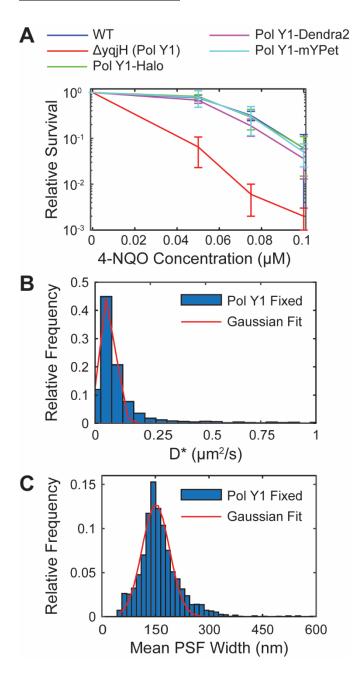
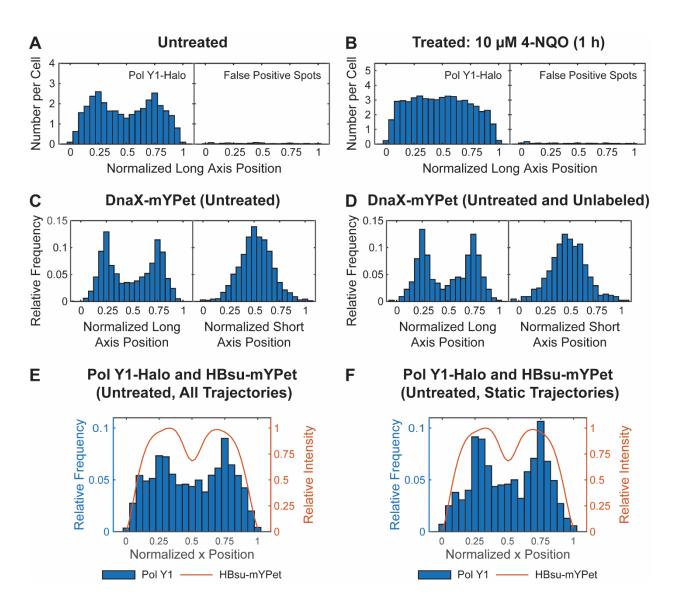
"The Translesion Polymerase Pol Y1 is a Constitutive Component of the *B. subtilis* Replication Machinery"

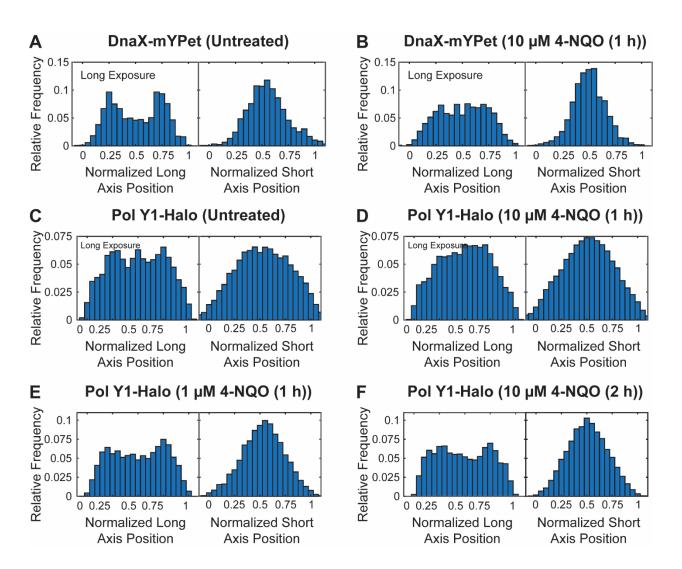
McKayla E. Marrin¹, Michael R. Foster¹, Chloe M. Santana¹, Yoonhee Choi¹, Avtar S. Jassal¹, Sarah J. Rancic¹, Carolyn R. Greenwald¹, Madeline N. Drucker¹, Denholm T. Feldman¹, Elizabeth S. Thrall^{1**}

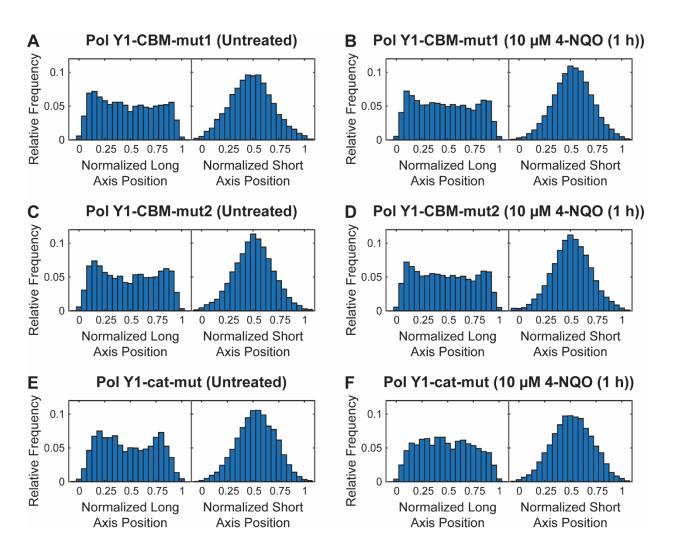

¹Department of Chemistry and Biochemistry, Fordham University, Bronx, NY, 10458, USA **Correspondence: Tel: +1 718-817-4495; Fax: +1 718-817-4432; Email: <u>ethrall@fordham.edu</u>

