.01 for
example), k could easily meet both conditions mentioned above while for distantly related
genomes -for example- r=0.125 (corresponding to an ANI value of 87.5%) k <= 8, which is
contradictory with k>logs(N)=14.28 (Note 2). Thus, k-mer based method will lose accuracy for
distantly related genomes. In practice, we observed that this r threshold is around 0.215

(ANI=78.5%) because mutation is not completely random as assumed above.

Note 5. Theoretical guarantee of graph based NNS search algorithms. Until recently, a
theoretical analysis based on a dataset evenly distributed on an d-dimension Euclidean sphere
(d«log(n), n is the dataset size) showed that under certain conditions, there is a guarantee that
the best neighbors could be found compare to brute-force distance metric comparisons 23.
However, a theoretical analysis under more general conditions, e.g., other metric space, or d not
being much smaller than log(n) is still not available, to the best of our knowledge. Despite the lack
of theoretical analysis under more general conditions, graph-based algorithms work well in

practice, as also reflected by the large number of graph-based NNS libraries available 224,

Note 6. Parallelism of probminhash and HNSW. Due to ownership mechanisms of Rust (so
called memory and thread safety), fearless concurrency (e.g., no data competition/race, memory
and thread safety) is made possible. The crossbeam crate package was used in GSearch for
communication of data among threads for task level parallelism while Rayon crate was used to
do data level parallelism 25. Accordingly, by default, GSearch uses all available

processors/threads to make full use of multi-processor CPUs.
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Note 7. Details of Joint Maximum Likelihood estimator in SetSketch algorithm. For

cardinalities ny and n,, of set U and V estimated by SetSketch cardinality estimation section
according to equation 12 in 26, the maximum likelihood method can be used to estimate J.
Specifically, the log-likelihood function as a function of J is:

logL(J) = Dylog(py(u —v])) + D_log(py(v — w)) + Dolog(1 — pp(u — v]) — pp(v — W)),

where D, = |{i: Ky; > Ky}, D = |{i: Ky; < Kyi}|, Do = |{i: Ky; = Ky;}| are number of registers in
the sketch of U that are greater than, less than, or equal to those in the sketch of V, respectively;

Ky; and Ky; are registers of set U and V, respectively while v and u is relative cardinalities u =

and v=—2 , respectively. P (%) is defined as
nyt+ny ny+ny

nuy

pp(x) = —log, (1 —x%). The RMSE of the ML estimate is expected to be I=%/2(]), where |
denotes the Fisher information with respect to J for n; and n,,:

m(b — 1)? (vbpb(u—VJ))Z (ubpb(v—u]))Z (prb(u—vf) + ubpb(v—u]))Z
= + +
b2log?(b) * pp(u —v)) (v —w) 1=p,(u—v))—pp(v—-1)

1)) )

The SetSketch paper showed that the estimation error (RMSE) for J will be almost the same for

MinHash with the same number of registers m.
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GCA_002457055.1
GCF_900197625.1
GCA_009886815.1
GCA_003045935.1
GCF_003335675.1
GCA_003023665.1
GCA_002480045.1
GCA_003486095.1
GCA_009919335.1
GCA_003023665.1

GCF_000738435.1
GCA_002685195.1
GCA_002389265.1
GCA_002711735.1
GCF_001642945.1
GCF_900197625.1
GCA_003045825.1
GCA_003483155.1
GCA_002387615.1
GCF_000738435.1
GCA_003045825.1
GCA_003482475.1
GCA_002711735.1
GCF_000738435.1
GCA_002711735.1
GCA_003483155.1
GCA_002684605.1
GCA_003483505.1
GCA_003045825.1
GCF_000315525.1
GCA_003486095.1
GCA_003023665.1
GCA_008081045.1
GCA_013911165.1
GCA_009921445.1
GCF_003335675.1
GCA_011525065.1
GCA_003023665.1
GCA_008081045.1
GCA_003023665.1
GCA_002700385.1
GCA_008081045.1
GCA_009919335.1
GCA_003482475.1
GCF_900197625.1
GCA_009919335.1
GCF_000738435.1
GCA_002390525.1
GCF_001642945.1
GCF_900197625.1
GCF_000738435.1
GCA_002390525.1
GCA_003045825.1
GCA_009919335.1
GCF_900197625.1
GCF_000738435.1
GCA_003482475.1
GCA_002390525.1
GCA_003486095.1
GCA_009919335.1
GCA_003045935.1
GCA_003482475.1
GCA_003045825.1
GCF_000738435.1
GCA_003486095.1
GCA_002691565.1
GCA_010023085.1
GCA_011525015.1
GCF_000738435.1
GCA_002457055.1
GCF_900197625.1
GCA_009886815.1
GCA_003045935.1
GCF_003335675.1
GCA_003023665.1
GCA_002480045.1
GCA_003486095.1
GCA_009919335.1
GCA_003023665.1
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GWMC284_GWMC284.3.fasta.gz
GWMC284_GWMC284.84.fasta.gz
GWMC304_GWMC304.038.fasta.gz
GWMC304_GWMC304.24.fasta.gz
GWMC497_GWMCA497.11 fasta.gz
GWMC497_GWMCA497.24 fasta.gz
GWMC497_GWMC497.29.fasta.gz
GWMC497_GWMCA497.34.fasta.gz
GWMC497_GWMCA497.41 fasta.gz
GWMC497_GWMCA497 .45 fasta.gz
GWMC497_GWMCA497.58.fasta.gz
GWMC497_GWMC497 .6.fasta.gz
GWMC497_GWMCA497.62.fasta.gz
GWMC539_GWMC539.009.fasta.gz
GWMC539_GWMC539.16.fasta.gz
GWMC539_GWMC539.23.fasta.gz