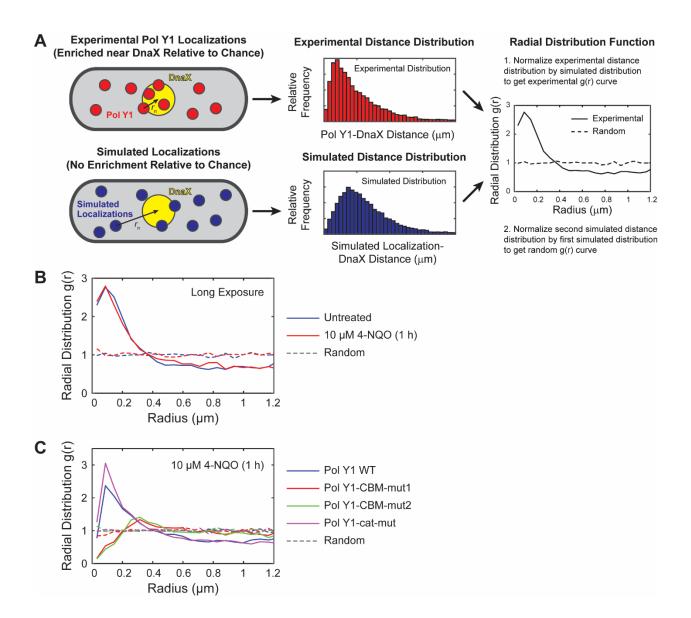
SUPPLEMENTARY INFORMATION

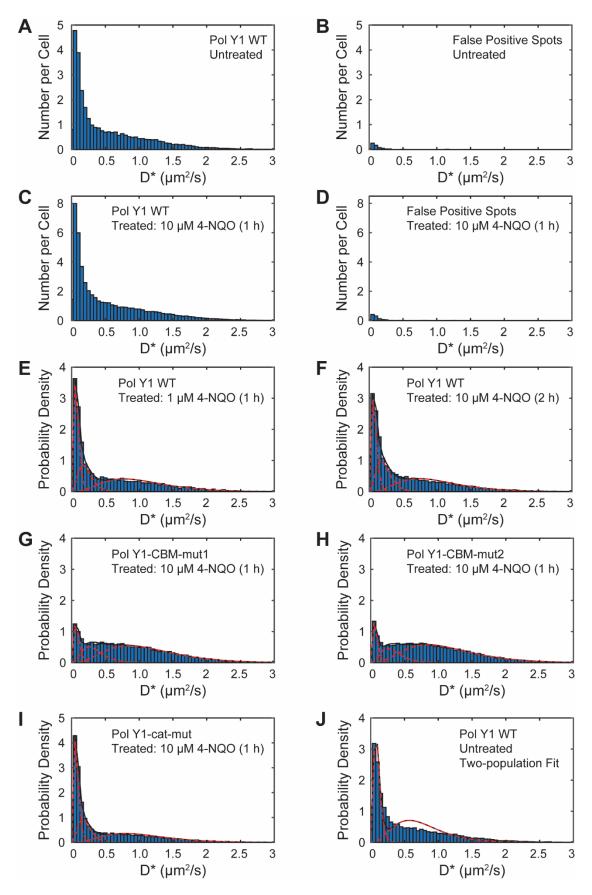

This PDF file includes:

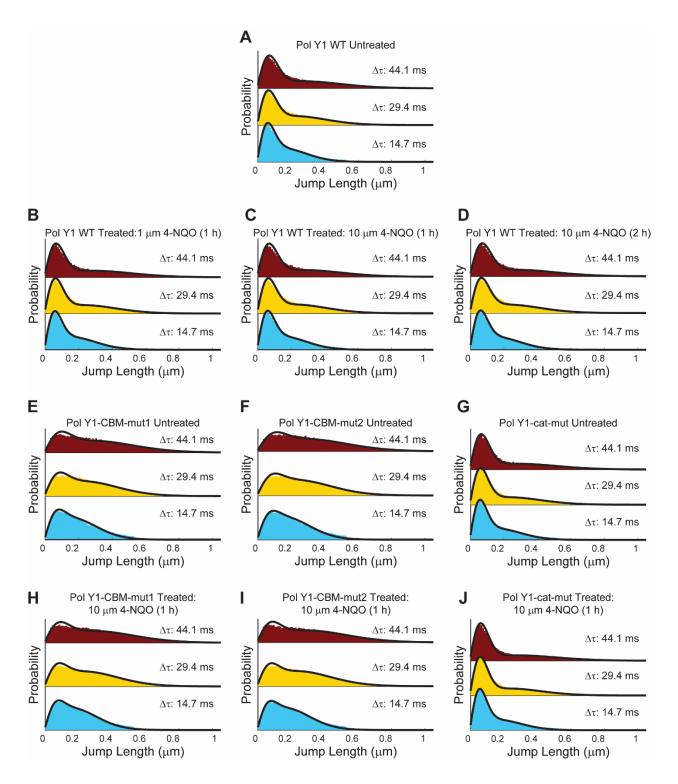
Figures S1 to S8 Tables S1 to S9 Supplementary Methods Supplementary References


Supplementary Figures


Figure S1. (A) Relative survival of *B. subtilis* strains treated with different concentrations of 4-NQO: WT Pol Y1, Pol Y1 knockout, Pol Y1-Halo fusion, Pol Y1-Dendra2 fusion, and Pol Y1-mYPet fusion strains. (B) Distribution of the Pol Y1 apparent diffusion coefficient D^* measured in fixed cells and the corresponding Gaussian fit. (C) Distribution of the mean point spread function (PSF) width for static trajectories recorded with a long 250 ms integration time and the corresponding Gaussian fit.


Figure S2. Cellular localization of DnaX-mYPet, Pol Y1-Halo, and the nucleoid label HBsumYPet. Long cell axis projections of Pol Y1 (left) and false positive spots (right) in (A) untreated cells and (B) cells treated with 10 μ M 4-NQO for 1 h on a per cell basis. Long and short cell axis projections of DnaX in untreated cells either (C) labeled with 2.5 nM JFX₅₅₄ or (D) unlabeled. Long cell axis projections of the nucleoid label HBsu and (E) all Pol Y1 trajectories or (F) static Pol Y1 trajectories ($D^* < 0.14 \ \mu$ m²/s) in untreated cells. Panel (C) is reproduced from Figure 3B.


Figure S3. Cellular localization of DnaX-mYPet and Pol Y1-Halo. Long and short cell axis projections of (A, B) DnaX and (C, D) Pol Y1 in untreated cells and cells treated with 10 μ M 4-NQO for 1 h, respectively, recorded with a long 250 ms integration time. Long and short cell axis projections of Pol Y1 in cells treated with (E) 1 μ M 4-NQO for 1 h and (F) 10 μ M 4-NQO for 2 h.


Figure S4. Cellular localization of Pol Y1-Halo mutants. Long and short cell axis projections of Pol Y1-CBM-mut1, Pol Y1-CBM-mut2, and Pol Y1-cat-mut in (A, C, E) untreated cells and (B, D, F) cells treated with 10 μ M 4-NQO for 1 h, respectively.