GWMC539_GWMC539.2_sub.fasta.gz

GWMC539_GWMC539.35.fasta.gz
GWMC539_GWMC539.8.fasta.gz
GWMC540_GWMC540.003.fasta.gz
GWMC540_GWMC540.012.fasta.gz
GWMC540_GWMC540.18.fasta.gz
GWMC540_GWMC540.28.fasta.gz
GWMC540_GWMC540.38.fasta.gz
GWMC550_GWMC550.037 .fasta.gz
GWMC550_GWMC550.14.fasta.gz
GWMC550_GWMC550.28 fasta.gz
GWMC550_GWMC550.45.fasta.gz
GWMC551_GWMC551.14.fasta.gz
GWMC551_GWMC551.4.fasta.gz
GWMC552_GWMC552.021.fasta.gz

GCF_900197605.1
GCA_009923785.1
GCA_009921445.1
GCA_008081045.1
GCA_002390485.1
GCA_002457245.1
GCA_009919335.1
GCA_002389265.1
GCF_001735715.1
GCA_009936895.1
GCF_900197625.1
GCF_000738435.1
GCA_003485335.1
GCA_002691565.1
GCF_000384415.1
GCA_003023665.1
GCF_000738435.1
GCA_003486095.1
GCA_003045935.1
GCA_003486095.1
GCA_002691565.1
GCA_011525015.1
GCA_003023665.1
GCA_003045935.1
GCF_000179255.1
GCF_003335675.1
GCA_008081045.1
GCA_003023665.1
GCA_008081045.1
GCF_003335675.1
GCA_008081045.1

GCF_900197605.1
GCA_009923785.1
GCA_009921445.1
GCA_008081045.1
GCA_002390485.1
GCA_002457245.1
GCA_009919335.1
GCA_002389265.1
GCF_001735715.1
GCA_009936895.1
GCF_900197625.1
GCF_000738435.1
GCA_003485335.1
GCA_002691565.1
GCF_000384415.1
GCA_003023665.1
GCF_000738435.1
GCA_003486095.1
GCA_003045935.1
GCA_003486095.1
GCA_002691565.1
GCA_011525015.1
GCA_003023665.1
GCA_003045935.1
GCF_000179255.1
GCF_003335675.1
GCA_008081045.1
GCA_003023665.1
GCA_008081045.1
GCF_003335675.1
GCA_008081045.1
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Supplementary File 2

The same query genome BRRP3A.13 for the following
Top 10 from split database 1

0 path ../../GWMC_1000_HQ_faa_aai_635/BRRP3A.13.faa, fasta_id total sequence, len : 800987

distance : 9.156E-1 answer fasta id ../database/database_1/GB_GCA_016699615.1_protein.faa
answer fasta id total sequence, seq len : 906076

distance : 9.452E-1 answer fasta id ../database/database_1/GB_GCA_017984135.1_protein.faa
answer fasta id total sequence, seq len : 797872

distance : 9.822E-1 answer fasta id ../database/database_1/GB_GCA_001897535.1_protein.faa
answer fasta id total sequence, seq len : 957913

distance : 9.835E-1 answer fasta id ../database/database_1/GB_GCA_018268055.1_protein.faa
answer fasta id total sequence, seq len : 974493

distance : 9.839E-1 answer fasta id ../database/database_1/GB_GCA_016787045.1_protein.faa
answer fasta id total sequence, seq len : 1127633

distance : 9.839E-1 answer fasta id ../database/database_1/GB_GCA_018268135.1_protein.faa
answer fasta id total sequence, seq len : 960055

distance : 9.843E-1 answer fasta id ../database/database_1/GB_GCA_018267655.1_protein.faa
answer fasta id total sequence, seq len : 1045076

distance : 9.843E-1 answer fasta id ../database/database_1/GB_GCA_001800905.1_protein.faa
answer fasta id total sequence, seq len : 646701

distance : 9.843E-1 answer fasta id ../database/database_1/GB_GCA_017303895.1_protein.faa
answer fasta id total sequence, seq len : 1121215

distance : 9.844E-1 answer fasta id ../database/database_1/GB_GCA_002281875.1_protein.faa
answer fasta id total sequence, seq len : 962695

Top 10 from split database 2
0 path ../../GWMC_1000_HQ_faa_aai_635/BRRP3A.13.faa, fasta_id total sequence, len : 800987

distance : 9.551E-1 answer fasta id ../database/database_2/GB_GCA_016711605.1_protein.faa
answer fasta id total sequence, seq len : 1152198

distance : 9.832E-1 answer fasta id ../database/database_2/GB_GCA_018267475.1_protein.faa
answer fasta id total sequence, seq len : 858052

distance : 9.846E-1 answer fasta id ../database/database_2/GB_GCA_903920455.1_protein.faa
answer fasta id total sequence, seq len : 710803

distance : 9.850E-1 answer fasta id ../database/database_2/RS_GCF_003384935.1_protein.faa
answer fasta id total sequence, seq len : 1036633

distance : 9.850E-1 answer fasta id ../database/database_2/RS_GCF_004342685.1_protein.faa
answer fasta id total sequence, seq len : 1066355

distance : 9.851E-1 answer fasta id ../database/database_2/GB_GCA_002307135.1_protein.faa
answer fasta id total sequence, seq len : 1018135

distance : 9.852E-1 answer fasta id ../database/database_2/GB_GCA_018267625.1_protein.faa
answer fasta id total sequence, seq len : 901729

distance : 9.852E-1 answer fasta id ../database/database_2/RS_GCF_000348685.1_protein.faa
answer fasta id total sequence, seq len : 920194

distance : 9.852E-1 answer fasta id ../database/database_2/GB_GCA_018267875.1_protein.faa
answer fasta id total sequence, seq len : 822214

distance : 9.853E-1 answer fasta id ../database/database_2/GB_GCA_018267925.1_protein.faa
answer fasta id total sequence, seq len : 1037058

Top 10 from database 3

0 path ../../GWMC_1000_HQ_faa_aai_635/BRRP3A.13.faa, fasta_id total sequence, len : 800987

distance : 9.711E-1 answer fasta id ../database/database_3/GB_GCA_016705125.1_protein.faa
answer fasta id total sequence, seq len : 973431

distance : 9.843E-1 answer fasta id ../database/database_3/GB_GCA_903840505.1_protein.faa
answer fasta id total sequence, seq len : 884513

distance : 9.847E-1 answer fasta id ../database/database_3/GB_GCA_001567275.1_protein.faa
answer fasta id total sequence, seq len : 906415

distance : 9.847E-1 answer fasta id ../database/database_3/GB_GCA_903857255.1_protein.faa
answer fasta id total sequence, seq len : 903318

distance : 9.847E-1 answer fasta id ../database/database_3/GB_GCA_019136655.1_protein.faa
answer fasta id total sequence, seq len : 909617

distance : 9.849E-1 answer fasta id ../database/database_3/RS_GCF_900167075.1_protein.faa
answer fasta id total sequence, seq len : 1236890

distance : 9.851E-1 answer fasta id ../database/database_3/GB_GCA_016786925.1_protein.faa
answer fasta id total sequence, seq len : 1087491

distance : 9.851E-1 answer fasta id ../database/database_3/GB_GCA_016715625.1_protein.faa
answer fasta id total sequence, seq len : 1063770

distance : 9.851E-1 answer fasta id ../database/database_3/GB_GCA_903828245.1_protein.faa
answer fasta id total sequence, seq len : 615471

distance : 9.853E-1 answer fasta id ../database/database_3/GB_GCA_017303835.1_protein.faa
answer fasta id total sequence, seq len : 1008010

Top 10 from database 4

0 path ../../GWMC_1000_HQ_faa_aai_635/BRRP3A.13.faa, fasta_id total sequence, len : 800987

distance : 9.540E-1 answer fasta id ../database/database_4/GB_GCA_016721245.1_protein.faa
answer fasta id total sequence, seq len : 1111343

distance : 9.829E-1 answer fasta id ../database/database_4/GB_GCA_018262795.1_protein.faa
answer fasta id total sequence, seq len : 1041576

distance : 9.838E-1 answer fasta id ../database/database_4/GB_GCA_002352045.1_protein.faa
answer fasta id total sequence, seq len : 1030255

distance : 9.843E-1 answer fasta id ../database/database_4/GB_GCA_018268195.1_protein.faa
answer fasta id total sequence, seq len : 923024

distance : 9.843E-1 answer fasta id ../database/database_4/GB_GCA_903861055.1_protein.faa
answer fasta id total sequence, seq len : 1018870

distance : 9.846E-1 answer fasta id ../database/database_4/GB_GCA_016183765.1_protein.faa
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answer fasta id total sequence, seq len : 1094501

distance : 9.847E-1 answer fasta id ../database/database_4/GB_GCA_004295015.1_protein.faa
answer fasta id total sequence, seq len : 1160623

distance : 9.847E-1 answer fasta id ../database/database_4/RS_GCF_009363055.1_protein.faa
answer fasta id total sequence, seq len : 862789

distance : 9.847E-1 answer fasta id ../database/database_4/GB_GCA_018267725.1_protein.faa
answer fasta id total sequence, seq len : 822915

distance : 9.849E-1 answer fasta id ../database/database_4/GB_GCA_016788165.1_protein.faa
answer fasta id total sequence, seq len : 1025440

Top 10 from split database 5
0 path ../../GWMC_1000_HQ_faa_aai_635/BRRP3A.13.faa, fasta_id total sequence, len : 800987

distance : 9.539E-1 answer fasta id ../database/database_5/GB_GCA_016719635.1_protein.faa
answer fasta id total sequence, seq len : 1064205

distance : 9.841E-1 answer fasta id ../database/database_5/GB_GCA_001567165.1_protein.faa
answer fasta id total sequence, seq len : 638956

distance : 9.842E-1 answer fasta id ../database/database_5/RS_GCF_900100625.1_protein.faa
answer fasta id total sequence, seq len : 872517

distance : 9.842E-1 answer fasta id ../database/database_5/GB_GCA_016722375.1_protein.faa
answer fasta id total sequence, seq len : 1037108

distance : 9.844E-1 answer fasta id ../database/database_5/GB_GCA_016787165.1_protein.faa
answer fasta id total sequence, seq len : 849407

distance : 9.844E-1 answer fasta id ../database/database_5/GB_GCA_002455375.1_protein.faa
answer fasta id total sequence, seq len : 948379

distance : 9.845E-1 answer fasta id ../database/database_5/GB_GCA_903883945.1_protein.faa
answer fasta id total sequence, seq len : 1157790

distance : 9.845E-1 answer fasta id ../database/database_5/GB_GCA_015655125.1_protein.faa
answer fasta id total sequence, seq len : 1100101

distance : 9.847E-1 answer fasta id ../database/database_5/GB_GCA_017495115.1_protein.faa
answer fasta id total sequence, seq len : 763790

distance : 9.847E-1 answer fasta id ../database/database_5/RS_GCF_002217405.1_protein.faa
answer fasta id total sequence, seq len : 770090