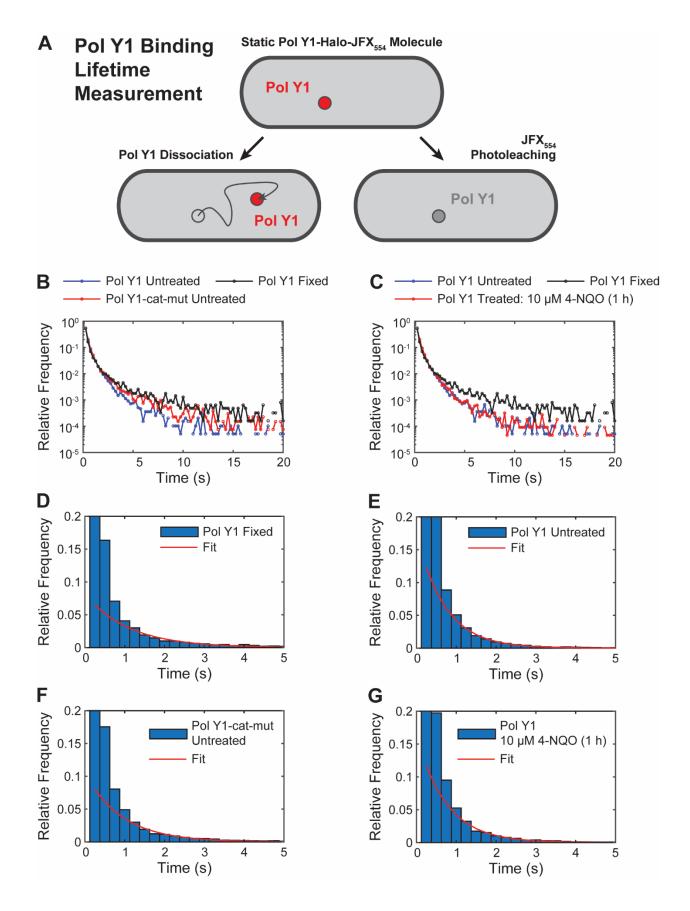

Figure S5. Radial distribution function g(r) analysis of Pol Y1-Halo and DnaX-mYPet colocalization. (A) Cartoon of radial distribution function g(r) analysis. (B) Pol Y1-DnaX g(r) in untreated cells and cells treated with 10 μ M 4-NQO for 1 h recorded with a long 250 ms integration time. (C) Pol Y1-DnaX g(r) for WT Pol Y1, Pol Y1-CBM-mut1, Pol Y2-CBM-mut2, and Pol Y1-cat-mut in cells treated with 10 μ M 4-NQO for 1 h. Random g(r) curves in (B) and (C) are shown as dashed lines.

Figure S6. Apparent diffusion coefficient (D^*) distributions for Pol Y1-Halo and corresponding three-population fits. D^* distributions for WT Pol Y1 (A, C) and false positive spots (B, D) in untreated cells and cells treated with 10 µM 4-NQO for 1 h, respectively, on a per cell basis. D^* distributions for WT Pol Y1 in cells treated with (E) 1 µM 4-NQO for 1 h and (F) 10 µM 4-NQO for 2 h. D^* distributions for (G) Pol Y1-CBM-mut1, (H) Pol Y1-CBM-mut2, and (I) Pol Y1-catmut mutants in cells treated with 10 µM 4-NQO for 1 h. (J) D^* distributions for WT Pol Y1 in untreated cells with a two-population instead of three-population fit.

Figure S7. Spot-On diffusion analysis for Pol Y1-Halo, showing jump length distributions and corresponding two-population fits. WT Pol Y1 in (A) untreated cells and cells treated with (B) 1 μ M 4-NQO for 1 h, (C) 10 μ M 4-NQO for 1 h, or (D) 10 μ M 4-NQO for 2 h. (E, H) Pol Y1-CBM-mut1, (F, I) Pol Y1-CBM-mut2, and (G, J) Pol Y1-cat-mut mutants in untreated cells and cells treated with 10 μ M 4-NQO for 1 h respectively.

Figure S8. Pol Y1-Halo binding lifetime measurements. (A) Cartoon of Pol Y1 dissociation and JFX₅₅₄ photobleaching pathways. (B) Apparent Pol Y1 binding lifetime for WT Pol Y1 in untreated cells, Pol Y1-cat-mut in untreated cells, and WT Pol Y1 in cells fixed with formaldehyde. (C) Apparent Pol Y1 binding lifetime for WT Pol Y1 in untreated cells, cells treated with 10 μ M 4-NQO for 1 h, and cells fixed with formaldehyde. Distributions of apparent binding lifetime and corresponding exponential fits for (D) WT Pol Y1 in fixed cells, (E) WT Pol Y1 in untreated cells, (F) Pol Y1-cat-mut in untreated cells, and (G) WT Pol Y1 in cells treated with 10 μ M 4-NQO for 1 h. (Note that the *y*-axes are truncated in D – G to show the longer timescale behavior more clearly.)

Supplementary Tables

Table S1: Oligonucleotides used in this study

Number	Designation	Sequence (5'-3')	
oEST008	loxP ab rev univ short	GACCAGGGAGCACTGGTCAAC	
oEST023	yqjH-amplify-for	GCGGGTTGATATTATGCTCCTG	
oEST028	yqjH-downstream-rev	CGACAACTTCAGATGGGCTGGTGTTC	
oEST029	yqjH-amplify-rev-nostop	GCTTTTCTTTCATCTTGAA	
oEST030	yqjH-linker-halo-for	ttcaagatgaaaagaaaagcGGCTCTGGACAGGGCTCAGG	
oEST031	halo-spec-rev	gcgagggagcagaaggatccTTACTAGCCGCTGATTTCTA	
oEST032	spec-for	GGATCCTTCTGCTCCCTCGCT	
oEST033	yqjH-linker-dendra2-for	ttcaagatgaaaagaaaagcCTCGAGGGATCTGGCGGATC	
oEST034	dendra2-spec-rev	gcgagggagcagaaggatccCTACCAGACTTGTGACGGCA	
oEST035	yqjH-linker-mYPet-for	ttcaagatgaaaagaaaagcCTCGAGGGATCAGGACAGGG	
oEST036	mYPet-spec-rev	gcgagggagcagaaggatccTTACTTGTAAAGTTCATTCA	
oEST037	yqjH-upstream-for	n-for CATCAGTCACCGTATTGACT	
oEST038	ST038 yqjH-Nter-rev TCGGCTCTTTCCCGGCATAA		
oEST039	yqjH-Nter-spec-iso-for ttatgccgggaaagagccgaGGATCCTTCTGCTCC		
oEST040	yqjH-Cter-spec-iso-rev	attcagcttttctttcatcGACCAGGGAGCACTGGTCAA	
oEST041	yqjH-Cter-for	GATGAAAAGAAAAGCTGAATCGC	
oEST048	yqjW-downstream-rev	eam-rev GTTCATCAAATTGGCTCACG	
oEST049	yqjW-upstream-for	AATATAAATCGGCCGGCCAG	
oEST058	yqjH-CBM-mut1-rev	TGAACgcATCGgcCTGTTTATAGGCCTGCTCTTTTTCTAC	
		TAAATCCG	
oEST059	yqjH-CBM-mut1-for	CCTATAAACAGgcCGATgcGTTCAGCTTTAATGAAGATGC	
		GAAGGAT	
oEST060	yqjH-CBM-mut2-rev	TGgcCAAATCGAGCgcTTTATAGGCCTGCTCTTTTTCTAC	
oEST061	yqjH-CBM-mut2-for	CCTATAAAgcGCTCGATTTGgcCAGCTTTAATGAAGATGC GAAGGAT	
oEST062	yqjH-cat-mut-rev	CCATATAGCCTqCGqCGATGGAGACAGGCTCCACTAGGTC	
0251002	yqjii cat mat iev	AGTATATT	
oEST063	yqjH-cat-mut-for	TCTCCATCGcCGcAGGCTATATGGACATGACCGATACA	
oEST070	yqjH-amplify-rev-iso	ctgagcgagggagcagaaggatccTCAGCTTTTCTTTCA	
		TCTTGAAA	
oEST071	yqjH-downstream-for-iso	gtagttgaccagtgctccctggtcATCGCTTGAAAAAAAG	
		GGTG	
oEST072	yqjW-Nter-rev-iso	ctgagcgagggagcagaaggatccCACTTTTTCTTTCATC	
		ATACACACC	
oEST073	yqjW-Cter-for-iso	gtagttgaccagtgctccctggtcAAAATAGGGGGGGCATT	
		АТААА	