Top 10 from one large database
0 path ../.GWMC_1000_HQ_faa_aai/BRRP3A.13.faa.gz, fasta_id total sequence, len : 800987

distance : 9.156E-1 answer fasta id ../protein_faa_reps_r207/all/GB_GCA_016699615.1_protein.faa
answer fasta id total sequence, seq len : 906076

distance : 9.452E-1 answer fasta id ../protein_faa_reps_r207/all/GB_GCA_017984135.1_protein.faa
answer fasta id total sequence, seq len : 797872

distance : 9.539E-1 answer fasta id ../protein_faa_reps_r207/all/GB_GCA_016719635.1_protein.faa
answer fasta id total sequence, seq len : 1064205

distance : 9.540E-1 answer fasta id ../protein_faa_reps_r207/all/GB_GCA_016721245.1_protein.faa
answer fasta id total sequence, seq len : 1111343

distance : 9.551E-1 answer fasta id ../protein_faa_reps_r207/all/GB_GCA_016711605.1_protein.faa
answer fasta id total sequence, seq len : 1152198

distance : 9.711E-1 answer fasta id ../protein_faa_reps_r207/all/GB_GCA_016705125.1_protein.faa
answer fasta id total sequence, seq len : 973431

distance : 9.822E-1 answer fasta id ../protein_faa_reps_r207/all/GB_GCA_001897535.1_protein.faa
answer fasta id total sequence, seq len : 957913

distance : 9.829E-1 answer fasta id ../protein_faa_reps_r207/all/GB_GCA_018262795.1_protein.faa
answer fasta id total sequence, seq len : 1041576

distance : 9.832E-1 answer fasta id ../protein_faa_reps_r207/all/GB_GCA_018267475.1_protein.faa
answer fasta id total sequence, seq len : 858052

distance : 9.835E-1 answer fasta id ../protein_faa_reps_r207/all/GB_GCA_018268055.1_protein.faa
answer fasta id total sequence, seq len : 974493
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Supplementary File 3

Commands used for the pieces of software compared to GSearch

Sourmash (v4.2.3):
(1) create sketches:
find ./gtdb_v207/ -name ".fna.gz' | parallel -j 24 "sourmash sketch dna -p k=16,noabund {} -o {.}.sourmash"

sourmash sketch dna -p k=16,noabund OceanDNA-b42278.fa -0 OceanDNA-b42278.fa.sourmash
(2) Create SBT index from the database sketches in (1):
sourmash index -k 16 gtdb_sourmash_index --from-file gtdb_v207_sourmash_sketch.sig.txt -q

Note: here gtdb_v207_sourmash_sketch.sig.txt is a list of *.sourmash file from step (1)

(3) Search sketch against (2) SBT index:

sourmash search --threshold 0.01 --num-results 50 OceanDNA-b42278.fa.sourmash gtdb_sourmash_index.sbt.zip -0 OceanDNA-
b42278.sourmash.dist.txt

Note: here OceanDNA-b42278.fa.sourmash is obtained by similar commands in (1) but only for this one query genome file. This
step takes about 15 minutes for just one query genome (only one thread can be used) in sourmash. We use GNU parallel to run 24
queries at a time.

find ./Tara_query/ -name ".fna.sourmash' | parallel -j 24 “sourmash search --threshold 0.01 --num-results 50 {}
gtdb_sourmash_index.sbt.zip -o {.}.sourmash.dist.txt”

Mash (v2.3):

(1) Create sketches:

For nucleotide:

mash sketch -p 24 -s 12000 -k 16 -0 ./query_genome -l query_name.txt

mash sketch -p 24 -s 12000 -k 16 -o ./reference_genome -l reference_name.txt

For Amino Acid:

mash sketch -p 24 -s 12000 -k 7 -a -0 ./query_genome_aa -| query_name_aa.txt

mash sketch -p 24 -s 12000 -k 7 -a -o ./reference_genome_aa -l reference_name_aa.ixt
(2) Compute distance

mash dist -p 24 query_genome.msh reference_genome.msh > dist.txt

mash dist -p 24 query_genome_aa.msh reference_genome_aa.msh > dist_aa.ixt

Dashing (v1.0.2-4-g0635): default HyperLoglLog option with Ertl’s Joint MLE estimator (--ertl-jmle) or default estimator
(1) create sketches:

dashing sketch -k 16 --nthreads 24 -S 14 --suffix dashing_hll -F ./GTDB_nt_name.txt

dashing sketch -k 16 --nthreads 24 -S 14 --suffix dashing_hll -F ./Query_name.txt

Note: here GPD_test10000_nt_name.txt is a list of all bacteria database genomes, -S 14 (14*64) is similar to (or better) -s 12000 in
Mash above

(2) Compute distance:

dashing dist -F ./GTDB_nt_dashing_sketch.ixt -Q Query_nt_name.txt --nthreads 24 --presketched -O dist.txt

Note: here GTDB_nt_dashing_sketch.txt is a list of .hll sketches from step (1) while Query_nt_name.txt is the list of sketches of
query genomes generated in similar way to (1).