Number	mber Designation or description Relevant genotype		Construction or source strain designation	Reference	
EST003	<i>B. subtilis</i> prototrophic wild- type strain	PY79	_	(1, 2)	
EST053	DnaX-mYPet	PY79 dnaX-mYpet cat Ω pWX340a	Gift of Xindan Wang (Indiana University); strain BWX519 from plasmid pWX340	(3)	
EST057	PolC-mYPet	PY79 polC-mYpet cat	Gift of Xindan Wang (Indiana University); strain BWX499		
EST081	PolC-Dendra2PY79 polC-dendra2 loxP specGift of Xindan Wang (Indiana University); strain BWX2913				
EST083	PolC-HaloTag	PY79 polC-halo loxP spec			
EST111	ΔPol Y1	PY79 yqjH::loxP spec	$yqjH::loxP spec$ $yqjH::loxP spec \rightarrow$ $EST003$ $Transformation:$ $yqjH::loxP spec \rightarrow$		
EST115			Transformation: $yqjH loxP$ $spec \rightarrow EST003$	This study	
EST117	ΔPol Y2	PY79 yqjW::loxP spec	Transformation: $yqjW::loxP \ spec \rightarrow$ EST003	This study	
EST119	Pol Y1-CBM-mut1	PY79 yqjH-CBM-mut1 loxP spec	Transformation: $yqjH$ - <i>CBM-mut1 loxP spec</i> \rightarrow EST003	This study	
EST121	Pol Y1-CBM-mut2	PY79 yqjH-CBM-mut2 loxP spec	Transformation: $yqjH$ - <i>CBM-mut2 loxP spec</i> \rightarrow EST003	This study	
EST139	Pol Y1-Dendra2	PY79 yqjH-dendra2 loxP spec	Transformation: $yqjH$ - dendra2 loxP spec \rightarrow EST003	This study	
EST141	1Pol Y1-mYPetPY79 $yqjH$ -mYPet loxPTransformation: $yqjH$ - mYPet loxP spec \rightarrow EST003		mYPet loxP spec \rightarrow	This study	
EST143	Pol Y1-Halo	PY79 yqjH-halo loxP spec	Transformation: $yqjH$ -halo loxP spec \rightarrow EST003	This study	
EST191	Pol Y1-cat-mut	PY79 yqjH-cat-mut loxP spec	Transformation: $yqjH$ -cat- mut loxP spec \rightarrow EST003	This study	
EST197	Pol Y1-Halo DnaX-mYPet	PY79 yqjH-halo loxP spec dnaX-mYpet cat Ω pWX340a	Transformation: EST143 \rightarrow EST053	This study	

Table S2: B. subtilis bacterial strains used in this study

EST215	Pol Y1-CBM-mut1-Halo	PY79 yqjH-CBM-mut1-	Transformation: yqjH-	This study
		halo loxP spec	CBM-mut1-halo loxP spec	
			\rightarrow EST003	
EST217	Pol Y1-CBM-mut2-Halo	PY79 yqjH-CBM-mut2-	Transformation: <i>yqjH</i> -	This study
		halo loxP spec	CBM-mut2-halo loxP spec	
			\rightarrow EST003	
EST219	Pol Y1-CBM-mut1-Halo	PY79 yqjH-CBM-mut1-	Transformation: EST215	This study
	DnaX-mYPet	halo loxP spec dnaX-	\rightarrow EST053	
		mYpet cat Ω pWX340a		
EST221	Pol Y1-CBM-mut2-Halo	PY79 yqjH-CBM-mut2-	Transformation: EST217	This study
	DnaX-mYPet	halo loxP spec dnaX-	\rightarrow EST053	
		mYpet cat Ω pWX340a		
EST229	Pol Y1-cat-mut-Halo	PY79 yqjH-cat-mut-halo	Transformation: yqjH-cat-	This study
		loxP spec	mut-halo loxP spec \rightarrow	
			EST003	
EST243	Pol Y1-cat-mut-Halo DnaX-	PY79 yqjH-cat-mut-halo	Transformation: EST229	This study
	mYPet	loxP spec dnaX-mYpet	\rightarrow EST053	
		cat Ω pWX340a		
EST273	HBsu-mYPet	PY79 sacA::hbsu-mYpet	Gift of Xindan Wang	(3)
		b.s. cat	(Indiana University);	
			strain BWX583	
EST275	Pol Y1-Halo HBsu-mYPet	PY79 yqjH-halo b.s. loxP	Transformation: EST143	This study
		spec sacA::hbsu-mYpet	\rightarrow EST273	
		b.s. cat		