Dashing 2 (version v2.1.11):

dashing2 dashing2 sketch -k 16 -S 12000 --threads 24 --pminhash -Q Tara_Ocean_MAGs_name.ixt -F name.txt --cmpout
Tara_Ocean_MAGs_Dashing2_pminhash_NCBI.txt

To make fair comparison with GSearch (default probminhash), we use the probminhash (--pminhash) option.

BinDash (v0.2.1):

bindash sketch --kmerlen=16 --outfname=Tara_bindash --sketchsize64=250 --listthame=Tara_Ocean_MAGs_name.txt --dens=1 --
bbits=32 --minhashtype=2 --nthreads=24

bindash dist --nthreads=24 --outfname=Tara_refseq_dist.txt Tara_bindash refseq_ncbi_all_bindash_optdens

FastANI (v1.33):
fastANI --gl query_name.itxt --rl reference_name.txt -t 24 -o ANL.txt

Note: query_name.txt and reference_name.txt are files storing genome path.

41



Supplementary File 4

query_genome name  GSearch taxonomy  query_genome name  Sourmash lca_taxonomy
AUBFZB Afnsagz  d Beclera: ot 0_unassigned _unassined;s_| OB AUBREBIAfasiage ToundSacter unassigned,unassigned, bacterium OLBS"
AUBREC 63 fasta. d_Bac - ) unassi ned: s OLBB AUBR2C.63. found Bacteria unassigned,unassigned, bacterium OLBS "
AUCREB2fastagz  d_ Eaclena b Pratsobacten & Gammapmleobac\ena o] Triotrichales: Tmnmchaceae g_Thiothrix; s_Thiothrix elkelbcamnl\UCRZBZﬁagagz *found Bacteria,Pr “Thiotrchal Thitis, T ielboom.”
AUEP2BC 56 fast d_Bacteria; p_{ - assigned: rb.BinA245 lound Bactra unassigr bacterium ADurb BinA245,"
AUXP4AB B7 fasta.gz  d_Bacteria; p_Pr o_Dx ._unassigned AUXP4AB B7 fasta.gz  “found
AUXP4AB 163 fasta.gz  d_Bacteria; p_Pr ic_/ i Keisis s} Koot sp SN 6610 AUXPAAB 163 fastagz Tound Bacteria Protecbactei Alphapvmeuhadena Rhizobiales Fhizotiaceas Kelstia Kast sp. SON E5-12
AUXP4AB 12fasta.gz  d_Bacteria; p_ [ s Stomania pnforis ADP4AB.21eslagz ound piniformis,”
BRBHIC63fastagz  d_Bacteria;p_E - )_unassigned: L ADurb BinA245 SABC 8 factage . ounBacioa un ign bacterium ADurb BinA2d5,"
BRBHIC68fastagz  d_Bacteria p_E - ) _unassigned: s _E ADurb BinA245 BRBHC,68 fasta gz und Bacteria un: assigned,
BRBHAC.97 fasta. d_Bacteria; p_t _unassigned:s 0 BinA245 BRBHAC.97 fasta gz und Bacteria un: unassigned,
BROS2C 21 fastagz  d_Bacteria p_¢ ¢ ¢ x ) Spirochaeta; _Spitochacla sp, EBM-4GBROS2C 21 fatag e haet pirochaeta, Spirochaeta sp. EBM-43,"
d_Bacteria; p_Pr oD - [ s I ropionicus BROS2CAzfastage  iound Bacteria D propionicus,”
d_Bacteria; p_t - 0__unassigned; I unassigned; s_| OLBS BRAP2B.69.fastagz Bact unassigned,unassigned, oadirum Ol
d_Bacteria; p_t _unassigned: {_ _unassigned; s_| BRRP3A 53.fasta gz unassigned,unassigned, clerium OLB8."
d_Bacteria; p_Chlorobi; c_1 »_unassigned: {_1 gt _Ghoro barlsrm OLE? BRRPIA 37 fasta gz hlorobi,unassigned,unassigned, hlorobi bacterium omy .
d_Bacteri igned,"

d_Bacteria: p__Proteobacteria: c_ Gammaproteobacteria; 0_Thiotrichales; | Tmnmchaceae ‘Thiotrichal Thicihn Mot skeboori,
d_Bacteria; p_Proteobacteria; _ Gammaproteabacteria iotichaceas, ¢ Thighr. < Thiohrix dkolooomiLVPM1 2 faca g ‘Thiotrchal ‘Thiothrix, Thiothrix eikelboomii
d_Bacteria; p_Proteobacteria; _ Gammaproteabacteria; hiotrichaceae; g__Thiothix: ‘Thiotrichal ‘Thiothrix, Thiothrix eikelboomii
d_Bactera; p_Proteobacioria; o Gammapmleobamena o Thmlncna\es [ Tmnmchaceae a_Triokr; s_Thioltix okslboomiCLYPV 2fosin g2 ‘Thiotrchal iothrix, Thiothrix eikelooormi
d_Bacteria; p_Pr o ssigned; {_¢ iassigne CLVPM364fasta.gz “found Bacteria P unassigned,unassigned, bacterium
d_Beckrs; p_Protachectes;o_ammoprotechectede;o_Thioleraes;{_Tittchaosse;q _THotv a_Tiokeix skaboomCLPTI.2fastn gz “found Bacteria,Pr Thiotrchal Thiothrix Thithrix ekelboormi,”
d_Bacteria; p_Proteobacteria; c_ Gammaprotebacteria; o_Thiotrichales; i 's__Thiothrix eikelboomilCLVPTH 1 fasta.gz ‘Thiotrchal thiix eikelboomil
d_Bacteria; p_Proteobacteria; _ Gammaproteobacteria; “Thiothrix eikelboomiiCLVPT2 2 fasta gz ‘Thiotrchal thiix eikelboomil
d_Bacteria; p_Proteobacteria; ¢ Gammapmleobamena Tmnmchaceae g Triolhrix s_Thiothix ekelooomi CLVPMG. fasta g ‘Thiotrchal thiix eikelooomil
d_Bacteria; p_t 0__unassign BinA245 signed, bacterium ADurb BinA245,"
CNCD4C3fastagz  d_Bacteria; p_t - i 0_unassigned Abuub it 41 unassigned unassigned, bacterium ADurb Bin141,"
CNCQUC 33 fasta. d_Bacteria; p_t - i 0_unassigned: ADurb. “found,Bacteria unassigned unassigned. bacterium ADurb Bin141."
CNDL1AC 13fastagz  d_Bacteria; p_/ o ¢ Jnasggnea cmmmc 13 fastagz unassigned,”
DL d_Bacteria; p_/ o C o | __unassigned unassigned,”
CNDL2ACd9fastagz  d_Bacteria; p_t - f CNDLAC9fasiags  lound Bacttia cauense,”
CNDL2ACAfastagz  d_Bacteria; p_t ¢ ¢ _unassignecig_{ “unassigne unassigned,
CNUNIC21fastagz  d_Bacteria; p_/ o [t oo ot o Gandatss Merois parvicella cmmc 2t fastagz wiidatus Microthiix Candidatus Microthrix parvicelia,
CNINIC22fastagz  d_Bacteria; p_Pr ic_/ - unassigned unassigned,”
CNUN2C 1 fasta.gz d_Bacteria; p_t . ; ) _unassigned; s_| ‘ADurb Bin141 cmnzc Tacags unassigned unassigned, bacterium ADurb Bin141.,"
d_Bacteria; p_t 3 )_unassigned; s_| ADurb Binta1 *found Bacteria unassigned unassigned, bacterium ADurb Bin141."
CNWX2C.18fastagz  d_Bacteria; p_Pr f ) _unassigned: s_t \edCNWX2C. 18 fasta.g: "Iound‘EadenaP .
CNXASC36fastagz  d_Bacteria p_t 1 ; )_unassigned; s_| ADurb BinA245 CNXA3C36fastagz ‘“found Bacteria unassigned unassigned. bacterium ADurb.BinA245,"
CNXMAC. magagz 4 Becrs o 3 _unassioned;s OLBB  CNXMAC.17 fastagz a unassigned unassigned, bacterium OLBS"
CNXMAC 2 assig unassigned,unassigned. bacterium OLBS "
G00L18.006. b fasta gzd Eaclena b Pralsobacens & Gammamotedbaciona.o._unasagne, unass@ned Lunasslgned s_unassigned unassigned, una ,
COCLiB11fastagz  d_Bx P nass unassigned,"
COCL1B.33 fasta.gz & acne p_Pr o ot (- unassignad: 3. unassgned: 5. unassigne COCL1B 33 fastagz unassigned,
COCL2B 15fastagz  d_Bacteria; p_t . 0_unassigned; f_ unassigned;s_Bacteroidetes et ADut B3e5 *found Bacteria unassigned unassigned, bacterium ADurb.BinA395,"
COCL2B60fastagz  d_Bacteria; p_Pr D D L - propionicus found Bacteria,Pr D propionicus,
COCL3C.005_subfasta gzd_Bacteria; p_| o »__unassigned; {_ )_unassigned: Lunass\gnea COOLAC00G b st gzloun Baclot unassigned, .
COCL3C 12fastagz  d_Bacteria; p_Pr o ) [ gt ._unassigned  COCLC. 12.¢ unassigned,”
COCL3C3fastagz  d_Bacteria; p_Pr T o {_unassigned; g__unassigned; s_unassigned COCL3C 3 fasta gz "Iound Bacteria Pr unassigned,
DEMEIC2Gatng:  d_Baders :p_Prosobacteac . Gammaprotechacte;o_Titchelos;{_1 Tmnmchaceae a_Trotes_Thiotvb shoboomiDEHEIC 2 esingz  Yourd ket Thiotrchal Thiothrix Thiothrix eikelboormi,”
o assgned;_unassigned; &_unassigne COCL3C 13fastagz “found Bacteria P unassigned,
o »_unassigned; 1_¢ s_Candidatus C odensis DERAIC41fastagz ‘found,Bacteria,Pr unassigned,C Candidatus