Table S3: Imaging dataset size

Dataset/Condition	Figure(s)	Number of Days	Number of Replicates	Number of Cells	Number of Tracks or Foci
DnaX cellular localization	3B, S2C	8	8	816	1,363
Untreated					
WT Pol Y1 cellular localization	3C, S2A	8	8	816	26,602
Untreated					
DnaX cellular localization	3D	4	6	760	1,522
10 μM 4-NQO (1 h)					
WT Pol Y1 cellular localization	3E, S2B	4	6	760	40,469
10 µM 4-NQO (1 h)	- ,		-		-,
WT Pol Y1-DnaX $g(r)$	4A, 4C,	8	8	816	25,009
Untreated (All trajectories)	S5C	-	-		
WT Pol Y1-DnaX $g(r)$	4A	8	8	816	8,465
Untreated (Static: $D^* < 0.14 \mu m^2/s$)		Ũ	Ũ	010	0,100
WT Pol Y1-DnaX $g(r)$	4A	8	8	816	16,544
Untreated (Mobile: $D^* > 0.14 \mu m^2/s$)	7/1	0	0	010	10,544
Pol Y1-CBM-mut1-DnaX $g(r)$	4B	4	4	636	8,298
Untreated	4D	4	4	030	0,290
Pol Y1-CBM-mut2-DnaX $g(r)$	4B	3	3	872	14,694
Untreated	4D	3	5	072	14,094
Pol Y1-cat-mut-DnaX $g(r)$	4B	3	3	593	10,389
Untreated	4D	3	5	393	10,389
WT Pol Y1-DnaX $g(r)$	4C	3	4	621	9,357
-	40	3	4	021	9,557
$1 \mu M 4$ -NQO (1 h)	40.050	4	6	7(0	20.559
WT Pol Y1-DnaX $g(r)$	4C, S5C	4	6	760	39,558
10 μM 4-NQO (1 h)	4.9			220	1650
WT Pol Y1-DnaX $g(r)$	4C	2	3	238	16,728
10 μM 4-NQO (2 h)					
WT Pol Y1 <i>D</i> [*]	5A, 5H,	8	8	816	24,544
Untreated (All trajectories)	S6A, S6J	_			
WT Pol Y1 D*	5B	8	8	816	4,856
Untreated (Colocalized: < 200 nm to					
DnaX)					
WT Pol Y1 <i>D</i> [*]	5C	8	8	816	18,264
Untreated (Not colocalized: > 200 nm to					
DnaX-mYPet)					
WT Pol Y1 D^*	5D, 5H,	4	6	760	37,383
10 µM 4-NQO (1 h)	S6C				
Pol Y1-CBM-mut1 D^*	5E	4	4	636	8,010
Untreated					
Pol Y1-CBM-mut2 D^*	5F	3	3	872	13,953
Untreated					
Pol Y1-cat-mut D^*	5G	3	3	593	10,085
Untreated					
WT Pol Y1 D^*	S1B	2	2	282	3,364
Fixed					
WT Pol Y1 Mean PSF Width	S1C	2	2	294	2,358
Fixed (Long exposure)					
False positive spots cellular localization	S2A	2	2	158	113
Untreated					

False positive spots cellular localization $10 \times M 4$ NOO (1 b)	S2B	2	2	268	310
10 μM 4-NQO (1 h) DnaX cellular localization	62D	2	2	267	4.4.1
	S2D	2	2	267	441
Untreated and unlabeled WT Pol Y1 cellular localization and HBsu	S2E	2	2	366	2 210
nucleoid profile	52E	Z	2	300	3,210
Untreated (All trajectories) WT Pol Y1 cellular localization and HBsu	S2F	2		266	1,399
nucleoid profile	32F	2	2	366	1,399
Untreated (Static: $D^* < 0.14 \mu m^2/s$)					
DnaX cellular localization	S3A	8	8	916	1,544
	55A	0	0	910	1,344
Untreated (Long exposure) DnaX cellular localization	S3B	4	6	820	1,668
	220	4	0	820	1,008
$10 \mu\text{M} 4$ -NQO (1 h) (Long exposure)	020	0	0	016	10.520
WT Pol Y1 cellular localization	S3C	8	8	916	19,538
Untreated (Long exposure)	02D	4	6	020	21.005
WT Pol Y1 cellular localization	S3D	4	6	820	21,905
10 μM 4-NQO (1 h) (Long exposure)					
WT Pol Y1 cellular localization	S3E	3	4	621	9,732
1 μM 4-NQO (1 h)					
WT Pol Y1 cellular localization	S3F	2	3	238	17,142
10 µM 4-NQO (2 h)					
Pol Y1-CBM-mut1 cellular localization	S4A	4	4	636	8,933
Untreated					
Pol Y1-CBM-mut1 cellular localization	S4B	2	3	600	18,634
10 μM 4-NQO (1 h)					
Pol Y1-CBM-mut2 cellular localization	S4C	3	3	872	15,382
Untreated					
Pol Y1-CBM-mut2 cellular localization	S4D	2	3	697	21,630
10 μM 4-NQO (1 h)					
Pol Y1-cat-mut cellular localization	S4E	3	3	593	10,944
Untreated					
Pol Y1-cat-mut cellular localization	S4F	3	3	674	24,904
10 μM 4-NQO (1 h)					
WT Pol Y1-DnaX $g(r)$	S5B	8	8	916	18,545
Untreated (Long exposure)					,
WT Pol Y1-DnaX $g(r)$	S5B	4	6	820	21,249
$10 \mu\text{M} 4$ -NQO (1 h) (Long exposure)			-		, -
Pol Y1-CBM-mut1-DnaX $g(r)$	S5C	2	3	600	18,170
$10 \mu\text{M} 4$ -NQO (1 h)		-		300	10,170
Pol Y1-CBM-mut2-DnaX $g(r)$	S5C	2	3	697	20,573
$10 \ \mu\text{M} 4\text{-NQO} (1 \text{ h})$	0.50	~		077	20,575
Pol Y1-cat-mut-DnaX $g(r)$	S5C	3	3	674	24,296
Q • • •	SJC	5	5	0/4	24,270
$\frac{10 \mu\text{M} 4\text{-NQO} (1 \text{h})}{\text{False positive spate } D^*}$	SCD.	2		150	0.0
False positive spots D^*	S6B	2	2	158	98
Untreated	0.0			260	077
False positive spots D^*	S6D	2	2	268	277
$10 \mu\text{M} 4\text{-NQO} (1 \text{h})$	0.07	2		(21	0.020
WT Pol Y1 D^*	S6E	3	4	621	9,029
$1 \mu M 4$ -NQO (1 h)					
WT Pol Y1 D*	S6F	2	3	238	15,976
10 µM 4-NQO (2 h)					
Pol Y1-CBM-mut1 D^*	S6G	2	3	600	16,892
10 µM 4-NQO (1 h)					

Pol Y1-CBM-mut2 <i>D</i> *	S6H	2	3	697	19,615
10 μM 4-NQO (1 h)					<i>,</i>
Pol Y1-cat-mut <i>D</i> *	S6I	3	3	674	23,101
10 μM 4-NQO (1 h)					
WT Pol Y1 jump lengths	S7A	8	8	816	92,632
Untreated					
WT Pol Y1 jump lengths	S7B	3	4	621	33,844
1 µM 4-NQO (1 h)					
WT Pol Y1 jump lengths	S7C	4	6	760	131,239
10 μM 4-NQO (1 h)					
WT Pol Y1 jump lengths	S7D	2	3	238	51,372
10 µM 4-NQO (2 h)					
Pol Y1-CBM-mut1 jump lengths	S7E	4	4	636	41,042
Untreated					
Pol Y1-CBM-mut2 jump lengths	S7F	3	3	872	62,925
Untreated					
Pol Y1-cat-mut jump lengths	S7G	3	3	593	39,260
Untreated					
Pol Y1-CBM-mut1 jump lengths	S7H	2	3	600	75,690
10 μM 4-NQO (1 h)		_			
Pol Y1-CBM-mut2 jump lengths	S7I	2	3	697	85,385
10 µM 4-NQO (1 h)					
Pol Y1-cat-mut jump lengths	S7J	3	3	674	77,323
10 µM 4-NQO (1 h)					
WT Pol Y1 binding lifetime	S8B,	8	8	916	19,538
Untreated	S8C,				
	S8E	_			
WT Pol Y1 binding lifetime	S8B,	2	2	294	6,207
Fixed	S8C,				
	S8D	2		C 1 5	12.025
Pol Y1-cat-mut binding lifetime	S8B, S8F	3	3	645	13,235
Untreated		4	6	020	21.005
WT Pol Y1 binding lifetime	S8C,	4	6	820	21,905
10 µM 4-NQO (1 h)	S8G				

Table S4: Value of the mean radial distribution function g(r) for Pol Y1-DnaX colocalization at the second smallest value of r (generally the maximum of the g(r) curve) and the standard error of the mean (S.E.M.) at that r value for the 100 calculated g(r) curves

Figure(s)	Protein	Condition	$g(r) \pm S.E.M.$
4A, 4C	WT Pol Y1	Untreated	2.84 ± 0.01
		(All trajectories)	
4A	WT Pol Y1	Untreated	5.95 ± 0.04
		(Static: $D^* < 0.14 \ \mu m^2/s$)	
	WT Pol Y1	Untreated	1.112 ± 0.006
		(Mobile: $D^* > 0.14 \ \mu m^2/s$)	
4B	Pol Y1-CBM-mut1	Untreated	0.157 ± 0.001
	Pol Y1-CBM-mut2	Untreated	0.0938 ± 0.0005
	Pol Y1-cat-mut	Untreated	3.20 ± 0.02
4C, S5C	WT Pol Y1	10 µM 4-NQO (1 h)	2.370 ± 0.007
4C	WT Pol Y1	1 μM 4-NQO (1 h)	2.14 ± 0.02
	WT Pol Y1	10 μM 4-NQO (2 h)	2.54 ± 0.01
S5B	WT Pol Y1	Untreated; Long exposure	2.76 ± 0.01
	WT Pol Y1	10 μM 4-NQO (1 h); Long exposure	2.79 ± 0.01
S5C	Pol Y1-CBM-mut1	10 µM 4-NQO (1 h)	0.536 ± 0.003
	Pol Y1-CBM-mut2	10 µM 4-NQO (1 h)	0.435 ± 0.002
	Pol Y1-cat-mut	10 µM 4-NQO (1 h)	3.05 ± 0.01

Table S5: Pol Y1-Halo diffusion coefficient distribution fit parameters from MSD analysis
(± uncertainties from 95% fit confidence intervals)

Strain/Condition	$D_1 (\mu m^2/s)$	<i>A</i> ₁	$D_2 (\mu { m m}^2/{ m s})$	A2	$D_3 (\mu m^2/s)$	A3
WT Pol Y1	$0.080 \pm$	0.281 ±	$0.976 \pm$	$0.468 \pm$	0.234 ±	0.250 ±
Untreated (All)	0.005	0.028	0.077	0.030	0.030	0.058
WT Pol Y1	$0.074 \pm$	$0.440 \pm$	0.734 ±	0.209 ±	0.186 ±	0.351 ±
Untreated (< 200 nm	0.006	0.069	0.187	0.046	0.032	0.256
to DnaX-mYPet)						
WT Pol Y1	$0.084 \pm$	0.243 ±	0.996 ±	$0.522 \pm$	0.253 ±	0.235 ±
Untreated (> 200 nm	0.005	0.0234	0.065	0.028	0.031	0.051
to DnaX-mYPet)						
WT Pol Y1	$0.079 \pm$	$0.282 \pm$	1.022 ±	$0.459 \pm$	0.253 ±	0.259 ±
10 µM 4-NQO (1 h)	0.004	0.026	0.092	0.034	0.032	0.060
Pol Y1-CBM-mut1	0.081 ±	0.108 ±	1.117 ±	0.682 ±	0.325 ±	0.210 ±
Untreated	0.005	0.010	0.041	0.023	0.028	0.033
Pol Y1-CBM-mut2	$0.086 \pm$	$0.086 \pm$	1.159 ±	0.725 ±	0.344 ±	0.188 ±
Untreated	0.005	0.008	0.031	0.018	0.025	0.026
Pol Y1-cat-mut	0.079 ±	0.336 ±	1.009 ±	0.427 ±	0.204 ±	0.237 ±
Untreated	0.005	0.038	0.085	0.026	0.029	0.064
WT Pol Y1	$0.079 \pm$	0.314 ±	$1.047 \pm$	$0.474 \pm$	$0.220 \pm$	0.213 ±
1 µM 4-NQO (1 h)	0.005	0.033	0.085	0.028	0.034	0.061
WT Pol Y1	0.081 ±	$0.280 \pm$	0.994 ±	0.461 ±	0.230 ±	0.260 ±
10 µM 4-NQO (2 h)	0.004	0.027	0.072	0.026	0.026	0.053
Pol Y1-CBM-mut1	0.084 ±	0.118 ±	1.136 ±	0.687 ±	0.342 ±	0.195 ±
10 µM 4-NQO (1 h)	0.005	0.010	0.041	0.024	0.032	0.034
Pol Y1-CBM-mut2	$0.076 \pm$	0.110 ±	1.128 ±	0.722 ±	0.332 ±	0.168 ±
10 µM 4-NQO (1 h)	0.005	0.009	0.039	0.023	0.035	0.032
Pol Y1-cat-mut	0.077 ±	0.357 ±	1.053 ±	0.423 ±	0.212 ±	0.220 ±
10 µM 4-NQO (1 h)	0.005	0.042	0.120	0.034	0.039	0.076

Strain/Condition	D_{static} (μ m ² /s)	Astatic	$D_{\rm free}$ ($\mu m^2/s$)	Afree
WT Pol Y1	0.024	0.401	0.880	0.599
Untreated (All)				
WT Pol Y1	0.023	0.407	0.891	0.593
10 µM 4-NQO (1 h)				
Pol Y1-CBM-mut1	0.058	0.190	0.989	0.810
Untreated				
Pol Y1-CBM-mut2	0.076	0.166	1.020	0.834
Untreated				
Pol Y1-cat-mut	0.018	0.447	0.943	0.553
Untreated				
WT Pol Y1	0.019	0.404	0.949	0.596
1 µM 4-NQO (1 h)				
WT Pol Y1	0.027	0.419	0.923	0.581
10 µM 4-NQO (2 h)				
Pol Y1-CBM-mut1	0.049	0.180	0.998	0.820
10 µM 4-NQO (1 h)				
Pol Y1-CBM-mut2	0.041	0.170	1.006	0.920
10 µM 4-NQO (1 h)	0.041	0.170	1.006	0.830
Pol Y1-cat-mut	0.014	0.470	0.952	0.530
10 µM 4-NQO (1 h)				

Table S6: Pol Y1-Halo diffusion coefficients and populations from Spot-On analysis

Table S7: Photobleaching-corrected Pol Y1-Halo binding lifetimes (± uncertainties from95% fit confidence intervals)