ITLF2C.7 fasta.gz acteria; p_Proteobacteria; c_Betaproteobacteria; o_unassigned; {_unassigned; g_unassigned; s_unassigned ITLF2C.7 fasta.gz *found Bacteria,Pr unassigned,unassigned.”
NZBL2 101 fastagz  d_Bacteria; p_Bacteroidetes; c_Bacteroidia; 0_unassigned; f_unassigned; g_unassigned; s_Bacteroidia 1.fasta.gz found,Bacteria, Bacteroid unassigned Bacteroidia bacterium Ga0077558,"
ITLF28.6 fasta.gz d_Bacteria; p_Proteobacteria; c_ Betaproteobacteria; 0_unassigned; {_unassigned; g unassigned; s_ unassigned ITLF2B 6 fastagz found Bacteria,Pr unassigned unassigned,
TMGIC1afesingz  d_Backers p_Protacbectes;c_Betaprtacbeciers; o _umsssighec 1 unassinec _inassihed; a_unassgned ITMC3C.16/astagz  ‘found Bacteria,P unassigned unassigned.”
ITRBIC 37 fastagz  d_Bacteria; p_f [ 5 ITABIC37fastagz  ‘found Bacteria,P Thavera Thauera
ITRBIC 24 fastagz  d_Bacteria; p_E . o nsdgnec 1 )_unassigned; s_| ADurb Bint41 ITRABIC24fastagz “foundBacteria unassigned unassigned, bacterium ADurb Bin141,"
NZDM240fastagz  d_Bacteria; p_P [ o_unassigned; {_t )_unassigned; s_unassigned NZDM240fastagz  *found Bacteria,P unassigned,unassigned,
NZDM2.131fastagz  d_Bacteria; p_f o _unassigned:; {_ ) _unassigned; s_unassigned NZDM2.131fastagz “found,Bacteria,Pr unassign .
SADP3 8 fasta.gz d_Bacteria; p_| ie )_unassigned; f_C P didat SADP3 8 fasta.gz *found,Bacteria,Pr unassigned,C Candidatus
‘Competibacter, Candidatus Competibacter denitificans,"
SAKBS.19.fasta gz |_Bacteria; I g SAKBS.19.fasta gz “found,BacteriaPr bacterium UTPROZ,"
SAKR2 108 asinge acteria; vameunacnena & Betaprotcobacars o Unassinen - urasagned & Canddatus ommivacin o Sanddann et sp BA91 SAKR2.100fastagz  ‘found,Bacteria,Pr t
Bocmibacie Candidatus Aocumitbaner 5p. BAG1
SAZK3 32 fasta gz teria; p_Pr o Dx )_unassigned; {_ )_unassigned; s_| K3 32 st unassigned,unassigned, D clerium Ga0077550."
SEGL2C 1 fasta gz d_Bacteria; p_/ [ » ) g Candidatus Microthix; s_ Candidatus Microthix parvicella  SEGL2C.1.fasta gz iidatus Microthrix Candidatus Microthrix parvicella,
SESDIC50fastagz  d_Bacteria; p_/ o » f g_Candidatus Microthix; s_Candidatus Microthrix parvicella  SESDIC50.fastagz  *found Bacteria idatus Microthiix Candidatus Microthrix pavicel
SESD2C72fastagz  d_Bacteria; p_f o ,_unassigned; {_ )_unassigned; s_unassigned 2C 72 fasta.gz unassigned, .
SGEAIC73fastagz  d_Bacteria; p_E . )_unassigned; s_| OLBB  SGEA1C.73 fasta.gz Unassigned,unassign mOLB8"
SGWEIC37fastagz  d_Bacteria;p_C, . Hassalla; s_Hassallia byssoidea SGWEIC37 fasta.gz acteria unassigned Nostocal hecsrayioarst bymmea
SGWEIC.14fastagz  d_Bacteria; p_E - )_unassigned; s_| OLBB  SGWEIC.14 fasta.gz unassigned,unassigned, mOLB8"
SGJRIC 8.fasta gz d_Bacteria; p_t )_unassigned; s_| oLes unassigned unassigned, bacierum OLBa
TWKS2C4dfastagz  d_Bacteria; p_| g s_unassigned TWKS2C 44 fosta gz lound Bacteria P 3
TWKS205 T fadtage  d_Bacioiap_unasogned. ¢ anasdanect o unasslgned {_inesigned ‘4 unassigned: 5 unaésigned TWKS2C51fastagz  “found,Bacteria unassigned,unassigned, unassigned,unassigned.”
TWKS2C7fastagz  d_Bacteria; p_/ [ ¢ [ . unassigned TWKS2C.7 fastagz und Bacteria unassigned,
TWINIC66fastagz  d_Bacteria; p_/ o 7/" I o | - unassigned TWTNIC 66fastagz “found Bacteri unassigned,”
TWINIC22fastagz  d_Bacteria; p_Pr o oG f q s__unassigned TWINIC22fastagz  “found Bacteria,P 3
TWIN2C25fastagz  d_Bacteria; p_Pr ic_/ TWTN2C25fastagz “found Bacteria P -
TWTN2C2fastagz  d_Bacteria; p_t . o unassgned ) _unassigned; s_ Bacteroidetes bacterium ADurb.Bin141 *found Bacteria unassigned unassigned, bacterium ADurb Bin141,"
USAGICalsnge  d_Badrsip | o —_unassigned T ) unassigne assigned USAGIC S astagz unassigned,
USAGICB5fastagz  d_Bacteria; p [ assigned USAG1C.8 unassigned,”
USBT2C.006_subfasta gzd_| Eaclena p _Nitrospirae; C N\tmspim o N\tmspwa\ss ! Nirospirscoas; o Nirospia; . Gandiaatus Niospa iroen USBT2C. ws,sumas‘ag Nitrospiral Candidatus Nitrospira nitrosa,"