Strain/Condition	τ _{bleach} (s)	τ _{app} (s)	τ _{bound} (s)
WT Pol Y1	1.10 ± 0.05	—	
Fixed			
WT Pol Y1	_	0.70 ± 0.02	1.9 ± 0.4
Untreated			
Pol Y1-cat-mut	_	0.92 ± 0.03	6 ± 3
Untreated			
WT Pol Y1	_	0.73 ± 0.02	2.2 ± 0.5
10 µM 4-NQO (1 h)			

Table S8: Fold change in number of colony forming units per mL (CFUs/mL) for imaging cultures after different treatments (mean ± standard deviation)

Condition	Untreated	DMF Only	1 μM 4- NQO (1 h)	10 μM 4- NQO (1 h)	10 μM 4- NQO (2 h)	50 μM 4- NQO (1 h)
Fold Change in CFUs/mL	2.09 ± 0.08	2.3 ± 0.6	2.1 ± 0.2	0.7 ± 0.2	1.5 ± 0.3	0.06 ± 0.02

Table S9: Mutagenesis for different strains in untreated or 4-NQO-treated cells measured by the rate of rifampicin resistance (Rif^R) and the induced mutation rate (4-NQO-treated mutation rate – untreated mutation rate) (mean ± standard deviation)

Strain	WT		ΔPol Y1		ΔPol Y2	
Condition	Untreated	10 μM 4-	Untreated	10 μM 4-	Untreated	10 μM 4-
		NQO (1 h)		NQO (1 h)		NQO (1 h)
Rif ^R (per 10 ⁸)	1.4 ± 0.4	1.9 ± 0.5	1.5 ± 0.5	2.4 ± 0.7	1.3 ± 0.4	2.0 ± 0.3
Induced Rif ^R (per 10 ⁸)	0.5 ± 0.3		1.0 ± 1.0		0.7 ± 0.4	

Supplementary Methods

Overview of strain construction strategy:

Bacterial strains containing fluorescent protein fusions or other modifications were constructed by transformation of either double-stranded DNA (dsDNA) fragments or genomic DNA bearing 1 - 2 kilobase (kb) homology arms for incorporation into the chromosome. dsDNA fragments containing desired modifications were synthesized by polymerase chain reaction (PCR) amplification and Gibson assembly.(4) Genomic DNA was extracted with phenol-chloroform and ethanol precipitation, resuspended in Tris-EDTA (TE) buffer, and transformed without further purification. Recipient strains were grown at 37 °C in BMK Complete medium (60 mM K₂HPO₄, 38 mM KH₂PO₄, 111 mM D-glucose, 3 mM sodium citrate, 0.0022% ferric ammonium citrate, 15 mM L-aspartic acid potassium salt, 10 mM MgSO₄, 0.05% yeast extract) to induce competence. Transformants were selected on LB Lennox agar plates containing the appropriate antibiotic, followed by one round of streak purification after the initial selection step. Newly transformed modifications were validated by PCR amplification of genomic DNA followed by Sanger DNA sequencing. Preexisting modifications were checked by streaking on antibiotic plates. Antibiotic concentrations used were 100 µg/mL spectinomycin and 5 µg/mL chloramphenicol. Tables S1 and S2 list all oligonucleotides and bacterial strains used in this study. Construction details for all new strains are summarized below.

The Pol Y1-Halo construct for microscopy was designed as a C-terminal fusion to the selflabeling HaloTag(5) with an 11 amino acid linker (GSGQGSGPGSG) between the Pol Y1 Cterminus and the HaloTag N-terminus. Similar C-terminal Pol Y1 fusions were made to the monomeric YFP variant mYPet(6) (using the 8 amino acid linker LEGSGQGP) and the photoconvertible green fluorescent protein (GFP) variant Dendra2(7, 8) (using the 8 amino acid linker LEGSGGSG). The DnaX replisome marker contained a C-terminal fusion to mYPet with an 8 amino acid linker (LEGSGQGP). The Pol Y1 catalytically inactive mutant contained the D108A E109A mutation to the catalytic residues in the polymerase active site.(9) The Pol Y1 CBM-mut1 and CBM-mut2 mutants contained mutations (QADAF and ALDLA respectively) to the WT clamp-binding motif sequence (QLDLF).

The yqjW gene is the first gene in an operon.(10) To minimize effects on the expression of the downstream gene, yqjX, the N-terminal 18 base pairs (bp) and the C-terminal 24 bp of yqjW (including the stop codon) were retained in the yqjW::spec knockout strain.

Detailed strain construction information:

EST111: Δ Pol Y1. The *yqjH* upstream was amplified from strain EST003 using oligonucleotides oEST037 and oEST038. The loxP spec cassette was amplified from strain EST081 using oligonucleotides oEST039 and oEST040. The *yqjH* downstream was amplified from strain

EST003 using oligonucleotides oEST041 and oEST028. The three fragments were joined by Gibson assembly and transformed into strain EST003.

EST115: Pol Y1 loxP spec. The yqjH gene and upstream were amplified from strain EST003 using oligonucleotides oEST023 and oEST070. The loxP spec cassette was amplified from strain EST081 using oligonucleotides oEST032 and oEST008. The yqjH downstream was amplified from strain EST003 using oligonucleotides oEST071 and oEST028. The three fragments were joined by Gibson assembly and transformed into strain EST003.

EST117: \triangle Pol Y2. The *yqjW* upstream was amplified from strain EST003 using oligonucleotides oEST049 and oEST072. The loxP spec cassette was amplified from strain EST081 using oligonucleotides oEST032 and oEST008. The *yqjW* downstream was amplified from strain EST003 using oligonucleotides oEST073 and oEST048. The three fragments were joined by Gibson assembly and transformed into strain EST003.

EST119: Pol Y1-CBM-mut1. The N-terminal portion of yqjH (from the N-terminus to the clampbinding motif) and the upstream were amplified from strain EST115 using oligonucleotides oEST023 and oEST058. The C-terminal portion of yqjH (from the clamp-binding motif to the Cterminus) and the downstream were amplified from strain EST115 using oligonucleotides oEST059 and oEST028. Oligonucleotides oEST058 and oEST059 contained the CBM-mut1 mutations. The two fragments were joined by Gibson assembly and transformed into strain EST003.

EST121: Pol Y1-CBM-mut2. The N-terminal portion of yqjH (from the N-terminus to the clampbinding motif) and the upstream were amplified from strain EST115 using oligonucleotides oEST023 and oEST060. The C-terminal portion of yqjH (from the clamp-binding motif to the Cterminus) and the downstream were amplified from strain EST115 using oligonucleotides oEST061 and oEST028. Oligonucleotides oEST060 and oEST061 contained the CBM-mut2 mutations. The two fragments were joined by Gibson assembly and transformed into strain EST003.

EST139: Pol Y1-Dendra2. The yqjH gene and upstream were amplified from strain EST003 using oligonucleotides oEST023 and oEST029. The linker and Dendra2 were amplified from strain EST081 using oligonucleotides oEST033 and oEST034. The loxP spec cassette and yqjH downstream were amplified from strain EST115 using oligonucleotides oEST032 and oEST028. The three fragments were joined by Gibson assembly and transformed into strain EST003.

EST141: Pol Y1-mYPet. The yqjH gene and upstream were amplified from strain EST003 using oligonucleotides oEST023 and oEST029. The linker and mYPet were amplified from strain EST057 using oligonucleotides oEST035 and oEST036. The loxP spec cassette and yqjH

downstream were amplified from strain EST115 using oligonucleotides oEST032 and oEST028. The three fragments were joined by Gibson assembly and transformed into strain EST003.

EST143: Pol Y1-Halo. The *yqjH* gene and upstream were amplified from strain EST003 using oligonucleotides oEST023 and oEST029. The linker and HaloTag were amplified from strain EST083 using oligonucleotides oEST030 and oEST031. The loxP spec cassette and *yqjH* downstream were amplified from strain EST115 using oligonucleotides oEST032 and oEST028. The three fragments were joined by Gibson assembly and transformed into strain EST003.

EST191: Pol Y1-cat-mut. The N-terminal portion of yqjH (from the N-terminus to the catalytic site) and the upstream were amplified from strain EST115 using oligonucleotides oEST037 and oEST062. The C-terminal portion of yqjH (from the clamp-binding motif to the C-terminus) and the downstream were amplified from strain EST115 using oligonucleotides oEST063 and oEST028. Oligonucleotides oEST062 and oEST063 contained the catalytic site mutations. The two fragments were joined by Gibson assembly and transformed into strain EST003.

EST197: Pol Y1-Halo DnaX-mYPet. The *yqjH-halo loxP spec* allele was transferred from strain EST143 to strain EST053 by transformation with genomic DNA.

EST215: Pol Y1-CBM-mut1-Halo. The yqjH gene (containing the CBM-mut1 mutation) and upstream were amplified from strain EST119 using oligonucleotides oEST023 and oEST029. The linker and HaloTag were amplified from strain EST083 using oligonucleotides oEST030 and oEST031. The loxP spec cassette and yqjH downstream were amplified from strain EST115 using oligonucleotides oEST032 and oEST028. The three fragments were joined by Gibson assembly and transformed into strain EST003.

EST217: Pol Y1-CBM-mut2-Halo. The yqjH gene (containing the CBM-mut2 mutation) and upstream were amplified from strain EST121 using oligonucleotides oEST023 and oEST029. The linker and HaloTag were amplified from strain EST083 using oligonucleotides oEST030 and oEST031. The loxP spec cassette and yqjH downstream were amplified from strain EST115 using oligonucleotides oEST032 and oEST028. The three fragments were joined by Gibson assembly and transformed into strain EST003.

EST219: Pol Y1-CBM-mut1-Halo DnaX-mYPet. The *yqjH-CBM-mut1-halo loxP spec* allele was transferred from strain EST215 to strain EST053 by transformation with genomic DNA.

EST221: Pol Y1-CBM-mut2-Halo DnaX-mYPet. The *yqjH-CBM-mut2-halo loxP spec* allele was transferred from strain EST217 to strain EST053 by transformation with genomic DNA.

EST229: Pol Y1-cat-mut-Halo. The yqjH gene (containing the catalytic site mutations) and upstream were amplified from strain EST191 using oligonucleotides oEST023 and oEST029. The linker and HaloTag were amplified from strain EST083 using oligonucleotides oEST030 and oEST031. The loxP spec cassette and yqjH downstream were amplified from strain EST115 using oligonucleotides oEST032 and oEST028. The three fragments were joined by Gibson assembly and transformed into strain EST003.

EST243: Pol Y1-cat-mut-Halo DnaX-mYPet. The *yqjH-cat-mut-halo loxP spec* allele was transferred from strain EST229 to strain EST053 by transformation with genomic DNA.

EST275: Pol Y1-Halo HBsu-mYPet. The *yqjH-halo loxP spec* allele was transferred from strain EST143 to strain EST273 by transformation with genomic DNA.

Supplementary References

- 1. Zeigler, D.R., Prágai, Z., Rodriguez, S., Chevreux, B., Muffler, A., Albert, T., Bai, R., Wyss, M. and Perkins, J.B. (2008) The Origins of 168, W23, and Other *Bacillus subtilis* Legacy Strains. *J Bacteriol*, **190**, 6983–6995.
- 2. Schroeder, J.W. and Simmons, L.A. (2013) Complete Genome Sequence of Bacillus subtilis Strain PY79. *Genome Announc*, **1**, e01085-13.
- Wang,X., Montero Llopis,P. and Rudner,D.Z. (2014) Bacillus subtilis chromosome organization oscillates between two distinct patterns. *Proc. Natl. Acad. Sci. U.S.A.*, **111**, 12877–12882.
- Gibson,D.G., Young,L., Chuang,R.-Y., Venter,J.C., Hutchison,C.A. and Smith,H.O. (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nat Methods*, 6, 343–345.
- Los,G.V., Encell,L.P., McDougall,M.G., Hartzell,D.D., Karassina,N., Zimprich,C., Wood,M.G., Learish,R., Ohana,R.F., Urh,M., *et al.* (2008) HaloTag: A Novel Protein Labeling Technology for Cell Imaging and Protein Analysis. *ACS Chem. Biol.*, 3, 373– 382.
- 6. Nguyen, A.W. and Daugherty, P.S. (2005) Evolutionary optimization of fluorescent proteins for intracellular FRET. *Nat. Biotechnol.*, **23**, 355–360.
- Gurskaya,N.G., Verkhusha,V.V., Shcheglov,A.S., Staroverov,D.B., Chepurnykh,T.V., Fradkov,A.F., Lukyanov,S. and Lukyanov,K.A. (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. *Nat Biotechnol*, 24, 461–465.
- Chudakov, D.M., Lukyanov, S. and Lukyanov, K.A. (2007) Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2. *Nat Protoc*, 2, 2024–2032.
- Duigou,S., Ehrlich,S.D., Noirot,P. and Noirot-Gros,M.-F. (2004) Distinctive genetic features exhibited by the Y-family DNA polymerases in Bacillus subtilis. *Mol. Microbiol.*, 54, 439–451.

 Au,N., Kuester-Schoeck,E., Mandava,V., Bothwell,L.E., Canny,S.P., Chachu,K., Colavito,S.A., Fuller,S.N., Groban,E.S., Hensley,L.A., *et al.* (2005) Genetic Composition of the Bacillus subtilis SOS System. *J. Bacteriol.*, **187**, 7655–7666.