USCBIAC.10fastagz  d_| [ )_unassigned; s_unassigned USCBIAC.10fastagz  “found,Bacteria,Pr unassigned,
USCB1DC. 10 fasta gz i L . ho_inassgned; | ) _unassigned: ADurb BinA245 *found Bacteria unassigned. bacterium ADurb BinA245,"
USCBICC21fastagz  d_Bacteria; [ g USCBI1CC.21 fasta.gz Trasar Thaves soene:
USFT4C26fastagz  d_Bacteria; vameunacnena c Eelapmtsﬂbamena o inassoned | uassinen o unasdgnen, s unassigned USFT4C.26 fasta.gz unassigned,unassigned.”
USHIIC30fastagz  d_Bacteria; p_f ol iassigned; g__unassigned; s_unassigned USHI1C.30 fasta gz unassigned,
USHUC42fastagz  d_Bacteria; p_P ic_/ o_unassigned; {_t ) unassigned; s_unassigned USHIAC.42 fasta gz unassigned,unassigned,
USKP1064fastagz  d_Bacteria;p_Pr ic_/ o_unassigned: {_t )_unassigned; s_unassigned USKP10,64 fasta gz unassigned unassigned,
USKP1071fastagz  d_Bacteria; p_f o )_unassigned; {_ ) _unassigned; s_unassigned USKP10.71.fasta gz unassigned, .
USKP2O.22fastagz  d_Bacteria; p_P ic_/ o_unassigned: {_t ) unassigned; s_unassigned USKP20.22 fasta gz unassigned,unassigned,
USMI1C 53 fasta gz Bacteria; p_P T ot {_unassigned; g_unassigned; s_unassigned USMI1C 53 fasta gz unassigned,
USMD4C.62_sub fasta.gz d_Bacteria; p_f o _unassigned; {_ )_unassigned; s_unassigned ID4C.62_subfasta gz *found Bacteria,P unassigned, :
USMD4C.1 gz d_Bacteriaip_/ o _C [ o | S_unassigned USMDA4C.17 fasta. unassigned,”
USNO1C50fastagz  d_Bacteria; p_/ o [ f )_unassigned; s_unassigned USNO1C50fastagz ' igned .
USOP1AC36fastagz  d_Bacteria; p_P ic_/ o__unassigned;{_L )_unassigned; s_unassigned USOPIAG OB lasinge  "iound Bacteria unassigned,unassigned,
USOPICC.12fastagz  d_Bacteria; p_Pr ic_/ o [ s_unassigned USOPICC.tafastage Tound BacteriaP ed
USPT2C38fastagz  d_Bacteria; o o g_Candidatus Microthiix; s_Candidatus g und Bacteria idatus Microthrix,Candidatus Microthrix parvicella,"
USRE3CBfastagz d_Bacteri unassigned; s_unassigned USRESC 8 fasta.gz found Bacteria,Pr unassigned,
USREBC.18fastagz  d_Bacteria; vameunacnena & Botaprateobaciera o unassAgned {_unassigned; _unassigned; s_unassigned USREBC.18fastagz  ‘found Bacteria,P unassigned unassigned.”
USSD2BB2fastagz  d_Bacteria; p_f ol ot igned: g__unassigned; s_unassigned USSD2BB2fasta.gz  'found,Bacteria,Pr unassigned,
USTESB.12fastagz  d_Bacteria;p_P {_unassigned: g_unassigned; s_unassigned USTESB.12fastagz  ‘found,Bacteria,Pr unassigned,
USSFAC36fastagz  d_Bacteria; p_Nitrospirae; C N\tmspim o N\tmspwa\ss 1_Nitrospiraceae; g__Nitrospira; s_Candidatus U found Bacteria Nitrospiral Candidatus Nitrospira nitros
USSFaC36fastagz  d_Bacteria; p [ o_Gordonia; s_Gord U found Bacteria amarae!
USTESC 50 asage o Bacera bt - ; Jnassgnea [ )_unassigned: s_unassigned 1 found,Bacteria, unassigned, .
USTE3B.7 fasta.gz d_Bacteria; p_t - _unassined; s_unassined USTESB 7 fasta.gz found,Bacteria, unassigned,
USTEBA7 fasta.gz d_Bacteriai p unassign unassigned: s_unassign USTESA fasta.gz found Bacteri unassigned,
USVAZG 2factage o Bacers b_Protesbaciona; o Eelapmtsﬂbamena o0 unassigned; {_ unassigned; g_unassigned; s_ unassigned USVA2C 2 fasta gz found Bacteria,Pr unassigned unassigned.”
USVA6CA7fastagz  d_Bacteria; p . _unassigned; {_ g_unassigned; s_¢ OLBB USVAGC.47.fastagz  “found Bacteria unassigned,unassigned. bacterium OLBS"
USVASG | fasacs. o Baders p_P ol ot g_Azonexus;s_ USVASC.1fastagz ‘found,Bacteria,Pr , Azonexus hydrophilus,
USVDIDC 47_sub fasta. d_Bacteria; p_Cy - 10 Nostocales; f_1 Hassallia; s_Hassallia byssoidea USVD1DC.47_sub fasta. *found,Bacteria, Cyanobacleria,unassigned. Nostocals Hassalia Hassallia byssoide
USWRIAC27 fastagz  d_Bacteria; p_Pr T o {_unassigned; g__unassigned; s_unassigned USWRIAC27.fastagz  found,Bacteria,Pr unassigned,
WR1BC.53 fast i Bacteria; p_Pr T ot {_unassigned: g _unassigned; s_unassigned USWRIBC 53 fast und Bacteria,P unassigned,
USWRIAC37fastagz  d_Bacteria; p_Pr T ot {_unassigned: g__unassigned; s_unassigned USWRIAC37.fastagz  ‘found,Bacteria,Pr unassigned,

42




